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Abstract

Background: In microbiome data analysis, unsupervised clustering is often used to identify naturally occurring
clusters, which can then be assessed for associations with characteristics of interest. In this work, we systematically
compared beta diversity and clustering methods commonly used in microbiome analyses. We applied these to four
published datasets where highly distinct microbiome profiles could be seen between sample groups, as well a clinical
dataset with less clear separation between groups.

Results: Although no single method outperformed the others consistently, we did identify the key scenarios where
certain methods can underperform. Specifically, the Bray Curtis (BC) metric resulted in poor clustering in a dataset
where high-abundance OTUs were relatively rare. In contrast, the unweighted UniFrac (UU) metric clustered poorly on
dataset with a high prevalence of low-abundance OTUs. To explore these hypotheses about BC and UU, we
systematically modified the properties of the poorly performing datasets and found that this approach resulted in
improved BC and UU performance. Based on these observations, we rationally combined BC and UU to generate a
novel metric. We tested its performance while varying the relative contributions of each metric and also compared it
with another combined metric, the generalized UniFrac distance. The proposed metric showed high performance
across all datasets.

Conclusions: Our systematic evaluation of clustering performance in these five datasets demonstrates that there is
no existing clustering method that universally performs best across all datasets. We propose a combined metric of BC
and UU that capitalizes on the complementary strengths of the two metrics.
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Background
The development of next-generation sequencing in the
past decade has increased access for researchers to ana-
lyze microbial communities [1, 2]. A common method
involves deep sequencing of 16S rRNA genes and
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grouping bacteria at a certain level of 16S rRNA gene
similarity [3]. The highest resolution bacterial sequence
is referred to as an operational taxonomic unit (OTU).
A challenge with microbiome analyses is that these
sequences are derived from bacteria that can be incredibly
diverse and simultaneously have a relatedness structure
that is internally associated, both genetically and pheno-
typically. Metrics to account for phylogenetic closeness
have been proposed specifically for microbiome data [4–
6]. Previously, Fukuyama [7] showed that deep and shal-
low parts of the tree contribute differently to phylogenetic
distances.
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Microbiome data analysis can suffer from overgeneral-
ization (e.g., comparing observations by alpha diversity
measures such as Shannon [8] or Simpson [9] diversity)
or overspecification (e.g., performing association tests for
each taxon, which incurs a heavy penalty for multiple test-
ing). A useful and common strategy to address both of
these limitations is to first apply an unsupervised cluster-
ing methodology. After considering the microbiome data
as a whole and identifying naturally occurring clusters
of samples, these clusters can then be assessed for asso-
ciations with sample characteristics of interest. Previous
studies, for instance, have shown that human stool micro-
biome samples naturally form clusters that are associated
with dietary and geographic factors [10, 11]. A problem
that often confuses researchers is that clustering perfor-
mance results often vary depending on the algorithm or
the beta diversity metrics used, observed previously by
Koren et al. [12] and Claesson et al. [13].
When performing microbiome sample clustering, both

model-based methods and machine learning methods
have been used. Machine learning methods, which rely on
defined distance metrics, are used more frequently than
model-based statistical methods, due to their efficient
implementation and easy interpretation. In this paper, we
focused on the partition aroundmedoids (PAM) [14] clus-
tering method, which is related to but considered more
robust than K-means. In contrast to K-means, which
can be sensitive to the effects of outliers, PAM’s opti-
mization goal is to minimize the sum of distances to the
medoids instead of minimizing the sum of the squared
distances to the cluster centers.We also evaluated another
frequently used method for non-Euclidean metrics, hier-
archical clustering with complete linkage. This method
initially bundles the closest observations (with distances
defined by the longest distance between any two observa-
tions in two clusters) and gradually results in a binary tree
that combines the two closest clusters.
Supplemental Figure S1 illustrates the differences

