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Gut microbiota response to antibiotics is
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Abstract

Background: The magnitude of microbiota perturbations after exposure to antibiotics varies among individuals. It
has been suggested that the composition of pre-treatment microbiota underpins personalized responses to
antibiotics. However, this hypothesis has not been directly tested in humans. In this high-throughput amplicon
study, we analyzed 16S ribosomal RNA gene sequences of 260 stool samples collected twice weekly from 39
patients with acute leukemia during their ~ 4 weeks of hospitalization for chemotherapy while they received
multiple antibiotics.

Results: Despite heavy and sustained antibiotic pressure, microbial communities in samples from the same patient
remained more similar to one another than to those from other patients. Principal component mixed effect
regression using microbiota and granular antibiotic exposure data showed that microbiota departures from baseline
depend on the composition of the pre-treatment microbiota. Penalized generalized estimating equations identified
6 taxa within pre-treatment microbiota that predicted the extent of antibiotic-induced perturbations.

Conclusions: Our results indicate that specific species in pre-treatment microbiota determine personalized
microbiota responses to antibiotics in humans. Thus, precision interventions targeting pre-treatment microbiota
may prevent antibiotic-induced dysbiosis and its adverse clinical consequences.
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Background
Antibiotics represent a major cause of perturbation
experienced by microbial communities in the body. The
typical progression of the compositional states of
microbiota after antibiotic-induced perturbations in-
cludes departure from baseline (phase 1) followed by
post-antibiotic reorganization (phase 2) (Fig. 1).
Reorganization of microbiota composition after cessa-
tion of antibiotics may lead to full recovery to the

original pre-treatment state. Alternatively, recovery may
be partial, with the new community having some degree
of similarity to pre-treatment microbiota. Yet in other
cases, reorganizing microbiota can shift to completely
new states with little resemblance to the baseline com-
munity [1–3], commonly referred to as a “regime shift”
[4, 5]. A resistant community can be defined as one that
resists perturbation, while a resilient community is one
that recovers after perturbation [6]. A resilient commu-
nity will likely stabilize into a fully functional state after
transitioning through phases of perturbation and re-
covery [7, 8]. Unresolved disruptions in microbiota lead
to loss of colonization resistance [9], deleterious health
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consequences such as Clostridioides difficile infection
[10], and altered metabolic functions important for host
food processing [11], drug metabolism [12], and endo-
crine homeostasis (e.g., appetite regulation) [13].
Microbiota response to antibiotics varies among indi-

viduals [2] and the mechanism of response is poorly
understood [1, 14]. Intuitively, characteristics of the anti-
biotic insult (e.g., antibiotic type and duration), compos-
ition and wiring of pre-treatment microbiota, and host
factors (e.g., genetics and immunity [15]) are possible
determinants of individualized microbiota responses.
Here, we hypothesize that pre-treatment microbiota in
humans is a determinant of community resistance as
measured inversely by the magnitude of microbiota devi-
ation from baseline during phase 1. Pre-clinical data
support this hypothesis. Germ-free mice humanized with
fecal microbiota from different donors show different
microbiota responses to the same antibiotic [16], sug-
gesting that pre-treatment microbiota may underpin in-
dividualized responses. In addition, the bloom of specific
pathogens after antibiotic treatment has been associated
with the initial state of the microbiota [17]. However, it
is unknown whether and to what extent specific species

in baseline microbiota modulate community resistance
against antibiotic perturbation.
Antibiotic exposure may be light and brief (e.g., one

dose of one antibiotic), light and sustained (e.g., several-
day course of one antibiotic), heavy and brief (e.g., brief
course of multiple antibiotics), or heavy and sustained
(e.g., prolonged course of multiple antibiotics). We
studied patients with acute myeloid leukemia (AML)
receiving inpatient chemotherapy, a prototype setting
for heavy sustained antibiotic exposure. These pa-
tients receive multiple antibiotics over several weeks
of hospitalization. Initially, patients receive antibi-
otics to prevent infections. However, most patients
develop a fever despite prophylaxis [18]. At the time
of fever, prophylactic antibiotics are escalated to
broader-spectrum antibiotics, which are later ad-
justed according to the results of microbiological
work-up. These antibiotics are de-escalated to
prophylactic antibiotics or discontinued as clinical
and hematopoietic recovery ensue. This cascade of
events can be summarized as overlapping waves of
antibiotic exposure, sometimes including multiple
antibiotics for extended periods.

