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Single-colony sequencing reveals microbe-
by-microbiome phylosymbiosis between
the cyanobacterium Microcystis and its
associated bacteria
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Abstract

Background: Cyanobacteria from the genus Microcystis can form large mucilaginous colonies with attached
heterotrophic bacteria—their microbiome. However, the nature of the relationship between Microcystis and its
microbiome remains unclear. Is it a long-term, evolutionarily stable association? Which partners benefit? Here we report
the genomic diversity of 109 individual Microcystis colonies—including cyanobacteria and associated bacterial
genomes—isolated in situ and without culture from Lake Champlain, Canada and Pampulha Reservoir, Brazil.

Results: We identified 14 distinct Microcystis genotypes from Canada, of which only two have been previously
reported, and four genotypes specific to Brazil. Microcystis genetic diversity was much greater between than within
colonies, consistent with colony growth by clonal expansion rather than aggregation of Microcystis cells. We also
identified 72 bacterial species in the microbiome. Each Microcystis genotype had a distinct microbiome composition,
and more closely related genotypes had more similar microbiomes. This pattern of phylosymbiosis could be explained
by co-phylogeny in only two out of the nine most prevalent associated bacterial genera, Roseomonas and Rhodobacter.
These phylogenetically associated genera could enrich the metabolic repertoire of Microcystis, for example by encoding
the biosynthesis of complementary carotenoid molecules. In contrast, other colony-associated bacteria showed weaker
signals of co-phylogeny, but stronger evidence of horizontal gene transfer with Microcystis. These observations suggest
that acquired genes are more likely to be retained in both partners (Microcystis and members of its microbiome) when
they are loosely associated, whereas one gene copy is sufficient when the association is physically tight and
evolutionarily long-lasting.
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Conclusions: We have introduced a method for culture-free isolation of single colonies from nature followed by
metagenomic sequencing, which could be applied to other types of microbes. Together, our results expand the
known genetic diversity of both Microcystis and its microbiome in natural settings, and support their long-term,
specific, and potentially beneficial associations.
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Background
Cyanobacteria occur naturally in aquatic ecosystems,
often multiplying into harmful blooms and producing a
diversity of toxins, which can cause severe human illness
[1]. Many cyanobacteria and eukaryotic algae grow in
mucilaginous colonies surrounded by a zone, called the
phycosphere, rich in cell exudates, where metabolites are
exchanged between numerous microorganisms [2, 3]. In
this microhabitat, the interactions between cyanobacteria
and associated bacteria (AB) might include mutualism
(with all partners benefitting), competition (with all part-
ners competing for resources), antagonism (inhibiting
one of the partners), commensalism (with one partner
benefitting) and parasitism (with one partner benefitting
at the expense of the other) [3–5]. However, the drivers
shaping these associations are largely unknown. In some
cases, AB may enhance algal or cyanobacterial growth
[6, 7], aiding in phosphorus acquisition in Trichodes-
mium for example [8, 9]. Understanding the contribu-
tions of AB to cyanobacterial growth and toxin
production has implications for our ability to predict
and control harmful blooms.
Microcystis is a globally distributed, often toxigenic

bloom-forming freshwater cyanobacterium, which forms
macroscopic mucilaginous colonies. These colonies offer
a nutrient-rich habitat for other bacteria, while also pro-
viding physical protection against grazers [10–12]. The
Microcystis colony microbiome is distinct from the
surrounding lake bacterial community, enriched in
Proteobacteria and depleted in Actinobacteria [13, 14].
The microbiome composition has been associated with
temperature, seasonality, biogeography, Microcystis
morphology and density [13, 15–17]. Lab experiments
show the potential for AB to influence Microcystis
growth and colony formation [18–21]. Yet it remains
unclear whether such interactions are relevant in natural
settings, and if they are the product of long-term
associations over evolutionary time. Microcystis
interacts with eukaryotes through competition with
algae and predation by zooplankton [22], but eukary-
otes are not known to be physically associated with
Microcystis colonies. In contrast, sequencing and
microscopy have revealed physical associations be-
tween Microcystis and smaller bacterial cells [23].
The in situ isolation of Microcystis from lakes offers
an opportunity to further elucidate the associations