between these clustering methods. The choice of clus-
tering algorithm and distance metric together deter-
mine the performance of a machine learning clustering
method. The metrics considered in this study are com-
monly used and include the Bray Curtis(BC) dissimi-
larity metric [15], the unweighted UniFrac(UU) distance
[4], the weighted UniFrac distance [5], and the Aitchi-
son distance [16], which is a Euclidean distance quan-
tified following centered log ratio (CLR) transformation
of abundances. Previously, a parameter-dependent met-
ric, generalized UniFrac, was proposed by Chen et al [6].
The results from the generalized UniFrac are shown in
Supplemental Figure S6.
In addition to PAM and hierarchical clustering, we

also included a third approach, the model-based Dirichlet
multinomial model (DMM) [17]. This algorithm assumes

that observations of the same cluster come from the
same multinomial distribution, and that parameters of
the multinomial distribution have a Dirichlet distribution.
This model better captures overdispersion than simply
assuming a multinomial.
In this paper, we systematically compared methods for

clustering microbiome observations from four published
studies with either geographical or seasonal variables as
the true cluster label, which enables biological interpreta-
tion of the group separation. We first applied clustering
with five methods, and assessed performance of the vari-
ous methods using the adjusted Rand index with the true
clustering assignment. The adjusted Rand index is based
on a pairwise membership agreement and is corrected for
the expected value, where a score of 0 is expected with
random clustering, and a score of 1 indicates perfect clus-
tering. We then explored the relationships between the
differences in performance with properties of the datasets
considered. With the findings obtained from the method
comparisons, we proposed a novel combined metric that
provided high performance for all four datasets. We fur-
ther test our findings with a clinical dataset where clusters
are less separated.

Results
We used four published stool microbiome datasets to
test the performance of the clustering methods. A brief
summary of these datasets is shown in Table 1. Each
study comprises two groups of samples with relatively dis-
tinct microbiome profiles. The Shannon diversity of the
dataset is calculated as the sum of Shannon diversities
over all samples in the dataset, and details related to this
alpha diversity are provided in a later section. The per-
cent of sequences in high abundance OTUs is the percent
of sequences in OTUs with average abundance greater
than 0.001. While the individual studies varied in their
16S rRNA gene deep sequencing methods, we processed
the downloaded raw sequences using the same pipeline,
including VSEARCH [18] to dereplicate and remove sin-
gletons and the UNOISE2 function in usearch [19] to
identify OTUs. More information about the four exam-
ple datasets is provided in Supplemental Table S1. A
heatmap of the high abundance OTUs can also be found
in Supplemental Figure S2.
The first three studies compare cohorts separated by

geography. The De Filippo [20] study consists of samples
from healthy children living in a rural West African vil-
lage in Burkina Faso, who consume a high-fiber, largely
vegetarian diet, as well as samples from healthy European
children of a similar age consuming a Mediterranean diet.
The Martínez et al. [11] dataset consists of samples from
the Asaro and Sausi communities in Papua New Guinea,
as well as those from the USA. The dataset from Schnorr
et al. [10] compares fecal samples from Italian urban
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Table 1 Summary of the example datasets

Dataset Number
of OTUs

Cluster Number of
samples

Average
sequencing
depth

Shannon
Diversity of
the dataset

Abundance sum of OTUs
with average abundance
>0.001

De Filippo 2 803 29 (total) 14,015 152.95 0.382

Italy 15 14,378

Africa 14 13,626

Martinez 10 223 62 (total) 16,035 336.14 0.484

Papua 40 16,504

US 22 15,182

Schnorr 4 707 43 (total) 6011 238.74 0.058

Hadza 27 4521

Italy 16 8526

Smits 12 002 259 (total) 21,441 1233.86 0.621

Late Dry 197 19,587

Early Wet 62 27,335

adults with samples from adult hunter-gatherers living in
Hadza land in Tanzania, Africa, who belong to one of
the few populations that have maintained a traditional
lifestyle with limited exposure to processed foods.
The fourth study, Smits et al. [21], comprises fecal

samples longitudinally collected from a cohort of Hadza.
Their diets are significantly affected by seasonal food
availability, with more berries and honey during the wet
season and more meat in the dry season. In this study,
the authors found that some taxa disappear when cer-
tain foods become scarce and reappear when the seasons
change. For the purpose of unsupervised learning, we
used samples from the two most distinct seasons, the late
dry and the early wet seasons.
The first column in Fig. 1 illustrates the adjusted Rand

