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Inhalable antibiotic resistomes emitted 
from hospitals: metagenomic insights 
into bacterial hosts, clinical relevance, 
and environmental risks
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Abstract 

Background:  Threats of antimicrobial resistance (AMR) to human health are on the rise worldwide. Airborne fine 
particulate matter (PM2.5), especially those emitted from hospitals, could serve as a substantial yet lesser-known envi‑
ronmental medium of inhalable antibiotic resistomes. A genome-centric understanding of the hosting bacterial taxa, 
mobility potential, and consequent risks of the resistomes is needed to reveal the health relevance of PM2.5-associated 
AMR from clinical settings.

Results:  Compared to urban ambient air PM2.5, the hospital samples harbored nearly twice the abundance of anti‑
biotic resistantance genes (ARGs, ~ 0.2 log10(ARGs/16S rRNA gene)) in the summer and winter sampled. The profiled 
resistome was closely correlated with the human-source-influenced (~ 30% of the contribution) bacterial community 
(Procrustes test, P < 0.001), reflecting the potential antibiotic-resistant bacteria (PARB), such as the human commen‑
sals Staphylococcus spp. and Corynebacterium spp. Despite the reduced abundance and diversity of the assembled 
metagenomes from summer to winter, the high horizontal transfer potential of ARGs, such as the clinically relevant 
blaOXA and bacA, in the human virulent PARB remained unaffected in the hospital air PM samples. The occurring pat‑
terns of β-lactam resistance genes and their hosting genomes in the studied hospital-emitting PM2.5 were closely 
related to the in-ward β-lactam-resistant infections (SEM, std = 0.62, P < 0.01). Featured with more abundant poten‑
tially virulent PARB (2.89 genome copies/m3-air), the hospital samples had significantly higher resistome risk index 
scores than the urban ambient air samples, indicating that daily human exposure to virulent PARB via the inhalation of 
PM2.5 was ten times greater than from the ingestion of drinking water.

Conclusions:  The significance of AMR in the studied hospital-emitting PM2.5 was highlighted by the greater abun‑
dance of ARGs, the prevalence of potentially virulent PARB, and the close association with hospital in-ward β-lactam 
infections. A larger-scale multi-source comparison of genome-resolved antibiotic resistomes is needed to provide a 
more holistic understanding to evaluate the importance of airborne AMR from the “One-Health” perspective.

Keywords:  Antibiotic resistome, Hospital PM2.5, ARG-hosting bacteria, Healthcare-associated infection, AMR risk

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The accelerating propagation of antimicrobial resist-
ance (AMR) is a threat to global public health [1]. AMR 
annually causes 700,000 deaths worldwide, and the death 
toll may exceed 10 million by the middle of the twenty-
first century if current practices on the use of antibiotics 
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remain unchanged [2, 3]. A quintessential “One Health” 
issue, AMR can be developed, transmitted, and prevail 
in the environment via multiple pathways, thereby con-
stituting an integral dimension of the human-animal-
environment loop [4, 5]. In comparison with soil, water, 
and waste [6], AMR materials in ambient air are more 
pervasively and closely interconnected with human 
beings [7]. In particular, AMR associated with airborne 
fine particulate matter (PM2.5) exacerbates this health 
issue because PM2.5 can penetrate deeply into the alveo-
lar region and even enter the bloodstream [8, 9]. Inhaled 
antibiotic  resistantance genes (ARGs) have been found 
to expose human beings to a concentration of 102–3 cop-
ies/m3-air [10], and their pathogenic bacteria hosts could 
increase the chances of resistant infections through air 
inhalation. The enduring existence of inhalable ARGs, 
together with human pathogens like Streptococcus pneu-
monia (0.05%) and Aspergillus fumigatus (5.8% of the 
whole microbiome), has been detected in severe PM2.5 
pollution days [11]. These airborne particles accommo-
date dynamic compositions of microbes originating from 
a variety of emission sources (e.g., human feces and hus-
bandry waste) due to mechanic agitation, wastewater 
aeration, and biosolid aerosolization [12]. The pathogens 
therein included Pseudomonas aeruginosa, Stenotropho-
monas maltophilia, and Talaromyces marneffeiin. Inha-
lation of these pathogens as part of airborne particles 
may lead to an increased risk of respiratory infections 
[12–14].

The profiles of airborne ARGs are generally impacted 
by the features of their emission sources and atmos-
pheric conditions [14]. Compared to other heavily AMR-
laden environments (e.g., feedlots, sewage treatment 
works, landfill sites) [15–17], clinical settings are gener-
ally characterized by the more intensive use of frontline 
antibiotics and frequent occurrence of human bacterial 
pathogens [18, 19]. These issues are particularly relevant 
to large urban hospitals in fast-developing countries, 
where the overuse of antibiotics is commonplace [20], 
and healthcare-associated infections (HAIs) and patient 
overcrowding conditions are reportedly severe [21]. In 
one study focusing on the clinical settings [22], bioaero-
sol concentrations were found to be higher in the inpa-
tient areas (115 ± 13 cfu/m3) than in other sites (80 ± 
7 cfu/m3), and some human opportunistic pathogenic 
commensals (e.g., Streptococcus spp. and Staphylococcus 
spp.) were observed in the bioaerosols of inpatient wards 
and other public areas of hospitals. These airborne bac-
teria associated with inhalable particles (e.g., PM2.5 and 
PM10) that are (potentially) virulent to humans can be 
transmitted from the air to the human respiratory sys-
tem via inhalation [23–26]. Moreover, mobile genetic ele-
ments (MGEs) in the air can facilitate the dissemination 

of ARGs to airborne bacteria via horizontal gene transfer 
(HGT) [7]. Hence, the co-existence of airborne ARGs, 
MGEs [27–29], and bioaerosols [22] from clinical sources 
may facilitate the movement of potential antibiotic-
resistant bacteria (PARB) in the airborne particles emit-
ted from hospitals. This situation should be systemically 
studied.

PM2.5-associated ARGs have been detected at compar-
atively higher levels in air samples close to hospitals than 
to other urban areas (0.4 vs. 0.1 ARGs/16s rRNA gene in 
relative abundance) [27], implying that hospital-emitted 
air particles may be the main contributors to ARGs in the 
bioaerosol matrix. However, little is known about (i) the 
genome-centric profile of resistomes, HGT potentials, 
and associated virulence; (ii) linkages with hospital ward 
AMR infection cases; and (iii) AMR risk levels relative 
to other environmental settings and exposure pathways. 
Moreover, to date, metagenomic sequencing and relevant 
analyses on air samples, especially on ambient airborne 
PM2.5 [30], have yet to be systematically conducted. As 
such, to address these key scientific issues, PM2.5 sam-
ples emitted from a large urban hospital were collected. 
In the meantime, the datasets concerning HAI cases and 
antibiotic consumption from the hospital’s administra-
tion department were retrieved for this study. The most 
accessible metagenomic sequencing datasets were also 
obtained from urban ambient airborne PM2.5 and drink-
ing water, which were compiled with the hospital sam-
ples to characterize the resistome and hosting bacterial 
taxa and to explore the AMR health risks across different 
environments and exposure pathways.