Fig. 1 Phases of microbiota response to antibiotics. After antibiotic exposure, baseline microbiota undergoes an initial perturbation (phase 1),
during which some taxa may completely disappear, while some new taxa may arise. Potential determinants of phase 1 include baseline
microbiota, specifics of antibiotic exposure, and host factors (e.g., genetics and immunity). After completion of antibiotic treatment, the
microbiota undergoes reorganization (phase 2), which could lead to full recovery to baseline, partial recovery towards baseline, or shift to a
completely new state. The focus of this study is the role of baseline microbiota in regulating phase 1 after controlling for antibiotic exposures
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High-throughput amplicon sequencing of longitudinal
stool samples collected from hospitalized patients with
AML coupled with granular antibiotic exposure data
uniquely positioned us to measure the dependency of
microbiota perturbations on the microbiota’s baseline
state. We find that the composition of pre-treatment
microbiota is a major determinant of the magnitude of
microbiota departure from baseline. We identify pre-
treatment taxa that stabilize or destabilize the micro-
biota. These findings offer a mechanistic explanation for
individualized responses to antibiotics and introduce
novel targets for precision interventions to prevent
antibiotic-induced dysbiosis and its adverse clinical
consequences.

Methods
Patients and samples
We enrolled hospitalized adult patients with newly diag-
nosed or relapsed/refractory AML to a prospective, bior-
epository protocol (registration number in ClinicalTrials.
gov: NCT03316456) approved by the University of
Minnesota Institutional Review Board. An expected ~ 4
weeks of hospitalization was required. No other inclu-
sion or exclusion criteria were used. Clinical and sup-
portive care followed our standard institutional
algorithm. Deviations per the treating physicians’ discre-
tion were permitted. Our antibiotic stewardship recom-
mends acyclovir for viral, an azole for fungal, and
levofloxacin for bacterial prophylaxis for the duration of
neutropenia. Bacterial prophylaxis is continued until de-
velopment of neutropenic fever or first neutrophil rise
above 1 × 109/L, whichever occurs first. Cefepime is our
recommended empiric frontline antibiotic for neutro-
penic fever. When oral intake decreases to < 60% of the
lower limit of estimated energy and protein needs for 7
days, we generally initiate parenteral nutrition.
Stool samples were collected twice weekly (Mondays

and Thursdays, ± 1 day window) between hospital ad-
mission and day 28 of chemotherapy or discharge
(whichever occurred first). Collections were independent
of clinical factors. Stool samples were collected in 95%
ethanol-filled sterile tubes and stored at – 80 °C. Anti-
biotic exposure data were collected from electronic med-
ical records for the following classes of antibacterial
antibiotics: fluoroquinolones, 3rd or higher generation
cephalosporins, piperacillin-tazobactam, carbapenems,
metronidazole, oral vancomycin, and intravenous
vancomycin.

16S ribosomal RNA (rRNA) gene sequencing
DNA was extracted using the DNeasy PowerSoil DNA
isolation kit (QIAGEN, Hilden, Germany). The V4 hy-
pervariable region of the 16S rRNA gene was amplified
on an Illumina MiSeq platform (2 × 300 paired-end