indices of the four datasets, with different colors indicat-
ing the beta diversity metrics using PAM clustering or
Dirichlet multinomial mixture model (DMM). Because of
its limited capacity to handle high-dimensional data, when
fitting the DMM model, we binned the OTUs present in
less than 20% of the observations into one OTU when cal-
culating Rand indices. Also, due to the fact that Dirichlet
multinomial mixture is model-based, there is no corre-
sponding distance matrix that can be shown in a PCoA
plot. The black bars in the Rand index plots and the last
column in the PCoA plots are generated from our newly
proposed method introduced later in this paper. Due to
the generally similar results between PAM and hierarchi-
cal clustering (see Fig. 2), we presented the results in our
main text only using PAM. Among these existing meth-
ods, we found that there is no clearly superior one that
universally performs well in all four datasets. Interestingly,
UU performs well in three of four datasets, despite lack-
ing information regarding bacterial abundances. Similar

observations for the presence/absence methods have been
made by Martino et al. [22]. Moreover, the Schnorr
dataset has a perfect Rand index with UniFrac distances,
but a low Rand index with BC, Aitchison, and DMM,
all of which ignore phylogenetic relationships between
OTUs. We devote the next section to exploring aspects
of these differences in performance. For the complete-
ness of comparison, we also tested the performance of 22
less common metrics that are provided by QIIME2 [23]
(Fig. S7).
In this section, we will focus on the underperformance

of BC for the Schnorr dataset, followed by the underper-
formance of UU for the Smits dataset. Because in reality,
researchers may not know the information of the true
cluster assignment, we will focus on a priori properties of
the dataset, rather than the differences between the two
assigned clusters.

High abundance OTUs drive the performance of the
Bray-Curtis dissimilarity
For a p× n table with pOTUs and n observations, the BC
distance between two observations A and B is calculated
with the actual counts:

dBC =
∑p

i=1 |nAi − nBi|
∑p

i=1 |nAi + nBi|
,

where nAi is the count for the ith OTU for observation
A, and nBi is the count for the ith OTU for observa-
tion B. By examining the definition, we find that the
dissimilarity of the BC metric is driven by differences in
high-abundance rather than low-abundance OTUs. Here,
we chose to define a metric, to potentially identify poor
BC performance by summing the average abundance of
“high abundance OTUs”, which are those with a mean
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Fig. 1 Heterogeneous Rand indices with PCoA plots of four example datasets using different methods

abundance greater than 0.001, though similar results can
be obtained across a range of thresholds.
As shown in the last column of Table 1 and the last col-

umn of the Supplemental Table S1, the sum of average
abundance and the high-abundanceOTUs for the Schnorr
dataset is far below that of the other three datasets.
A visual description is also provided as a heatmap in
Fig. S2. Thus, the Schnorr dataset is characterized by both
unusually poor clustering performance by BC and few
high-abundance OTUs.
To calculate this association, we attempted to improve

the performance of BC by generating novel OTUs with
higher mean abundances. We did this by first generating
a phylogenetic tree of the aligned OTUs, and then sys-
tematically merging OTUs starting with those most distal
to the tree root. In essence, we performed “trimming” of
branches from the tree, by combining the abundances of
the distal OTUs to generate new, more proximal OTUs
with higher mean abundances, as shown in Fig. 3A.
In Fig. 3B, C, the x-axes indicate the number of lev-

els trimmed, ranging from the first most distal branch
to, at most, 34 levels proximal. Figure 3B shows how the
summed abundance of high-abundance OTUs increases
with more iterations of the trimming process, while
Fig. 3C shows that the Rand index improves initially

as distal sparse OTUs are merged together. As trim-
ming continues, the Rand index begins to worsen, as
presumably excessive binning results in loss of distinc-
tive OTU information. The three PCoA plots of Fig. 3E
correspond to the original dataset (where no levels have
been trimmed), to a modified dataset where 19 levels are
trimmed off, and to a modified dataset where 29 levels are
trimmed off from the most distal branch towards the root.