Methods
PM2.5 sample collection and pretreatment
A high-volume PM2.5 sampler (ASM-1, Mingye Inc. 
China) was set upon the ventilation outfalls on the 
rooftop of the inpatient building of a large urban hos-
pital in Guangzhou, China (Supplementary Infor-
mation; Additional file  1: Fig.  S1). The sampling 
ventilation outfalls are connected with the vent pipes 
linking to the inpatient zones and emergency rooms of 
Department of Pulmonology and Critical Care Medi-
cine. The emitted bioaerosols from these places are 
expected to contain typical human-associated airborne 
microbiomes and can better represent the air-trans-
mission health risks with clinical relevance. On the one 
hand, it may reflect what is in the inpatient zone with 
nosocomial airborne transmission. On the other hand, 
it may also link to what the neighboring community 
could be exposed to as a potential AMR source. This 
hospital well  known for its pulmonology medicine 
serves more than 150,000 inpatients annually, which is 
typical for a large municipal public hospital in China. 
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Ambient air was drawn at an average flow rate of 1 m3/
min for 24 h (10:00 AM to 10:00 AM) per sampling 
day, corresponding to approximately ~ 1500 m3 of air 
flow-through per sampling day. The PM2.5 sampling 
campaign was conducted in two separate periods in 
the year 2019: June to August (summer, n = 10) and 
late September to December (winter, n = 9). Two to 
three samples were collected on a weekly basis in each 
sampling month. In addition, ambient air PM2.5 sam-
ples collected from Guangzhou city (Tianhe (TH) and 
Conghua (CH) Districts) from April 2016 to May 2017 
(same sampling procedure to the hospital samples, n 
= 10) were used for an urban comparison study in the 
present research. The sampling date of all samples was 
provided in Additional file1 (Table  S1). All the filters 
were sterilized by baking in a Muffle furnace at 500 
°C for 5 h prior to sampling. Each sterilized filter was 
packaged in sterilized aluminum foil and stored in a 
humidity-controlled chamber until being loaded into 
the filter cartridge.

The collected PM2.5 filters were packaged in the steri-
lized aluminum foil and zip bags and were immediately 
transferred to the lab in an ice box. The pretreatment 
of filter samples followed the previously published pro-
tocol with modifications [31]. Half of the A4-size filter 
was sonicated with sterilized phosphate-buffered saline 
(PBS). The particulates that were deposited in PBS-
extract aliquots were filtered through a PES membrane 
disc-filter (0.2 μm × 47 mm, Supor 200, PALL Co., USA). 
The disc-filters that were obtained were stored at − 20 
°C prior to the extraction of DNA. Details of the sample 
collection and pretreatment procedures of all PM2.5 sam-
ples are provided in the Supplementary Information (SI-
Additional file 1: SI-1).

DNA extraction and meta‑sequencing
A FastDNA Spin Kit (MP, USA) was used to extract 
metagenomic DNA from the obtained disc-filters accord-
ing to the manufacturer’s instructions, with modified 
binding and purification steps where the DNA bind-
ing matrix was replaced by an Agencourt AMPure XP 
bead to improve the yield of DNA (Beckman Coulter, 
USA). The extracted DNA samples were subjected to 
paired-end sequencing (150 bp) on an Illumina Hiseq X 
Ten platform. The DNA samples were checked by using 
agarose gel electrophoresis and a Qubit3.0 Fluorom-
eter (Thermo Fisher Scientific, USA). Samples showing 
limited degradation and a sufficient amount of dsDNA 
were used for library construction and metagenomic 
sequencing. Details of the DNA extraction/yields are 
provided in the SI-Additional file 1 (Table S1). The clean 
data have been uploaded to the NCBI with the accession 

numbers PRJNA726763 (hospital-specific air PM2.5) and 
PRJNA719719 (urban ambient air PM2.5).

Identification of ARGs and taxonomic affiliation
Raw reads from each sample were initially processed 
using FASTP to remove low-quality sequences (≥ Q15) 
[32]. The deepARG short-read module (v0.18) pipe-
lines were applied to map the profile of the antibiotic 
resistomes (identity = 80%, probability = 0.8, E-value 
= 1e−10), and the abundance of identified ARGs was 
normalized to the sequence number of the 16S rRNA 
gene (16s identity threshold 85%, Supplementary Infor-
mation; SI-Additional file 1: SI-2 and Additional file 2). 
MetaPhlan3 (v3.0.6) was used to obtain the taxonomic 
information (from kingdom to species) of the samples 
by selecting --bowtie2out (taxa marker gene database: 
mpa_v30_CHOCOPhlAn_201901_marker_info.txt.
bz2) output files with default parameters (SI-Additional 
file 3) [33].

Assembly of metagenomic bins and bacteria source 
tracking
The filtered clean reads were grouped by sampling 
periods/seasons (SI-Additional file  1: Table  S1) and 
were co-assembled using MEGAHIT v1.13 with 
default parameters [34]. These co-assembled contigs 
were clustered to recover metagenomes using Max-
Bin, metaBAT, and CONCOCT [35–37] by using 
MetaWRAP (v1.3.2, contig length ≥ 1000 bp) [38]. 
The assembled bacterial genomes were further refined 
to produce high-quality individual genomes using the 
built-in refining module of MetaWRAP, with the selec-
tion criteria of > 50% completeness and < 5% contami-
nation. Following that procedure, all metagenome data 
were refined to remove redundant assemblages and 
then were annotated for taxonomic classifications 
by using the Genome Taxonomy Database (GTDB; 
v1.4.0) [39]. To analyze the potential sources of the 
bacteria loaded on the air PM2.5 samples, 16S rRNA 
sequences were extracted from metagenomic reads 
by using SortMeRNA (version 2.1b) [26]. The silva-
bac-16s-id90.fasta and Greengenes 13.8 99_otus.fasta 
databases were used with –fastx –paired_in -blast 
1 -num_alignments 1 parameter settings. Extracted 
16S rRNA sequences were then analyzed by QIIME2-
vesearch (v2020.11) using a closed reference against 
Greengenes 13.8 to generate operational taxonomic 
unit (OTU) tables for all of the tested samples (identity 
cutoff = 0.97). These tables were merged with a table 
of 16S rRNA gene amplicon studies downloaded from 
the Earth Microbiome Project (ftp://​ftp.​micro​bio.​me/​
emp/​relea​se1/​otu_​tables/​closed_​ref_​green​genes/​emp_​

ftp://ftp.microbio.me/emp/release1/otu_tables/closed_ref_greengenes/emp_cr_gg_13_8.subset_5k.biom
ftp://ftp.microbio.me/emp/release1/otu_tables/closed_ref_greengenes/emp_cr_gg_13_8.subset_5k.biom
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cr_​gg_​13_8.​subset_​5k.​biom). This table was further 
filtered to remove OTUs with frequencies of less than 
two. The bacteria attributable to different environ-
mental biomes at the genus level were estimated using 
SourceTracker2 with default parameters [40].