mode) by the University of Minnesota Genomics Center
[19]. Sequences were processed in QIIME 2 [20]. Quality
filtering, adaptor trimming, and stitching of raw se-
quences were done using the quality control pipeline
SHI7 (trim threshold 32, threshold of Q37) [21]. Paired
ends were merged using FLASH [22]. Operational taxo-
nomic unit (OTU) picking was done using NINJA-OPS
(default parameters and 97% similarity threshold) and
the Greengenes database; Bowtie2 was used for align-
ment [23–25]. Species-level taxonomy was not consid-
ered given our short amplicon methodology. OTUs with
a frequency of < 0.01% of reads and samples with fewer
than 500 reads were removed. Sequence data were de-
posited in the Sequence Read Archive of the National
Center for Biotechnology’s Information (NCBI) under
BioProject ID SRP141394. The BIOM table was exported
from QIIME into R 3.4 (R Foundation for Statistical
Computing, Vienna, Austria).

Microfluidic quantitative PCR for antibiotic resistance
genes
Remaining DNA from a subset of samples was used
for microfluidic qPCR (MFQPCR) to quantify various
antibiotic-resistance genes (ARGs) including those for
beta-lactams, quinolones, and vancomycin resistance
as previously described [26]. BioMark HD System
(Fluidigm) and 96.96 Dynamic Array IFCs (Fluidigm)
were used for analysis. Serial dilutions (2 × 100 to 2
× 106 copies/μL) of the mixture of synthetic DNA
fragments containing each target gene sequence were
also included in the analysis to generate standard
curves. Specific target amplification (STA) was done
with 14 PCR cycles to increase the target DNA mol-
ecule prior to MFQPCR as previously described [27].
Sample DNA, gBlock standard mixtures, and no tem-
plate controls were subjected to STA. Quantitative re-
sults obtained by MFQPCR were analyzed using Real-
Time PCR Analysis software version 4.1.2 (Fluidigm)
as described previously [27]. All samples were run in
duplicate and their average gene content for each
ARG (gene copies/microL DNA) was calculated.

Statistical analysis
All analyses were performed using custom scripts and
packages phyloseq, vegan, lme4, and PGEE in R. Linear
discriminant analysis (LDA) coupled with effect size
measurements (LEfSe) using patient number as “subject”
was used to find taxa that differed significantly (LDA
score > 3.0, p < 0.05) between the two groups [28]. OTU
abundances were centered log-ratio (clr) transformed to
account for the compositionality of microbiota. Dissimi-
larity between samples was quantified by Aitchison dis-
tance [29]. A pseudocount of min/2 was added to exact
zeros prior to transformation. Alpha diversity was
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estimated by Shannon’s index [30]. We used Δm to de-
note Aitchison distance between non-baseline and base-
line (pre-treatment) microbiota for the same patient,
providing a single numerical value representing the mag-
nitude of microbiota perturbation from baseline. Ordin-
ation was visualized by principal component analysis
(PCA) and the proportion of variance explained by the
individual was determined by permutational analysis of
variance (PERMANOVA) with an adonis test (999 per-
mutations) [31]. Other variables included in adonis were
the first PCA axis of antibiotic history (see below), use
of parenteral nutrition, and interval from baseline. Sam-
ples were the units of analysis and Δm was the outcome
variable in all models unless specified otherwise. The
performance of all models was estimated by Pearson’s
correlation coefficient comparing observed vs. predicted
values of Δm.

Quantification of antibiotic history
We quantified the “antibiotic history” of each sample
using the time series of exposures to 7 major classes
of antibacterial antibiotics between hospital admission
and the day the sample was collected. The antibiotic
classes considered were fluoroquinolones, third or
higher generation cephalosporins, metronidazole,
piperacillin-tazobactam, intravenous vancomycin (also
daptomycin or linezolid), oral vancomycin, and carba-
penems. For a given day, if a given antibiotic was
used, it was coded 1 and otherwise, zero. Day 0 was
defined as the first day of chemotherapy. Next, we
applied a decaying average function to the time series
of 0s and 1s for each antibiotic class to achieve a sin-
gle numerical value summarizing exposure history for
the given sample and antibiotic. As an example, if
levofloxacin was used on days 1–3 for a patient ad-
mitted on day − 1 (1 day before starting chemother-
apy), the time series for levofloxacin for a sample
collected on day 5 of chemotherapy from this patient
would be (0,0,1,1,1,0), indicating that the antibiotic
was not used on days − 1, 0 (first day of chemother-
apy), and 4, but was used on days 1, 2, and 3. With a
decay factor of 2, the levofloxacin history for this
sample would be quantified and summarized as 0 ×
20 + 1 × 2−1 + 1 × 2−2 + 1 × 2−3 + 0 × 2−4 + 0 × 2−5