between Microcystis and specific members of its
microbiome.
Phylosymbiosis, a pattern in which microbiome

composition mirrors the host phylogeny, provides a
useful concept for the study of host–microbiome asso-
ciations and interactions [24]. Phylosymbiosis could
arise from some combination of (1) vertical transmis-
sion of the microbiome from parent to offspring,
resulting in co-speciation and shared phylogenetic pat-
terns (co-phylogeny), (2) horizontal transmission of
the microbiome, but with strong matching between
hosts and microbiomes at each generation, and (3) co-
evolution, in which hosts and microbiomes mutually
impose selective pressures and adapt to each other.
Distinguishing the relative importance of these three
possibilities can be challenging, but in all cases, the as-
sociations between hosts and microbiomes must be
significantly non-random in order for phylosymbiosis
to be supported. Phylosymbiosis is typically studied
between plant or animal hosts and their microbiomes
[25–27] but Microcystis could also be considered a
host, since it constructs the mucilage environment—
although it is unclear to what extent it selects its AB
or vice versa. Microcystis colonies are more open to
the outside environment compared with mammalian
guts, for example. Consequently, they might behave
more like coral mucus [27] or other animal surfaces
which seem to show weaker phylosymbiosis than guts
[28]. The enclosed nature of animal guts reduces dis-
persal of microbiomes and favours vertical transmis-
sion, potentially leading to co-phylogeny without the
need to invoke co-evolution [29]. In contrast, metage-
nomic sequencing suggests Microcystis and its micro-
biome are globally distributed [16], making it unlikely
that phylosymbiosis could arise due to common bio-
geography of Microcystis and its microbiome. On the
other hand, Microcystis may be geographically struc-
tured on shorter evolutionary time scales, due to local
adaptation or clonal expansions, and Microcystis geno-
types might have distinct phenotypic characteristics
that could select for distinct microbiomes [30, 31].
Phylosymbiosis studies to date are biased toward the
gut relative to external host compartments [24].
Microcystis colonies thus provide an alternative model
of a more external microbiome in which to study “mi-
crobe-by-microbiome” phylosymbiosis.
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Previous studies of the Microcystis microbiome have
used either culture-independent metagenomics from
lakes, a bulk biomass collection method which cannot
resolve fine-scale spatial interaction within colonies (e.g.,
[16]), or culture-based studies of Microcystis isolates,
which have found host–microbiome divergence accord-
ing to phosphorous gradients and taxonomy [32], but
may not be representative of the natural diversity of
Microcystis or AB as they occur in nature. To combine
the strengths of both these approaches, we developed a
simple method for isolating individual Microcystis col-
onies directly from lakes, followed by DNA extraction
and sequencing without a culture step [31]. Here we ap-
plied this method to 109 individual colonies from Lake
Champlain, Canada and Pampulha Reservoir, Brazil,
yielding 109 Microcystis genomes and 391 AB genomes.
This genomic dataset allowed us (i) to quantify the
Microcystis genotype diversity in lakes over time; (ii) to
identify associations between Microcystis genotypes and
microbiome composition and assess the evidence for
phylosymbiosis; and finally, (iii) to test for possible hori-
zontal gene transfer (HGT) between Microcystis and
members of its microbiome.
Our findings reveal an expanded Microcystis genotypic

diversity, and a Microcystis colony microbiome shaped
by the host genotype, resulting in a significant signature
of phylosymbiosis. We inferred co-speciation of
Microcystis with two of the most prevalent genera in its
microbiome (Rhodobacter and Roseomonas) suggesting
evolutionarily stable associations. We also inferred HGT
events among Microcystis and its microbiome, mainly in-
volving lower-fidelity partners than Rhodobacter and
Roseomonas. Overall, our results suggest ecologically and
evolutionarily stable associations between Microcystis
and members of its microbiome.