Intragenomic co‑existence with VFs and MGEs
The co-assembled scaffolds of all metagenomic genomes 
were initially processed by Prodigal (v2.6.3; -c -p meta 
mode) to predict open reading frames (ORFs) [41]. 
With the application of CD-HIT (v4.6) [42], these ORF 
sequences were further clustered under the criteria of 
90% identity over the ORFs with > 90% coverage in the 
length of the sequences (> 250 bp). The clustered ORFs 
were aligned with existing ARGs (v1.1.1.A.fasta; https://​
bench.​cs.​vt.​edu/​ftp/​argmi​ner/​relea​se/) and MGE data-
bases (https://​bench.​cs.​vt.​edu/​ftp/​data/​datab​ases/) via 
DIAMOND (v2.0.9) by using the parameters of align-
ment = 1, threshold value = 1e−10, identity > 70%, 
and query coverage > 50%. Metagenomic-assembled 
genomes with queried scaffolds that carried no less 
than one ARG-like gene were identified as potential 
antibiotic-resistant bacteria (PARB) [43]. To screen the 
human virulence factor (HVF) genes, ABRicate pipe-
lines (v0.9.9) were utilized (default parameters) with ref-
erence to its built-in HVF database (VFDB_setB_nt.fas; 
http://​www.​mgc.​ac.​cn/​VFs/​downl​oad.​htm; database 
update: 2019-Jul-28). The identified PARB containing 
no less than one human virulent factor (HVF) gene was 
regarded as the HVF-PARB.

Quantification of metagenomes and hosted ARGs
The Quant_bin module of MetaWRAP (v1.3.2) was 
used to calculate the abundance of constructed 
genomes with default parameters [38]. Generally, read 
counts for the assembly of each sample were generated 
(with clean reads) using Salmon (v0.13.1) [44], which 
provided a relative abundance table (genome copies 
per million reads (ppm)) for each scaffold across differ-
ent samples. For each genomic bin, the abundance of 
the containing contigs was summed and normalized to 
the total mapping read numbers in different samples 
(genome copies/ppm reads). To quantify the identi-
fied ARG sequences located in each binning genome, 
Seqkit (v0.16.0), which was based on the DIAMOND 
output (query sequence information) files, was used in 
the study. The compiled sequences of the hospital and 
urban files were mapped to the extracted target genes 
using Bowtie2 (v2.3.5) with default parameters [45]. 
The generated SAM files were further processed using 
the built-in pipelines (pileup.sh) of BBmap (v38.87). 
The calculated average coverage folds were normalized 

to their sequencing size, and then were used to repre-
sent the abundance of target genes [46]. The details and 
equations are provided in the Supplementary Informa-
tion (Eq S1, SI-Additional file 1).

Retrieval of clinical and sequencing data and evaluation 
of potential health risks
Clinical data on the HAI cases and consumption of 
antibiotic drugs during the sampling period were 
extracted from the monthly published reports, 
which were issued by the administrative department 
of the sampled hospital. Metagenomic sequencing 
data related to drinking water (PRJNA305188) were 
retrieved from the National Center for Biotechnol-
ogy Information (NCBI). The data on the ingestion 
AMR hazards and risks arising from the drinking 
water were then compared with the data from the air-
borne (hospital and urban) PM2.5 samples. MetaCom-
pare pipelines (git cloned from https://​github.​com/​
minoh​0201/​MetaC​ompare), assessing the abundance 
and mobility of antibiotic resistomes and their hosts’ 
pathogenicity, were used to calculate the AMR risk (a 
relative-risk index generated) of the resistome with 
default parameters [47]. To quantify the bacteria into 
the volume unit (e.g., m3), metagenome-based analy-
ses were conducted. For a target environmental com-
partment, the relative abundance of each genome was 
averaged on all samples (genome copies/ppm). The 
mean abundance was multiplied with the sequenc-
ing read numbers used in the bin-assemblage of each 
sample (ppm/sample), and the resulting figure was 
further normalized to the volume (i.e., m3 air/sam-
ple, L water/sample) of samples, which resulted in the 
concentrations of the target bacteria metagenomes 
(genome copies/ m3 air or genome copies/L water). 
Details on the processing of the data and the used 
equations are provided in the Supplementary Infor-
mation (Additional file 1: SI-3).

Statistics
Descriptive statistics for all data were generated using 
Excel 2010 (Microsoft Corp., USA). Mean values and 
standard deviations were rounded to two decimal places. 
In each dataset, the outliers were detected by using the 
built-in dataset description function (± 1.5 × interquar-
tile (25–75%) ranges; Tukey’s Hinges) of SPSS Statistics 
22 (IBM, USA) and were excluded for the further statisti-
cal analyses. The advanced statistical analyses were con-
ducted using R3.5.2 (https://​www.r-​proje​ct.​org/). Details 
on specific methods and usages are provided in the Sup-
plementary Information (Additional file  1: SI-3). Statis-
tical significance was always defined by 95% confidence 
intervals (P < 0.05).