+ 0 × 2−6 = 0.875. With this decay factor, exposure
on a given day receives twice as much weight than
exposure on the previous day. A smaller decay factor
would make the differences between the weights
smaller. We ran Procrustes analysis [32] (999 permu-
tations) to evaluate the correlation between micro-
biota composition (Aitchison distance) and antibiotic
history (Euclidean distance); the sensitivity of this cor-
relation to the decay factor was assessed.

Principal component linear mixed effect regression
(package lme4, function lmer)
The goal of this model was to evaluate whether baseline
microbiota predicts Δm after controlling for antibiotics
and other covariates. Independent fixed effect variables
included the following: the top principal components
(PCs) of antibiotic history for each non-baseline sample,
the top microbiota PCs for baseline microbiota, use of
parenteral nutrition, interval from baseline, baseline
Shannon index, and sample read depth. Patient ID was a
random effect. p values were estimated from 200
bootstraps.

Penalized generalized estimating equations (PGEE) [33, 34]
While principal component regression allows us to
understand the association between baseline microbiota
and Δm after adjusting for covariates, it does not identify
specific pre-treatment taxa that made the largest contri-
bution to Δm. We implemented penalized GEE to
analyze longitudinal data with many covariates [35]. The
main idea of PGEE is that in models with many potential
microbiota predictors, typically most taxa do not con-
tribute to the outcome variable, and thus, regression co-
efficients for those variables should be zero. Using a
penalty function, PGEE shrinks the estimates of small re-
gression coefficients toward zero. A cutoff of 10−3 for
shrunken coefficients is conventionally used to exclude
variables from the model. Variables that remain in the
final model are important predictors of the outcome
variable, regardless of the specific value of their regres-
sion coefficients. The original model included 133 fea-
tures: clr abundances of the OTUs collapsed at genus
level (121 features) at baseline, decay averaged antibiotic
histories (7 features representing 7 antibiotic classes),
age, sex, body mass index, use of parenteral nutrition
(categorical), baseline Shannon index, sample depth, and
interval from baseline (days). Patient ID was a random
effect. Fourfold cross validation (function CVfit) was
used to estimate the optimal value of the tuning param-
eter, which was then used to build the final model (func-
tion PGEE). A first-order autoregressive correlation
structure (i.e., observations closer to each other being
more strongly correlated than those farther apart) was
assumed. PGEE produces a consistent and asymptotic-
ally normal estimator even if the assumed correlation
structure is misspecified. p < 0.05 was used to define
statistical significance.

Results
Thirty-nine patients with AML provided twice-weekly
stool samples during their ~ 4 weeks of hospitalization
for chemotherapy. Fifteen patients required parenteral
nutrition, and all but one patient developed a fever. As
expected, antibiotic exposure was heavy and sustained
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(Fig. 2a). After filtering, we analyzed 260 samples (me-
dian of 7 per patient) containing an average of 19,604
high-quality reads per sample. A heatmap of the 20 most
abundant genera is shown in Fig. 2b. Additional file 1:
Figure S1a shows the aggregate relative abundance of
the most abundant taxa in baseline and non-baseline
taxa. Additional file 1: Figure S1b shows differentially
abundant taxa in each group, adjusting for patient ID.
The genus most prominently expanding from baseline to

subsequent samples was Enterococcus (Additional file 1:
Figure S1), consistent with our previous reports [36, 37].
The microbiota became more dissimilar to baseline

over time (Fig. 3a). Despite this progressive departure
from baseline, the greatest proportion of microbiota
variance was explained by the individual (PERMANOVA
R2 = 0.54, p < 0.001, adonis test with 999 permutations;
Fig. 3b). Although interval from baseline, use of paren-
teral nutrition, and antibiotic history were also