Fig. 2 The Rand indices of PAM and hierarchical clustering correlate
for the same dataset using the same beta diversity metric
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Fig. 3 Illustration of the trimming process, summed average abundance of high-abundance OTUs plot, Rand index plot, and PCoA plots of the
trimmed Schnorr dataset. A A schematic of a phylogenetic tree of OTUs, where the number in each node is the sum of the average abundance (left).
After trimming the furthest branches, the average abundance of the new tree tip is greater than before (right). B The summed abundance of the
high abundance OTUs grows with increased trimming. C The Rand index of Bray Curtis - PAM initially increases and then decreases with continued
trimming of the phylogenetic tree towards the root. D The total Shannon diversity of the dataset decreases with the trimming process. E Bray-Curtis
beta diversity PCoA plots show the separation of two natural clusters with no trimming, 19 levels of trimming, and 29 levels of trimming
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The two natural clusters begin to distinctly separate when
19 levels of branches are trimmed and are fully separated
when 29 levels are trimmed. The corresponding heatmaps
of the three datasets in Fig. S3 also demonstrate that trim-
ming can increase the number of OTUs with high mean
abundance.
Notably, as we progressively reduced the resolution of

microbiome data during the trimming process, reflected
by the decreasing Shannon diversity in Fig. 3D, the PAM
clustering showed improved performance. Shannon diver-
sity is a commonly used alpha diversity metric used to
quantify the information within a dataset. The Shannon
diversity for observation j is defined as:

Shannonj = −
p∑

i=1
pij log(pij), pij > 0,

where pij is the abundance of the ith taxa for observation j.
A reasonable explanation for the increase in Rand indices
is that the trimming process actually utilizes the tree phy-
logenetic information, and similar thinking was previously
mentioned in Gopalakrishnan et al. [24] and Peled et al.
[25]. We encourage researchers to explore their datasets
by trimming with the tools provided in our R pack-
age “MicrobiomeCluster.” Interestingly, datasets with clear
clustering into two groups are likely to produce a bimodal
histogram of pairwise distances between samples. One
mode corresponds to small within-cluster distances, while
the other mode corresponds to larger between-cluster
distances.
As a counterexample, we chose to examine in more

detail the Martínez dataset for its high clustering per-
formance when using the BC metric. We reasoned that
a high degree of discriminating information was being
provided by OTUs with high mean abundances. To sim-
ulate OTUs with low mean abundances progressively, we
took counts assigned to an OTU and assigned those to
a new OTU in randomly selected samples from each
tip of the original tree to form first-generation descen-
dants, then grew two new branches from each of the
newly formed tree tips to obtain the second-generation
descendants, and so on. As zero counts do not con-
tribute to the Shannon diversity, we essentially “grew”
branches without increasing the information from the
original dataset, as shown in Fig. 4A. Sequences of
each OTU were randomly assigned to either of the two
daughter branches. As shown in Fig. 4B, the summed
abundance of the OTUs with high mean abundance is
reduced. The performance of both BC- and Aitchison-
based clustering show a decreasing trend, while tree-
structure-based UniFrac methods are minimally affected
in these simulations (Fig. 4C). With an increasing number
of descendants, fewer OTUs have a high mean abun-
dance when averaged over samples, corresponding with a

drop in the performance of the BC- and Aitchison-based
methods.
To visualize the effects of reduced OTU abundances,

we plotted the PCoA of the original dataset, as well as
examples of datasets with the addition of the first, the
second, and the third generation simulated distal OTUs.
As additional descendants are generated, the separation
between two clusters becomes less apparent (Fig. 4D). We
also plotted heatmaps of the original dataset, as well as
examples of modified datasets with the addition of the
first, and second generation descendants in Fig. S4. As tree
branches progressively diverge, the most abundant OTUs
have reduced mean abundances.