ftp://ftp.microbio.me/emp/release1/otu_tables/closed_ref_greengenes/emp_cr_gg_13_8.subset_5k.biom
https://bench.cs.vt.edu/ftp/argminer/release/
https://bench.cs.vt.edu/ftp/argminer/release/
https://bench.cs.vt.edu/ftp/data/databases/
http://www.mgc.ac.cn/VFs/download.htm
https://github.com/minoh0201/MetaCompare
https://github.com/minoh0201/MetaCompare
https://www.r-project.org/
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Results and discussion
Broad‑spectrum profile of the ambient air PM2.5 resistome
Eleven dominant types of ARGs (> 99% of the resistome) 
constituted the whole resistome in the hospital and urban 
ambient air PM2.5 samples in Guangzhou city (Fig.  1a). 
The hospital samples harbored a significantly more abun-
dant resistome (0.19 ± 0.14 log10(ARGs/16S rRNA gene)) 
than urban ones in total (− 0.03 ± 0.10 log10(ARGs/16S 
rRNA gene)); SI-Additional file 1: Fig. S2), regardless of 
season (two-way ANOVA, Psite = 0.05, Pseason = 0.25). 
Among the specific resistance types of ARGs (Fig.  1a), 
multidrug resistance was the most abundant in the hos-
pital (− 0.28 ± 0.19 log10(ARGs/16S rRNA gene)) and 
urban (− 0.50 ± 0.24 log10(ARGs/16S rRNA gene)) 
samples (two-way ANOVA, PARG​ < 0.001). As shown in 
Fig.  1a, ARGs encoding resistance to aminoglycoside, 
macrolide–lincosamide–streptogramin (MLS), tetracy-
cline, and β-lactam were identified as major components 
of the resistome, generally ranging from − 0.5 to − 1.5 
log10(ARGs/16S rRNA gene) in both the hospital and 
urban samples during two sampling seasons. Meanwhile, 
bacitracin-, rifamycin-, sulfonamide-, (glyco)peptide-, 
and fluoroquinolone-resistant genes were regarded as 

minor components in the hospital PM2.5 (< − 1.5 log10 
(ARGs/16S rRNA gene)). In comparison with urban 
ambient air PM2.5 (Fig. 1a), the abundance of each AMR 
type was generally at a 0.2 to 0.5 order of magnitude 
higher, with the difference with regard to the major ARGs 
becoming more pronounced during the summertime, 
such as with the β-lactam and MLS ARGs (T-test, P < 
0.05). The results are consistent with those from previ-
ous investigations of hospital-specific airborne ARGs and 
indicate that hospitals could be major airborne ARG hot-
spots in cities [27].

Moreover, a total of 88 subtypes of ARGs were con-
sistently detected in all of the hospital and urban PM2.5 
samples. This core resistome profile was clustered dis-
tinctively by sampling site (PERMANOVA, F = 3.36, P = 
0.001, Bray-Curtis distance). The predominant ARGs of 
each resistance type are shown in Fig.  1b, annotated in 
red (> − 1.5 log10(ARGs/16S rRNA gene) in at least one 
sample). The multidrug ARGs were primarily comprised 
of qacA/C and mtrA (Fig. 1b), occurrences of which are 
usually associated with resistance to clinical disinfect-
ants and Mycobacterium tuberculosis AR infections [48, 
49], respectively. With regard to the rifamycin-resistant 

Fig. 1  a Relative abundance of airborne ARGs in hospital and urban ambient air PM2.5 samples in summer and winter. Eleven resistance types 
of ARGs were calculated as the major components of the resistome (> 99% of the total abundance). b The core resistome of PM2.5 contained 88 
subtypes of ARGs, which occurred in more than 90% of the samples. The ARGs with relative abundance > − 2.0 log10(ARGs/16S rRNA gene) are 
annotated in red. c Bacterial taxa (species) classified using MetaPhlan3 were significantly correlated with the hospital PM2.5 resistome. d Percentage 
of bacterial genera attributable to two predominant environmental setting origins (%), namely terrestrial bio-matter/plants and human-associated 
waste (feces, sebum, saliva), as determined using SourceTracker2
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genes, which encode resistance to tuberculosis drugs, 
rpoB2 were detected with a mean concentration of 1.10 
± 0.09 log10(ARGs/16S rRNA gene) in the hospital sam-
ple, which was significantly higher than in its urban air 
counterpart (one-way ANOVA, P < 0.001). Other clini-
cally important ARGs, like vanR and ugd and blaOXA and 
class-A resistance encoding genes with respect to (glyco)
peptide and β-lactams [54], were prevalent in the hospital 
samples, and all of these ARGs were significantly more 
abundant there than in the urban air PM2.5 samples (one-
way ANOVA, P < 0.05). Given their lower abundance in 
other ARG hotspots (e.g., domestic wastewater and feed-
lots) [50, 51], these ARGs may be regarded as key features 
in the distinct hospital-derived resistomes. In terms of 
sulfonamide, MLS, tetracycline, and bacitracin ARGs, 
the predominant components included sul1, msrA, tetL, 
and bacA, respectively. All of them, except for sul1, which 
is commonly detected in natural environments and 
encodes non-emerging AMR [52, 53], were more abun-
dant in the hospital samples than in the urban air samples 
(one-way ANOVA, P < 0.05). This may, to a large extent, 
suggest an enriched resistome in air PM2.5 emitted from 
the hospital.

Dynamic microbial community constantly associated 
with the antibiotic resistome in hospital PM2.5
The microbial communities of all of the samples were 
analyzed using MetaPhlan3 (Additional file  1: Fig.  S3). 
Actinobacteria was the most abundant phylum in the 
hospital samples (32.19 ± 12.63 %), the relative abun-
dance of which decreased slightly by 12% from sum-
mer to winter (T-test, P > 0.05). By contrast, Firmicutes 
increased significantly from ~ 22 to 40% (P < 0.01), 
mainly due to variations in its subtaxon class of Bacilli 
(Additional file 1: Fig. S4). Proteobacteria, primarily com-
prised of Alpha/Gamma-Proteobacteria, remained con-
sistent at 15~20% throughout the whole sampling period 
(P = 0.35). By contrast, the relative abundance of the pre-
dominant bacteria, including Actinobacteria, Firmicutes, 
and Proteobacteria, fluctuated greatly in the urban air 
PM2.5 samples, ranging from 5 to 90% across all samples 
(Additional file 1: Fig. S3).