Results
Genotypic diversity of Microcystis colonies in Lake
Champlain and Pampulha Reservoir
To study the relationship between Microcystis and its
AB in natural settings, we sequenced 109 individual
Microcystis colonies from 16 lake samples (82 colonies
from Lake Champlain, Quebec, Canada and 27 from
Pampulha Reservoir, Minas Gerais, Brazil; Supplemen-
tary Table 1). Microcystis genomes were assembled and
binned separately from AB genomes (Methods), which
we will describe below. Microcystis genomes recovered
from the colonies have more than 90% completeness
and less than 10% redundance based on a set of 139
single-copy core genes [33], except for M04BS1, which
has 82.7% completeness (Supplementary Table 1), with
an average genome size of 4.76 Mb. Consistent with our
previous study of Microcystis isolate genomes [31],
nearly all the 109 Microcystis genomes and the 122

reference genomes (average genome size of 4.85 Mb)
share ≥ 95% average nucleotide identity (ANI), except
for 7 out of 26,565 genome pairs which had ANI be-
tween 94.4 and 94.5%. The 95% ANI threshold is typic-
ally used to define bacterial species, but we previously
found significant phylogenetic substructure above 95%,
coherent with multiple species or ecotypes within Micro-
cystis [31]. In agreement with such fine genetic structure
within our sampled colonies, we identified 18 monophy-
letic, closely related genotypes of Microcystis (i.e., ≥
99.9% ANI and phylogenetic pairwise distances lower
than 0.0005; Supplementary Table 2 and Supplementary
Fig. 1). These genotypes (highlighted clades in Fig. 1) are
nested within the phylogeny of 122 isolate genomes pre-
viously sampled from North America, Brazil, and world-
wide. However, only two genotypes (G05 and G10) have
been reported in culture previously, possibly due to our
fine-grained definition of genotypes (≥ 99% ANI) com-
bined with undersampling of natural diversity in culture
collections [34]. Consistent with previously observed
biogeographic patterns between North and South
America [31], we found 14 genotypes unique to Lake
Champlain, and four unique to Pampulha, with no geno-
types found in both locations.
Two features of interest that might distinguish Micro-

cystis clades are toxigenicity (the presence of the mcy
operon encoding microcystin biosynthesis [35]) and
adaptation to low nutrient conditions. Microcystis is gen-
erally thought to be adapted to high nutrient conditions,
since it often blooms in eutrophic waters such as
Champlain and Pampulha (Supplementary Table 3).
However, a recent sampling of Michigan lakes identified
Microcystis isolates adapted to low-phosphorus (low-
phosphorus genotypes, LG), which occur in both high-
and low-phosphorus lakes [32]. Genotypes G07, G08,
G09 and G10 from Lake Champlain are nested within
the LG clade with high bootstrap support (Fig. 1), indi-
cating that low-phosphorus-adapted genotypes also
occur in high-phosphorus lakes. Contrary to the single
LG clade, high-phosphorus genotypes (HG) are broadly
distributed across the phylogenetic tree and are recov-
ered from multiple geographic locations. We observed
that most of the genomes within the LG clade (66 out of
67) encode the mcy gene cluster (Fig. 1). In contrast,
mcy was more unevenly distributed across HG genomes,
possibly due to multiple gene gain/loss events. However,
closely related genotypes tend to have identical mcy gene
profiles, suggesting that putative gain/loss events occurred
mainly in deep internal branches of the phylogeny.

Lower Microcystis diversity within than between colonies
of the same genotype suggests clonal colony formation
A previous study of Michigan lakes supported clonal
colony formation (by cell division) in isolates from high-