Fig. 2 Antibacterial antibiotic exposures and microbiota heatmap. a Probability of exposure to each class of antibacterial antibiotics over time,
with time measured in days and relative to the first day of chemotherapy. Linezolid and daptomycin were grouped together with intravenous
vancomycin. Exposure for a typical patient starts with fluoroquinolone prophylaxis, followed by neutropenic fever, when fluoroquinolone is
changed to broader-spectrum antibiotics (especially cefepime, piperacillin-tazobactam, and vancomycin); hence, there is an initial decline in the
fluoroquinolone curve, but rises in other antibiotic curves. Antibiotic pressure peaks in weeks 2 and 3. Concurrent with clinical and hematopoietic
recovery in week 4, broad-spectrum antibiotics are discontinued or de-escalated to prophylactic fluoroquinolones, the latter explaining the late
rise in the fluoroquinolone curve. b Heatmap of the 20 most abundant genera. Each column indicates a sample, and each row represents genus-
level mapping of an OTU. f (family) and o (order) indicate OTUs that were unclassifiable to deeper levels. OTU relative abundances were Z-
transformed (indicated by the color gradient). Rows were ordered by their mean values and columns by sample collection day (color bar at top)
relative to the first day of chemotherapy, with lighter colors indicating earlier days
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Fig. 3 (See legend on next page.)
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statistically significant in this analysis (p < 0.001), they
only explained a small proportion of the variance (PER-
MANOVA R2 = 0.019, 0.007, and 0.006, respectively).
Median Aitchison distance between samples from the
same patient was significantly smaller than median dis-
tance between samples from different patients (p <
10−15; Wilcoxon test; Fig. 3c), indicating that microbial
communities in samples from the same patient remained
more similar to one another than to those from the
other patients. As a potential mechanism for this host
specificity, we evaluated whether baseline microbiota
was a determinant of subsequent microbiota departures
from baseline after controlling for antibiotics. Micro-
biota departure from baseline was denoted Δm and de-
fined as the Aitchison distance [29] between baseline
and non-baseline communities. We first quantified the
antibiotic history of each sample by considering the time
series of exposures to 7 major classes of antibacterial an-
tibiotics between hospital admission and day the sample
was collected. For a given day, if a given antibiotic was
used, exposure to that antibiotic was coded 1 and other-
wise coded zero. Next, we applied a decaying average
function to the antibiotic history of each sample—a time
series of 0s and 1s for each antibiotic class—to achieve a
single numerical value summarizing the exposure history
of a given sample for a given antibiotic. The decaying
average method flexibly models both recent and less re-
cent exposures by placing more weight on exposures in
more recent days preceding the sample. Procrustes ana-
lysis (Additional file 1: Figure S2) showed that the cor-
relation between microbiota composition and antibiotic
history was robust to the specific choice of the decay

factor. We chose a decay factor of 2 for our main ana-
lysis thereafter.
Next, we used principal component mixed effect re-

gression including the top principal components (PCs)
of antibiotic history for each non-baseline sample and
the top PCs of the microbiota for the baseline sample
from the same individual as predictors of Δm. This ap-
proach eliminates the problem of multicollinearity be-
cause the PCs are orthogonal. We included the first PC
of the microbiota and the first PC of antibiotic history as
predictors in the model. In addition, use of parenteral
nutrition (categorical), interval from baseline (days),
baseline Shannon index, and sample read depth were in-
cluded as fixed effect covariates and patient ID as a ran-
dom effect. The model was powerful, with a Pearson’s
correlation coefficient comparing observed vs. predicted
Δm values of 0.82 (Additional file 1: Figure S3a). Micro-
biota and antibiotic PCs and interval from baseline were
significant predictors of Δm (Table 1). Although includ-
ing more microbiota PCs would explain a larger propor-
tion of microbiota variance, it did not improve
performance of the regression model and the correlation
coefficient remained 0.82. Model performance did not
change when a slower decay (decay factor 1.1) was used
to define antibiotic history (Additional file 1: Figure
S3b). These findings indicate that baseline microbiota is
a major independent determinant of Δm.
To identify pre-treatment taxa with the largest contri-