Prevalence of low-abundance OTUs inhibits clustering
performance of the unweighted UniFrac distance
Another key observation from our examination of clus-
tering performance in the four datasets is that the
UU distance performs well for three of the datasets,
but markedly underperforms in the Smits dataset. This
dataset is distinct from the others in that samples were
collected at different time points from the same group
of individuals, rather than being collected from two
distinct groups of subjects. Thus, the association of
the microbiome is with time (distinct in two seasons),
rather than the source. We would anticipate that, dur-
ing the late dry season, many bacteria more suited for
the early wet season will be reduced in abundance but
may not be totally eliminated and can recover when
the host diet eventually becomes more hospitable, and
vice versa. The geographically separated clusters from
the other studies are less likely to have an extensive
overlap in presence of bacterial taxa, with many taxa
being present only in one population and absent in the
other.
To explore the determinants of when the UU metric

could lead to reduced clustering performance, we focused
on the unweighted nature of the measure, where only
the presence or absence of an OTU is quantified rather
than the abundance of an OTU. In the Smits dataset, we
expected that a large number of OTUs are shared by both
clusters. To identify ametric that captures the information
uncaptured by UU, we propose using the total Shannon
diversity, which is the sum of the Shannon diversities over
all the samples of the dataset.
Because zero entries in the OTU table do not contribute

to total Shannon diversity, the total Shannon diversity in a
dataset is a metric that can reflect the amount of informa-
tion uncaptured by UU across samples. To examine this,
we simulated new repetitions of the data from the Smits
dataset by gradually switching non-zero entries to 0, in
essence adjusting the criteria by which an OTU would be
considered “present” in a sample, as shown in Fig. 5A.
In both Fig. 5B and D, the x-axis is the threshold going
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Fig. 4 Illustration of branching process, abundance sum of OTUs with high abundance plot, Rand indexes plot, and PCoA plot of Martínez dataset
with descendants. A A schematic of the branching process, where sequences of each OTU were randomly assigned to either of the two daughter
branches. B Abundance sum of OTUs with high mean abundance plot of the Martínez Dataset with first, second, and third generation descendants.
Lines in the bar plot indicate the 95th percentile intervals of the Rand indices from 200 repeated simulations. C Rand indices of the Martínez dataset
with the original dataset and simulations of the first, second, and third generation descendants. Lines in the bar plot indicate the 95th percentile
intervals of the Rand indices from 200 repeated simulations. D Bray-Curtis beta diversity PCoA of the original Martínez dataset, as well as examples of
datasets with the addition of the first, second, and third generation novel OTUs
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Fig. 5 An illustration of replacing low abundance OTU with 0 value, Rand index plot, PCoA plots, and the total Shannon diversity plot of the
modified Smits dataset. A A schematic plot illustrates how we replace low abundance values with a 0 value when the threshold is set to be 1. B
Clustering performance of unweighted UniFrac improves by increasing the threshold used to change non-zero entries to 0 in the Smits dataset,
while the performance of Bray Curtis remains the same. C Unweighted UniFrac beta diversity PCoA of the original data, the dataset where entries
less than 30 are converted to 0, and the dataset where entries less than 60 are converted to 0. D The total Shannon diversity of versions of the Smits
dataset decreases as we raise the threshold, below which counts are converted to 0

from 0 to 70. During the process, entries with a number
of sequences less than or equal to the threshold will be
converted to 0. In Fig. 5B, the performance of UU goes
up with the number of entries converted to 0, whereas
the performance of BC only fluctuates slightly. In Fig. 5D,
the total Shannon diversity drops down sharply with the
number of entries converted to 0.
PCoA also visually depicts improved discrimination of