Along with variations in the bacterial community, 
Fig. 2c shows that the profile of the resistome (ARG sub-
types) was significantly correlated with the composition 
of the bacterial community (species level) in hospital air 
PM2.5 (Procrustes test; permutations = 999, M2 = 0.39, 
P < 0.001), while a close association between resistome 
and bacterial community was not observed in the urban 
samples (Procrustes test; P = 0.15). Previous studies 
have pointed out the bacterial phylogeny structures the 
resistome, which can be strengthened by anthropogenic 
influences [54–56]. In our sampled airborne PM2.5, some 

human commensal bacteria that are thought to have 
human (opportunistic) pathogenicity with AMR rel-
evance, such as Enterobacteriaceae spp., Propionibac-
terium spp., and Micrococcus aloeverae [57–59], varied 
substantially in abundance (Fig. S5), and contributed 
significantly to the hospital-specific differences (LefSe, 
log10(LDA score) = 0.1, P < 0.001) from urban sam-
ples. The urban samples featured more environmentally 
prevalent bacteria, such as Ralstonia pickettii [60], over 
the two sampling seasons (Fig. S5). These results suggest 
that human activities could have had a more pronounced 
influence on the compositions of the airborne bacterial 
community in hospital-emitted PM2.5 [55]. Of particu-
lar interest, by using source-tracking based on the Earth 
Microbiome Project (EMP) datasets [61], we found that 
microbiomes associated with human sources (e.g., skin, 
feces, sebum) contributed up to 30% of the hospital-emit-
ted PM2.5 microbiomes (Fig. 1d), which was higher than 
the portion from terrestrial plant/bio-matter, especially 
in summer (T-test, P < 0.05). Note that the available data 
used for source-tracking involved general human micro-
biome and phyllosphere-related bacterial communities at 
a global scale (EMP database). Sequencing bacterial com-
positions from the hospital-specific sources would allow 
for a more refined assessment of their contributions.

Genome‑resolved bacterial hosts of ARGs were more 
abundant and virulent in hospital PM2.5
To further elucidate the relationship between the char-
acteristics of PM2.5-borne bacteria and ARGs, a total 
of 109 high-quality non-redundant genomes were con-
structed from two sampling seasons (summer = 60 vs. 
winter = 49). As shown in Fig. 2, the relative abundance 
of metagenomes generally ranged from 1 to 20 genome 
copies per million reads (ppm) on average, and they 
were significantly more abundant in the hospital sam-
ples than in the urban air samples, especially during 
the summer (Pairwise t-test, P < 0.05). In summertime 
PM2.5, there were 39 bacterial genomes that were clas-
sified as potential antibiotic-resistant bacteria (PARB). 
Among them, Actinobacteria (51.9 genome copies/
ppm), Firmicutes (32.9 genome copies/ppm), and Pro-
teobacteria (58.4 genome copies/ppm) accounted for > 
90% of the total abundance of all PARB metagenomic 
bins (Fig. 2). It is noteworthy that nearly all Proteobac-
teria and Firmicutes PARB bins were also identified as 
carrying human virulent factors (HVF). The hospital-
specific HVF-PARB, including Staphylococcus spp. and 
Corynebacterium spp., as the predominant components 
of Firmicutes and Actinobacteria, respectively, were 
almost two orders of magnitude more abundant than 
in the urban samples (T-test, P < 0.01, Fig.  2a). This 
highlights the immediate relevance of hospital PM2.5 



Page 7 of 16Wu et al. Microbiome           (2022) 10:19 	

as hotspots of airborne PARB in urban environment 
settings.

The assembled metagenomes became less diverse in 
winter, and the PARB decreased by one order of magni-
tude overall (Fig. 2b). In the meantime, the predominant 
attributable sources of the PM2.5-borne microbiome 
became terrestrial ones (two-way ANOVA, F = 9.9, Pbi-

ome < 0.01, Fig. 1d), seemingly implying a less correlated 
relationship between ARGs and anthropogenic emissions 
in winter. However, the identified PARB, such as Staphy-
lococcus spp. (1.96 genome copies/ppm), Corynebacte-
rium spp. (1.75 genome copies/ppm), and Bacillus spp. 
(1.38 genome copies/ppm), belonging to the phyla of 
Firmicutes and Actinobacteria (Fig.  2b), dominated the 
variations in the hospital PM2.5 bacterial communities 

over two sampling seasons (LefSe, P < 0.001; Fig. S6). By 
contrast, these PARB in the urban PM2.5 samples were 
either at a low abundance (< 0.1 log10(genome copies/
ppm reads)) or rarely detected (Fig. 2b). This is in agree-
ment with the constant correlations between the bacte-
rial community and the resistome in PM2.5 emitted from 
the hospital, more so than in urban ambient air (Fig. 1c).

Human virulent bacterial metagenomes harbored highly 
mobile ARGs of clinical importance
As shown in Fig.  3a, the identified metagenomic MGEs 
were significantly correlated with ARGs hosted by the 
HVF-PARB in both the hospital and urban air samples 
(Spearman, P < 0.001). This was irrespective of sam-
pling season and geographic location, suggesting that 

Fig. 2  Distribution and phylogenic trees of the assembled metagenomes in summer (a) and winter (b). The ARG-hosting and non-ARG-hosting 
bacterial taxa are depicted in the shapes of triangles and circles, respectively. Among them, genomes that were identified as carrying human 
virulent factor (HVF) genes are depicted using different shades of color and the taxa belonging to the same phylum are denoted in the same color. 
The relative abundances of the metagenomes (genome copies/ppm reads) are shown in proportion to the darkness of the colors in the heatmaps
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HVF-PARB were the key bacteria in facilitating exchanges 
of ARGs [56], especially in the hospital samples (Cohen’s 
D effect size = 0.63 vs. 0.22, P < 0.001). Therefore, given 
the AMR importance of clinical sources and bacterial 
pathogenicity, ARGs carried by HVF-PARB genomes in 
hospital PM2.5 were further analyzed. Figure 4 shows that 
multidrug-resistant genes had the highest abundance, 
while the mobile genetic elements were mostly carried 
by γ-Proteobacteria and Bacilli in summer and winter, 
respectively. The macrolide–lincosamide–streptogramin 
(MLS)–resistant genes, as the second-most abundant 
metagenomic ARGs, mainly belonged to Bacilli in the 
summer samples, whereas the mobile genetic elements 
were carried by γ-Proteobacteria. Regarding the ami-
noglycoside-, β-lactam-, tetracycline-, and (poly)pep-
tide- (e.g., bacitracin and polymyxin) resistant genes 
(Fig.  4), they were all similarly abundant in assembled 
HVF-PARB. Among them, β-lactam- and bacitracin-
resistant genes exhibited higher mobility in Bacilli and 
γ-Proteobacteria. Further referring to the genetic context 
(Fig. 3b), the identical MGE-associated ARGs that encode 
resistance to broad-spectrum β-lactam and vancomy-
cin were co-hosted by different bacterial metagenomes. 
Specifically, MGE-associated bacA and blaOXA occurred 
in the human virulent Proteobacteria and Firmicutes 
(Fig.  3b), such as Staphylococcus warneri, which were 

commonly detected in the flora of human epithelial and 
mucosal membranes [62]. Those containing bacA were 
detected with a higher abundance (mapping coverage) 
than in other hosts in summer (Fig. 3b). In winter, the co-
hosted mobile ARG became vanS, which was carried by 
HVF-Firmicutes including Lachnospiraceae CHKCI001 
spp. and Streptococcus sp002300045. It is noteworthy that 
these clinically important ARGs encoding resistance to 
vancomycin (treating methicillin-resistant staphylococ-
cus aureus (MSRA)) and rifamycin (treating tuberculosis) 
were only detected in an MGE-associated pattern (Fig. 4), 
and the high HGT potential implies the spread of clinical 
AMR from hospital to ambient air environments.