bution to Δm, we used the penalized generalized esti-
mating equations (PGEE) method, which is suitable for
longitudinal high-throughput data analysis [33, 34]. Fea-
tures were baseline genus-level clr abundances (121

(See figure on previous page.)
Fig. 3 Microbiota variation among patients and over time. a Microbiota distance from baseline, as measured by Aitchison distance, vs. time. Time
was measured in days relative to the baseline sample. The loess smoothed curve and its 95% confidence bar are shown. b Principal component
analysis using Aitchison distance. Each point represents a sample, and points with the same color and shape represent samples from the same
patient. Baseline samples are indicated by arrowheads. Numbers in parentheses indicate percent variation explained by the corresponding
principal component. For two subjects (cases 1 and 2), non-baseline samples are connected to the baseline sample for the same patient. c
Aitchison distance between samples collected from the same patient (“within”) vs. different patients (“between”). p value was calculated from a
Wilcoxon test. d Distribution of taxa among the samples in the two cases (1 and 2) in b. Genera with relative abundances < 10% across all
samples are grouped together. Baseline sample from each patient is shown on the left. The number above each non-baseline sample indicates
its Aitchison distance from the corresponding baseline sample

Table 1 Principal component mixed effect regression to evaluate whether baseline microbiota independently predicts Δm
Variable Regression coefficient Standard error p

Baseline microbiota PC1 0.82 0.35 0.01

Antibiotic PC1 − 1.90 0.77 0.01

Interval from baseline (days) 0.98 0.12 < 0.01

Baseline Shannon index − 5.70 4.19 0.19

Sample read depth 0.88 1.96 0.54

Parenteral nutrition 3.60 3.38 0.37

PC principal component; Δm, Aitchison distance between the baseline and subsequent microbiota
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genera), decay averaged antibiotic histories (7 features),
age, sex, body mass index, use of parenteral nutrition,
baseline Shannon index, sample read depth, and interval
from baseline. Patient ID was a random effect. Fourfold
cross validation determined the optimal value of the tun-
ing parameter to be 0.21. This value was then used to
build the final PGEE model. In the final model, 5 base-
line taxa (Roseburia, Blautia, Eggerthella, a Lachnospira-
ceae genus, and a Clostridiales genus) predicted larger
Δm values, and one taxon (Bacteroides) predicted
smaller Δm values (Fig. 4). None of the other variables
predicted Δm. In a case study to demonstrate these find-
ings (Fig. 3d), we chose two subjects: (i) case 1 with a
relatively high abundance of Bacteroides in the baseline
sample (34%) and (ii) case 2 with no Bacteroides in the
baseline sample. As expected from PGEE results and
with Bacteroides predicted to protect against change
from baseline, subsequent samples from case 1 were less
different from baseline (Aitchison distances 25.7–36.0)

compared to subsequent samples from case 2 relative to
baseline (Aitchison distances 30.2–56.8). This is also
demonstrated in the PCA plot (Fig. 3b).
In post hoc exploratory analysis (Additional file 1

Table S1), we performed microfluidic quantitative PCR
for antibiotic resistance genes (ARGs) in 27 longitudinal
stool samples from 4 patients to understand whether ob-
vious changes occur in longitudinal abundances of
ARGs. The 3 most abundant ARGs were ermB (macro-
lide resistance, aggregate mean among samples: 6.57
copies/microL DNA), tetM (tetracycline resistance, 5.87
copies/microL DNA), and ermF (macrolide resistance,
5.30 copies/microL DNA). However, because antibiotics
in these classes were not used in our patients, the ARGs
likely did not play a role in our findings. vanA was the
only ARG with clear dynamics in longitudinal samples.
vanA confers vancomycin resistance to highly relevant
pathogens in our patient population such as
vancomycin-resistant enterococci. In two subjects, vanA