UU with an increasing threshold. In Fig. 5C, we plotted
the PCoA of the original data, the simulated dataset where
entries less than 30 are converted to 0, and the simulated
dataset where entries less than 60 are converted to 0. As
more non-zero entries are converted to 0, the two clusters
separate further in the first coordinate.
As a counter example, we chose to examine in more

detail the Martínez dataset, for which the UU displays
high clustering performance. To simulate poorly discrim-
inating data, we increasingly substituted 0 entries with
a single count value. Such an alteration of the dataset
imposes a minimal change to the original data. As with
the Smits dataset, we quantified the median with the
95% empirical confidence intervals of Rand indices and
Shannon diversities over 200 simulated datasets. In the
x-axes of both Fig. 6B and C, the probability of fill-
ing a 0-value entry with 1 goes from 0 to 1, with a 0.1

increment. Figure 6B demonstrates that the total Shannon
diversity indeed increases as 0-value entries are increas-
ingly replaced with a value of 1. In turn, we found that
the Rand indices of other methods are almost completely
unchanged with the perturbation, while the performance
of the UU-based clustering is progressively reduced in
Fig. 6C.
The PCoA plots of the original dataset, as well as a

simulated dataset where 40% of 0-value entries in the
OTU table are replaced with a value of 1, and a simulated
dataset where 60% of 0-value entries are replaced with a
value of 1 are shown in Fig. 6D.We found that, as percent-
age of replacement increased, the two groups of samples
become progressively less distinct.

Combinedmetric shows stable good performance
With the above findings, it would be appealing to develop
a metric that can use the information of both high- and
low-abundance OTUs. An intuitive way of constructing
such a new metric is to combine information from both
BC and UU metrics, which tend to complement each
other. After normalizing pairwise BC and UU metrics by
their largest values the two metrics lie between 0 and 1.
We define the distance between two observations in the
new metric as:
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Fig. 6 An illustration of replacing value of 0 with value of 1, the total Shannon diversity plot, Rand index plot, and the PCoA plots of the modified
Martínez datasets. A A schematic plot illustrates how we increased the low-abundance OTUs by replacing value of 0 with value of 1. B The total
Shannon diversity increases with the number of 0 entries replaced with 1. C Rand index of the Martínez dataset with an increasing number of 0
entries replaced with 1. D Unweighted UniFrac beta diversity PCoA of Martínez dataset with 0%, 40%, and 60% of 0 entries replaced with 1

dcombined = αdUU
normalized + (1 − α)dBCnormalized.

Different α values change the relative contributions of
UU and BC distances respectively, and we suggest using
α = 0.5 as a default simple choice. The Fig. S6 shows
that our combined metric tends to do better than the gen-
eralized UniFrac with various parameter values, and the

default choice gives a robust performance across exam-
ple datasets. As shown in the last column of the bar plots
and the last column of PCoA plots of Fig. 1, the proposed
new metric (with α = 0.5), which inherits complemen-
tary insights from the BC and the UU dissimilarities,
results in high performance in Rand indices for all
the datasets. As shown in Fig. S7, the combined met-



Shi et al. Microbiome           (2022) 10:25 Page 10 of 12

Fig. 7 Rand indices plot and PCoA plots under various metrics for Gopalakrishnan dataset. A The Rand indices plot. B The PCoA plot under 5 metrics

ric also outperforms other less commonly used metrics in
QIIME2.

Evaluation in a setting without strong cluster separation
We also explored a clinical setting where one does
not expect global separation between groups [24]. The
Gopalakrishnan study examines the relationship between
microbiome and response to immunotherapy drugs for
melanoma patients. Here, we consider patients who
responded to (30 patients) and patients who did not
respond to immunotherapy drugs (13 patients) as two
clusters. There are 1455 OTUs in this dataset and the
average sequencing depth is 48,765. Compared with four
datasets discussed in previous sections, its abundance
sum of OTUs with average abundance > 0.001 is higher
(0.874), while its Shannon diversity is lower (132.75).
However, if we convert low abundance OTUs to 0s as we
did for Smits dataset, the performance of UU improves
while the Shannon diversity decreases (Fig. S5).
As shown in Fig. 7 and Fig. S6, all Rand indices are

less than 0.4, with the combined metric being the high-
est. It is interesting to notice that the combinedmetric can
outperform each of its individual components. The BC
had the second best performance, corresponding with the
presence of high-abundance OTUs. Of note, clustering
performance by UU is poor, and the low Shannon diver-
sity of the dataset would normally indicate the potential
for better performance.