Consumption of antibiotics and importance 
of β‑lactam‑resistant HAIs
The intensive use of antibiotics and the aerosolization of 
clinical waste reportedly contribute to the enrichment of 
airborne AMR in hospitals [27, 29]. Accordingly, ARGs in 
hospital PM2.5 were found to be significantly more abun-
dant than in urban ambient air samples (P < 0.01; Fig. 1a). 
Table 1 shows β-lactams and fluoroquinolones as the pre-
dominantly used antibiotics (> 15,000 daily defined doses 
(DDDs)), and tetracyclines as the most intensively admin-
istered (~ 120 DDDs/patient). The data on their monthly 
average consumption varied significantly across all classes 

Fig. 3  a The linear regression between the abundance (coverage/size) of genomic ARGs and MGEs in summer and winter. The potential 
antibiotic-resistant bacteria (PARB) genomes were further classified into the human virulent factors (HVF) hosting group and the non-HVF hosting 
group. The linear relationship fitted a significant correlation (Pearson, P < 0.05) and is described using a solid line with confidential intervals (gray 
shades), while the insignificant relationship is depicted using a dashed line. b ARGs associated with MGEs (on the same assembled scaffold) were 
shared by different bacterial genomes in winter and summer. These mobile ARGs were detected (mapped back) in the hospital samples (reads). The 
hosting taxa belonging to the same phylum are annotated in the same color
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of antibiotic drugs without substantial seasonal changes 
(two-way ANOVA; antibiotic class: F = 158.5, P < 0.001; 
season: P = 0.67). This is consistent with the finding from 

a national survey that the (quarterly) amount of antibiotics 
consumed in China’s general hospitals had become stable 
in recent years due to improved antimicrobial stewardship 

Fig. 4  Distribution of the metagenomic antibiotic resistomes that were carried by human virulent potential antibiotic-resistant bacteria (HVF-PARB) 
in the hospital-specific PM2.5. The annotated numbers on the inner layer of the circos plot represent the abundance (coverage/size) of ARGs in the 
hospital samples, of which the MGE-associated ones are depicted in red. The bacterial taxa of the antibiotic resistome are annotated to the phylum 
level, with those labeled in red indicating those detected in summer
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[63]. There was no significant correlation between hos-
pital PM2.5-ARGs and the overall corresponding usage 
of antibiotics in the hospital ward (Table  1). However, 
to some extent, the pattern of occurrence of PARB in air 
PM2.5 resembled variations in the intensity of antibiotic 
treatments, such as in the administration of β-lactams 
(broad-spectrum ones), glycopeptides, and tetracyclines 
on patients (P < 0.05; Table  1). This finding showed, for 
the first time, that the administration of antibiotics was 
partially related to the occurrence of PARB in airborne 
particles emitted from the hospital.

The concentrations of ARG-carrying bacteria could 
also be affected by antibiotic-resistant HAIs (SI-
Additional file 1: Table S3), given that human sources 
were considered the largest attributable sources to 
the bacterial community in the hospital-specific air 
PM2.5 (Fig. 1d). Although significant correlations were 
not detected between the total abundance of ARGs 
and the incidence of HAIs (HAIs/patient; P > 0.05; 
Additional file  1: Fig.  S7), the incidence of β-lactam-
resistant HAIs, which made up the majority of AMR 
cases (n = 1744 cases, Additional file 1: Table S3 and 
Fig.  S8), was significantly correlated with the relative 
abundance of β-lactam ARGs (R2 = 0.56, P = 0.02; 

Fig.  5a) and their hosting bacteria (R2 = 0.49, P = 
0.03; Fig. 5b) during the summer sampling time. Over-
all, β-lactam-resistant HAIs predominantly influenced 
the variations in the concentrations of β-lactam-
resistant bacterial genomes in the PM2.5 samples over 
the environmental factor group (individual effects: 
53% vs. 3%, Table  S4). Specifically, as the most influ-
ential latent explanatory factor (SEM, std. = 0.62, 
Fig. 5c), the β-lactam-resistant HAIs, being positively 
structured by the carbapenem-resistant Enterobacte-
riaceae (CRE) and Pseudomonas aeruginosa (CRPA), 
significantly contributed to the varying occurrences 
of PM2.5-borne PARB carrying carbapenem- (Cpm, 
std. = 0.83) and cephalosporin- (Cep, std. = 0.96) 
resistant genes (P < 0.01, Fig. 5c). Compared to other 
HAI cases (Additional file 1: Fig. S8), the most preva-
lently detected carbapenem-resistant HAI cases (CRE) 
imposed the strongest effect on the distribution of 
genomic β-lactam ARGs in the hospital airborne PM2.5 
(SI-Additional file  1: Fig.  S9). Although the winter 
samples exhibited no significant correlations between 
β-lactam-resistant HAIs and β-lactam-related ARGs 
(Fig.  5a), bacterial taxa were still detected, including 
Enterobacteriaceae Providencia (8.16 genome copies/

Table 1  Data on the administered antibiotics and their relationship with the PM2.5 resistome in the inpatient building

# Defined daily dose values (DDDs) representing consumption and antibiotic drugs were calculated according to the WHO guidelines; the intensity of the antibiotic 
treatments  is shown by DDDs normalized to the number of patients to whom they were administered. Considering the limited size of the data (each season = 3), 
correlations were analyzed by covering the whole period of study, and significant ones were denominated with an asterisk and correlation coefficient values

† Data were retrieved from short-read mapping results, to represent the abundances of ARGs in hospital air PM2.5

‡ Data were retrieved from bacterial genome-binning results, to represent the contents of different types of potential antibiotic-resistant bacteria (PARB) in hospital air 
PM2.5

Antibiotic 
consumption

Agy β-lactams FQs Gypt MLs TCs

Aminoglycosides Broad-
spectrum

Carbapenems Cephalosporins Fluoroquinolones Glycopeptides Macrolides Tetracyclines

#DDDs
(monthly 
basis)

Summer 1740±280 4830±583 1680±73.3 13200±1310 15500±1330 365±55.8 8900±1100 2620±1100