Fig. 4 Baseline taxonomic predictors of microbiota departure from baseline. Volcano plot showing coefficients from penalized generalized
estimating equations (PGEE) and their corresponding p values. The model included clr abundances of baseline OTUs collapsed at genus level,
decay averaged antibiotic histories, age, sex, body mass index, use of parenteral nutrition, baseline Shannon index, sample depth, and interval
from baseline as potential predictors of the Aitchison distance between non-baseline microbiota and baseline (pre-treatment) microbiota for the
same patient. Patient ID was a random effect. The tuning parameter was 0.21, determined using fourfold cross validation. A first-order
autoregressive correlation structure was assumed. The horizontal dashed line defines statistical significance (p < 0.05). Circles colored red or blue
represent significant taxa with a coefficient > 10−3 (red) or < − 10−3 (blue), respectively. These taxa at baseline were associated with the extent of
departure from baseline in subsequent samples and their corresponding circles were magnified for better visualization

Rashidi et al. Microbiome           (2021) 9:211 Page 8 of 11



was nearly or completely undetectable in the first week,
then quickly rose in abundance in week 2, and remained
high until the end of hospitalization.

Discussion
We found for the first time that the pre-treatment state
of human gut microbiota is a major determinant of
antibiotic-induced microbiota perturbations. This find-
ing in a clinical setting with intense antibiotic pressure
suggests an even stronger predictive role for baseline
microbiota when antibiotic exposure is less intense.
Therefore, an important mechanism underlying individ-
ualized responses to antibiotics is the individualized
microbiota at baseline. Considering that only a small
fraction of gut microbiota is shared among healthy indi-
viduals [38, 39], our results explain the previous observa-
tions that the microbiota in different individuals
responds differently to antibiotics [2, 40]. This is also
consistent with the role of pre-treatment microbiota in
determining response to fecal microbiota transplantation
(FMT) [41] and dietary interventions [42].
We identified 6 pre-treatment taxa predictive of the

magnitude of microbiota perturbation from baseline.
Roseburia, Blautia, and Eggerthella predicted larger
microbiota departures from baseline. Specific Roseburia
species degrade dietary fiber β-mannan, producing
short-chain fatty acids such as butyrate, with numerous
and profound homeostatic effects on the host [43]. Spe-
cific compounds synthesized by bacteria can regulate the
transcription of various genes within the community
(quorum sensing) [44], potentially modulating micro-
biota susceptibility to antibiotics. Similarly, certain
Eggerthella species have significant metabolic potential,
contributing, for example, to the conversion of dietary
fiber-derived lignans to bioactive compounds [45].
Whether and how this metabolic activity can impact the
gut microbiota is unknown. Antimicrobial peptides pro-
duced by certain Blautia species have been shown to
confer colonization resistance against antibiotic-resistant
pathogens [46]. A microbial community with fewer
antibiotic-resistant genes is expected to undergo larger
perturbations after exposure to antibiotics. Bacteroides
was the only genus with an apparent stabilizing effect.
Quorum sensing has been well established for some spe-
cies of this genus, which are abundant in the colonic
microbiota (e.g., Bacteroides fragilis). Examples of
quorum sensing mechanisms that could contribute to
differential response to antibiotics include autoinducers
of efflux pumps and biofilm formation [47]. Bacteroides
species can also influence microbiota composition by se-
creting antimicrobial peptides in contact-dependent and
-independent manners [48]. In addition, Bacteroides spe-
cies are potent producers of propionate [49], which

mediates colonization resistance against pathogens such
as Salmonella typhimurium [50].
Considering the two phases of microbiota response to