Discussion
A quantitative recommendation regarding when to avoid
certain metrics would require a systematic examination of
many more datasets. We did observe that in four of the
datasets we considered, hierarchical clustering, though
less frequently used with microbiome data, can provide
similar and sometimes superior results compared to the
more commonly used PAM method (Fig. 2). Unlike PAM
clustering, the number of clusters do not have to be
pre-determined prior to hierarchical clustering, which
is a potential advantage. For supervised settings where
the group membership is known, beta diversity metrics,
including the proposed combined beta metric, can be
used as input to distance-based testing approaches such

as PERMANOVA. For the data sets considered here, PER-
MANOVA produces significant p-values across virtually
all metrics and data sets. This is because PERMANOVA
takes the group labels as known, and tests the null hypoth-
esis that both the centroids and dispersion are the same
across groups. There may be evidence to reject this null
even in settings where the groups overlap substantially.

Conclusions
Our systematic evaluation of clustering performance in
these five datasets show that there is no existing cluster-
ing method that universally performs the best across all
datasets. In general, the weighted UniFrac outperforms
other methods across studies. When OTUs with high
mean abundance are rare, clustering methods that do not
consider phylogeny (i.e., BC, Aitchison, DMM) perform
less well. In contrast, in a dataset with lots of low abun-
dance OTUs, the UU tends to produce poor separation,
while other methods can still perform well. To capitalize
on the complementary strength of the two metrics, we
propose a newmetric that incorporates the BCmetric and
the UUmetric, which gives good performance in a dataset
representative of the common scenario where clusters are
less separated.

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s40168-021-01199-3.

Additional file 1: Figure S1. An illustrative plot of commonly used
clustering methods.

Additional file 2: Figure S2. Heatmap of the most abundant 300 OTUs
for the four example datasets. This figure shows the most abundant 300
OTUs for the four published datasets plotted in log 10 scale. Red color
indicates high abundance, whereas white color indicates low abundance.
As shown in the plot, the abundances of “high abundance” OTUs in
Schnorr dataset are lower than those of the other three datasets. Gray and
blue indicate different clusters in each dataset.

Additional file 3: Figure S3. Heatmap of the most abundant 300 OTUs
for the Schnorr dataset with 0, 19, and 29 levels trimmed off. This figure
plots themost abundant 300 OTUs of the Schnorr Dataset with 0, 19, and 29
levels trimmed off. As trimming goes along, the abundant OTUs aggregate
sequences from distant OTUs. In each subpanel, the gray left part is the
Italian sample set, while the blue right part is the Hadza sample set.

Additional file 4: Figure S4. Heatmap of the most abundance 300 OTUs
of the Martínez dataset, with descendants. This figure plots the most

https://doi.org/10.1186/s40168-021-01199-3
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abundance 300 OTUs of the Martínez Dataset with its first, second and third
generation descendants. As the tree branches diverge, fewer sequences
are left in the most abundant 300 OTUs. In each subpanel, the gray left part
is the Papua sample set, while the blue right part is the US sample set.

Additional file 5: Figure S5. Coverting low abundance OTUs to 0s
improves the performance of UU for Gopalakrishnan dataset. (A) Shannon
diversity of the dataset decreases as more OTUs are converted to 0s. (B) The
trend of the Rand index rises by converting OTUs to 0s, however excessive
count removal affects the performance of UU eventually.

Additional file 6: Figure S6. Rand indices with different α values for the
proposed metric and comparison with the generalized UniFrac metric. This
figure shows the Rand indices with different values of α (0.2, 0.4, 0.6, 0.8) for
the proposed metric and compares the results with the Generalized
UniFrac under different parameters for it (0, 0.25, 0.5, 0.75).

Additional file 7: Figure S7. Performance of other metrics. The figure
shows the performance of other less common metrics provided by QIIME2.
Among them, city-block distance and species-by-species Euclidean
distance are modifications of the Euclidean distance, while Jaccard
distance and Canberra distances are similar to the Bray Curtis distance. As
pointed out in the vegan package manual [27], Euclidean and Manhattan
distances are not good in separating groups. More details of beta diversity
metrics can be found in QIIME2 [23].

Additional file 8: Table S1. Additional summary of the example datasets.
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