19700±746

Winter 1470±173 4350±176 1630±132 12600±748 17400±713 345±50.2 7910±1100 3050±541

18600±549
#DDDs/
patient
(monthly 
basis)

Summer 49.4±5.5 7.61±2.52 5.88±0.19 6.94±1.10 19.1±1.32 3.71±0.60 19.7±1.27 112±1.86

6.92±1.95

Winter 50.7±3.5 8.10±0.21 5.87±0.73 7.48±0.44 19.10±0.38 3.49±0.45 23.3±3.01 136±28.3

7.42±0.29

Correlations with cor‑
responding ARGs†

PDDDs = 0.35
PIntensity = 0.50

PDDDs = 0.65
*PIntensity = 
0.02 (RIntensity 
= − 0.90)

PDDDs = 0.13
PIntensity = 0.80

PDDDs = 0.42
PIntensity = 0.51

PDDDs = 0.71
PIntensity = 0.56

PDDDs = 0.41
PIntensity = 0.29

PDDDs = 0.91
PIntensity= 
0.71

PDDDs = 0.56
PIntensity = 0.42

PDDDs = 0.56; PIntensity=0.49

Correlations with cor‑
responding PARB‡

PDDDs = 0.11
PIntensity = 0.51

PDDDs = 0.65
*PIntensity 
= 0.0043 
(RIntensity = 
− 0.95)

PDDDs = 0.25
PIntensity = 0.79

PDDDs = 0.41
PIntensity = 0.47

*PDDDs = 0.04
(RDDDs = − 0.83)
PIntensity = 0.08

PDDDs = 0.10
*PIntensity = 0.05
(RIntensity = 0.79)

PDDDs = 0.32
PIntensity = 
0.39

PDDDs = 0.31
*PIntensity = 0.05
(RIntensity = 0.81)

PDDDs = 0.48; PIntensity = 0.07
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ppm reads) and Staphylococcaceae Staphylococcus 
(1.96 genome copies/ppm reads, Fig.  2b) hosting 
blaOXA and penA encoding resistance to β-lactam anti-
biotics (SI-Additional file  1: Table  S5). As such, the 
emitted airborne ARGs and PARB from the ventilation 
outfall of hospitals, which could stem from the aero-
solization of sewage/moisture leakage [64], human 
skin, and respiration [65], remain an important AMR 
concern. Ventilation and air conditioning systems are 
heavily used in hospital wards during hot and humid 
summers in cities like Guangzhou. The higher rela-
tive humidity (Humid std. = 1.5, Fig. 5c) may favor the 
survival of airborne bacteria [64], as indicated by its 
significant correlation with the abundance of PARB 
metagenomes (Pearson, P < 0.01, Fig. S10). Both fac-
tors may lead to an increase in emissions of AMR 
from the studied hospital to the ambient air [27].

AMR exposure hazards of hospital‑influenced PM2.5 
and risk rankings
This study shows that the PM2.5 emitted from the sam-
pled hospital were efficient carriers of airborne ARGs and 
ARG-hosting bacteria, the compositions and occurrences 
of which were also closely linked to clinical activities (Fig 
5c). According to a previous study conducted in Guang-
zhou city, the structures of the bacterial community in air-
borne particles were related more to the emission sources 
than to seasonal changes in weather. Similarly, our source 
tracing analysis estimated an intensive level (20~40%) of 
bacterial input from human-associated sources (Fig. 1d), 
which was significantly related to the abundance of PARB 
in hospital air PM2.5 (Fig. 5d). This “source-influenced air-
borne (PM2.5) AMR” relationship was therefore evaluated 
in the current study on a broader scale from exposure to 
potential risks (SI-Additional file 1: Table S6).

Fig. 5  Clinical datasets regarding the number of cases of AMR healthcare-associated infections (HAIs) were collected and normalized to the 
number of patients on the sampling day to represent the incidence rate at the hospital’s Inpatient Department (HAIs/patient). Their correlations 
were analyzed with the relative abundance of ARGs (a), and that of ARG-hosting bacterial genomes (b). Data collected in summer and winter 
were depicted with red squares and green dots, respectively; solid lines indicate significant correlations and are annotated with a P value and 
a coefficient of correlation (R2). The dashed curves generally describe the trend in the variance of the datasets by locally estimated scatterplot 
smoothing (span = 0.75). c Structural equation modeling (SEM) analysis of the impacts of environmental factors (Env) and reported HAIs in wards 
on the variations of the abundance of carbapenem (Cpm), cephalosporin (Cep), and other β-lactam-resistant genes carrying bacterial genomes. 
d Linear correlations between the estimated percentages of bacterial origins from the human-source associated microbiome and the total 
abundance of potential antibiotic-resistant bacteria (PARB). The linear relationship fitting a significant correlation (Pearson, P < 0.05) is depicted 
using a solid line with confidential intervals (gray shades), while the insignificant relationship is shown using a dashed line. The sizes of the dots are 
in proportion to the log2-transformed HAIs that were recorded on the sampling day and the numbers of patients are indicated
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The HVF-PARB were primarily classified as Actinobac-
teria, Proteobacteria, and Firmicutes (Fig. 6a), and no sig-
nificant differences were noted in their abundance across 
the bacterial taxa (one-way ANOVA, P = 0.77). However, 
these HVF-PARB metagenomes in the hospital samples 
were nearly one order of magnitude higher in abundance 
(0.28 ± 0.23 log10(genome copies/ppm reads)) than in 
urban ambient air (T-test, P < 0.001), especially during 
the summer (Fig.  6a). As to the HVF-PARB that carried 
potentially mobile ARGs, they possessed significantly more 
resistant types (5.00 ± 3.07 vs. 3.01 ± 1.77, Fig. 6a) in the 
hospital-specific PM2.5 (one-way ANOVA, F = 11.0, P < 
0.01) than in the urban (sampled in Guangzhou) ambient 
air PM2.5 (one-way ANOVA, P = 0.13). This finding implies 
that ARGs were more prone to dissemination across the 
HVF-PARB via the MGE-mediated HGT process in the 
hospital airborne PM2.5 than in the relevant urban (non-
clinical) sources. More importantly, the HVF-PARB host-
ing mobile (MGEs-associated) ARGs were ranked as being 

of the highest AMR risk concern [66]. As shown in Fig. 6b, 
by using MetaCompare [47], the highest risk was identified 
in hospital PM2.5 as 25.60, which is the closest distance to 
the theoretical maximum AMR vertex in the risk ranking 
matrix, whereas the lowest score was found in the urban 
samples (17.70). Overall, the mean risk index score of the 
hospital PM2.5 (21.17 ± 2.08) was significantly higher than 
that of urban ones, but none of them exhibited seasonal 
differences (two-way ANOVA, Fsite = 12.7, Psite < 0.01, 
Pseason = 0.79). This indicates that antibiotic resistomes 
in the hospital samples were featured with higher abun-
dance and HGT mobility and were hosted more by human 
pathogens than in urban air PM2.5 samples. This lower risk 
ranking index value of the collected urban air PM2.5 sam-
ples was probably caused by the lower input of AMR than 
from source-impacted locations [25, 30, 67], which may be 
partially explained by the lower human-associated bacteria 
input (Fig. 1d), and/or by dilution through aerial transport 
from the sources of emission [68]. It should be noted that 