antibiotics, our study focused on phase 1, where the
microbiota is perturbed under active antibiotic pressure.
We included the characteristics of the antibiotic insult
and baseline microbiota as the main potential determi-
nants of phase 1 in our analysis. Although sex, age, and
mode of nutrition were adjusted for, the role of other
host factors such as genetics and immunity in phase 1
need to be evaluated in future research. Other poten-
tially important variables include the specific type(s) of
chemotherapy and proton pump inhibitors (PPIs). Che-
motherapeutic regimens commonly used for patients
with AML are not known to significantly alter gut
microbiota, although an expansion of Enterococcus spp.
and Escherichia coli has been reported [51]. In otherwise
healthy adults and patients with inflammatory bowel dis-
ease, PPIs increased ectopic colonization of oral bacteria
in the gut and promoted the expansion of Enterococcus,
Streptococcus, Staphylococcus, and some Proteobacteria
[52, 53]. We use PPIs in our patients only if they develop
significant upper gastrointestinal side effects from
chemotherapy. In our experience, such patients typically
require parenteral nutrition, a variable included in our
models. To avoid anticipated multicollinearity, we did
not consider PPI use as a separate variable. Studies with
larger sample sizes would permit building more compre-
hensive models incorporating a larger number of vari-
ables. In addition, phase 2 (recovery) is a critical
segment of the microbiota trajectory that needs to be
studied further. Finally, how the two phases are interre-
lated and contribute to clinical outcomes is unknown. It
is unclear, for example, whether robust microbiota re-
covery after perturbation towards baseline might com-
pensate for a large initial departure from baseline. Also,
whether a larger departure from baseline predicts a
smaller chance for full recovery is unknown.
In conclusion, knowledge about pre-treatment micro-

biota can be used to predict the magnitude of antibiotic-
induced perturbations and lead to personalized precision
therapeutics. We identified specific taxa in the pre-
treatment microbiota that may predict the extent of
antibiotic perturbation. Our findings lead to hypothesis
generation for testing and validation in future studies.
Mechanisms by which specific taxa in gut microbiota
communicate with other members of this complex com-
munity to regulate stability, resistance, and resilience is a
subject of intense investigation. Quorum sensing and
horizontal transfer of ARGs are two possible mecha-
nisms. Our preliminary results on ARGs suggest poten-
tially important ARGs with dynamics that could
influence microbiota response to antibiotics over time.
Finally, the patient population in this study was one with

Rashidi et al. Microbiome           (2021) 9:211 Page 9 of 11



aggressive cancer receiving chemotherapy in a nosoco-
mial setting and with altered nutrition. The extent to
which our findings may be generalized to other clinical
settings with antibiotic exposure remains to be
determined.
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Additional file 1: Figure S1 Taxonomic distribution in baseline and
non-baseline samples. (a) Mean relative abundance of the most abundant
taxa are shown. The top 15 taxa in each group were used to generate
the plot. (b) Linear discriminant analysis Effect Size using an LDA score
threshold of 3.0 and p value threshold of 0.05. The deepest level of tax-
onomy was genus (g), and taxa unclassifiable at the genus level are
shown at family (f) or order (o) level. Figure S2 Procrustes analysis correl-
ating microbiota composition with antibiotic history. (a) Decay factor 2.0.
(b) Decay factor 1.5. (c) Decay factor 1.1. Figure S3. Principal component
mixed effect regression. The first PC of microbiota for the baseline sam-
ple, first PC of antibiotic history for the non-baseline sample, baseline
Shannon diversity, read depth of the non-baseline sample, use of paren-
teral nutrition (categorical) before the non-baseline sample, and the time
interval in days between the two samples were included as fixed effect
predictors of Aitchison distance between the two samples. Patient ID was
a random effect. Model performance was defined as the Pearson’s correl-
ation coefficient (r) comparing observed vs. predicted values of the out-
come variable. Different values of the decay factor were used in the two
panels. PC: principal component. Table S1 Microfluidic quantitative PCR
of antibiotic resistance genes.
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