Fig. 6  a Abundance of potential antibiotic-resistant bacteria (PARB) carrying human virulent factors (HVF) in hospital and urban PM2.5 samples 
in summer and winter. The HVF-PARB classified within the identical phylum are in the same color, and the MGE-associated genomic ARGs are 
presented in squares, the size of which are proportional to the number of resistance types of ARGs hosted by the HVF-PARB. b The AMR risk scores 
were estimated using MetaCompare. The x, y, and z axes represent the portions of contigs concerning the ARGs, MGE-associated ARGs, and 
pathogen-hosting ARGs to the total assembled contigs. The black dot (vertex) indicates the theoretically highest AMR risk, and the relative-risk 
score of each sample is labeled. The red and blue dots indicate the hospital and urban samples, respectively. The summer and winter samples 
are represented by circles and squares, respectively. c Intake rate of the HVF-PARB from urban and hospital-influenced air particulates (PM2.5) and 
drinking water. The quantification of the concentrations and corresponding calculations of the target bacteria genomes were based on the relative 
abundance of the non-redundant metagenomes in each sample (SI-3)
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the AMR index merely differentiated all selected sites by a 
score of 3.5, but ARGs in hospital air PM2.5 more frequently 
co-occurred with MGEs and HVFs (z-axis values; T-test, P 
< 0.01, Fig. 6b). This suggests that improvements need to be 
made to the resistome risk ranking method to more clearly 
label the AMR health hazards to human beings.

To highlight the importance of PARB and to further 
explore their AMR risks, we calculated the concentra-
tions of HFV-PARB that are pathogenic to human beings. 
The mean concentration in the hospital samples was 2.89 
± 3.64 genome copies/m3-air (n = 19), which was around 
five times higher than in the urban ambient air PM2.5 (n = 
10, SI-Additional file 1: Table S7). This difference became 
more pronounced with the HVF-PARB that harbored 
mobile (MGE-associated) ARGs; there were an average of 
1.12 ± 1.81 genome copies/m3-air in the hospital PM2.5 
samples in comparison to 0.18 ± 0.12 genome copies/m3-
air in the urban ambient air samples (Kruskal-Wallis test, 
χ2 = 11.2, P = 0.001, n = 29). As such, an adult would 
inhale ~ 45 genome copies of HFV-PARB daily from the 
ambient air PM2.5 emitted from the sampled hospital (15 
m3/day [10]; Fig. 6c). This is generally consistent with the 
results of resistome risk estimations (Fig. 6c), which indi-
cate that the (Guangzhou) urban air PM2.5 had a lower 
AMR ranking index value than the hospital-emitted ones. 
Apart from inhalation, the ingestion of drinking water is 
another direct pathway of human exposure (2 L/day) to 
environmentally disseminated AMR [69, 70]. Of particu-
lar interest is the finding that drinking water contained 
1.42 ± 0.28 genome copies/L of HVF-PARB (Additional 
file 1: Table S7). Hence, the daily intake of virulent antibi-
otic-resistant bacteria via drinking water was 3.55 ± 0.61 
genome copies/day (n = 6; Fig. 6b), which was nearly 10 
times lower than that from the inhaled air PM2.5 in the 
study (Kruskal-Wallis test, χ2 = 19.55, P < 0.001; n = 35). 
From the perspective of “One  Health” [5], this finding 
further suggests that the inhalation of air PM2.5, particu-
larly that emitted from hospitals, may be an important 
AMR exposure pathway to human beings. However, 
due to the limitations regarding the geographical distri-
bution of the PM2.5 samples collected from Guangzhou 
city (Southern China), a more holistic study remains to 
be conducted on the AMR hazards and risk rankings of 
source-specificair PM2.5.

Conclusions
The present study revealed a genome-resolved “pano-
rama” of antibiotic resistomes in airborne PM2.5 in a 
typical municipal hospital and in urban ambient air. 
The hospital-specific resistome was significantly corre-
lated with the dynamically varied structures of the bac-
terial community (Procrustes test; permutations = 999, 
M2 = 0.39, P < 0.001)), to  which the human-associated 

microbiome (~ 30%)   was the largest contributor. The 
patterns of occurrence of ARG-carrying bacteria in hos-
pital airborne PM2.5 were potentially influenced by the 
incidence of β-lactam HAIs in wards, highlighting a close 
relevance to the spread of AMR via PM2.5 from clinical 
sources to the surrounding air environments, especially 
in summer (Pearson; P < 0.05) when more precautions 
should be taken in air ventilation disinfection procedures. 
Compared to urban ambient air samples, the higher 
abundance (twofold, P = 0.05), diversity, and mobility 
of ARGs carried by potentially virulent bacteria in hos-
pital-specific PM2.5 (2.89 ± 3.64 genome copies/m3-air) 
led to significantly more AMR hazards (MetaCompare 
index = 21.17 ± 2.08, P < 0.01), to which humans could 
be exposed. It should be noted that the current study col-
lected samples confining to one city in China. For better 
generalization of site-specific AMR features, compara-
tive studies of airborne antibiotic resistomes and risk 
assessments encompassing hospitals (clinical) and other 
anthropogenic sources (e.g., landfills and wastewater 
treatment plants) across different geographical locations 
would be required. Our findings suggested that ARG-car-
rying bacteria in hospital airborne PM2.5 were potentially 
influenced by the incidence of HAIs in wards, while this 
AMR transmission chain (source – air – community) has 
yet to be systematically identified. As such, culture-based 
studies of source specific  airborne particles, especially 
on a larger geographical scale, are warranted to further 
examine the airborne-resistant pathogens associated 
with hospitals and the chains linking them to the devel-
opment of AMR in the surrounding urban communities. 
Based on estimations of the intake of AMR materials, dif-
ferences concerning human immunological responses to 
AMR exposure (respiration vs. digestion systems) should 
also be included in future risk assessments, particu-
larly to compare multiple exposure pathways from the 
“One Health” perspective.
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