Pérez-Carrascal et al. Microbiome           (2021) 9:194 Page 3 of 21



Fig. 1 Maximum likelihood phylogenetic tree of 109 Microcystis colony genomes and previously sequenced reference genomes. Microcystis
genomes were classified in 18 genotypes based on Average Nucleotide Identity (ANI) greater or equal to 99%. A core genome was inferred
based on 109 Microcystis genomes and 122 Microcystis reference genomes downloaded from NCBI. The alignment of the 115 core genes (68,145
bp in total after excluding positions with gaps) was used to infer the Maximum Likelihood phylogeny. The tree was rooted using two
cyanobacteria (Anabaena variabilis ATCC29413 and Synechocystis sp. PCC6803) as outgroups. The clades highlighted in different colours indicate
Microcystis genotypes (G01 to G18) from this study; uncoloured clades are other reference genomes from the literature. The purple circles on the
tree branches indicate bootstrap values greater or equal to 70%. The empty and filled triangles around the tree indicate absence and presence of
the mcy cluster, respectively. The small coloured and filled dots indicate the most prevalent AB genera related to each Microcystis genome. The
outermost circle indicates the geographic origin of the Microcystis genomes. Several reference genomes of Microcystis genotypes recovered from
environments with high and low phosphorus are indicated as LL/LG (Low Phosphorus Lake/Low Phosphorus genotype), HL/LG (High-Phosphorus
Lake/Low-Phosphorus Genotype) and HL/HG (High-Phosphorus Lake/High-Phosphorus Genotype). For details about the names of the strains,
please refer to Supplementary Table 2
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phosphorus lakes, but suggested a preponderance of
nonclonal colonies (by agglomeration of distantly related
cell) in low-phosphorus lakes [32]. To further explore
whether Microcystis colonies emerge from a single clonal
cell or from an aggregation of either genetically diverse,
we compared genetic diversity within and between col-
onies of the same genotype. Note that Microcystis geno-
types are defined by ANI values greater than 99.9% and
phylogenetic pairwise distances lower than 0.0005, and
are thus not entirely isogenic. Within a colony, the num-
ber of single-nucleotide variants (SNVs) was significantly
lower (mean of 3 and median of 2 SNVs) than between

colonies (mean of 25 and median of 9 SNVs) of the same
genotype (two-tailed Wilcoxon Rank Sum Test, P < 0.05;
twelve outliers with more than 300 variants between col-
onies were excluded, making the test conservative) (Fig.
2 and Supplementary Table 4). These outliers were
found in colonies within the genotypes G05, G06, G08
and G13. To put these results in context, we compared
isolate genomes from 19 laboratory cultures of Microcys-
tis sequenced in a previous study [31]. Microcystis accu-
mulated an average of 5 SNVs after ~ 6 years of culture,
with slightly more variation than observed within a col-
ony but still ~ 5 times less than observed between

Fig. 2 Greater genetic diversity between than within Microcystis colonies. The number of single-nucleotide variants (SNVs) within and between
Microcystis colonies of the same genotype are shown, compared with SNVs that accumulated over ~ 6 years of Microcystis culture in the
laboratory (Methods). Large points show mean values. The data points represent the SNVs in a Microcystis genome within a colony (purple dots),
SNVs between Microcystis genomes from the same genotypic clade (green dots), and SNVs between Microcystis genomes from the same
Microcystis culture at two different time points (blue dots). Within colonies, the comparison was done by mapping the reads from a colony
against its corresponding assembled Microcystis genome. Nucleotide sites that differed between some fraction of the reads and the assembled
reference genome were considered as SNVs within a colony (the lowest allele frequency found within a colony was of 0.14%)
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colonies of the same genotype (two-tailed Wilcoxon
Rank Sum Test, P < 0.05). Overall, these results are con-
sistent with clonal expansion of Microcystis genomes
within a colony—at least under the sampled environ-
mental conditions in Lake Champlain and Pampulha
Reservoir.

Evidence for phylosymbiosis between Microcystis and its
microbiome
Having characterized the genetic diversity of Microcystis,
we turned our attention to the colony-associated bacteria
(AB). We recovered a total of 391 non-Microcystis
metagenome-assembled genomes (MAGs, with complete-
ness ≥ 70 and contamination < 10%) from the 109
colonies (Supplementary Table 1 and 5), taxonomically
classified into 72 putative species (ANI > 95%) and 37
genera. No MAGs were classified as eukaryotes, and only
0.21% of the contigs in the MAGs with completeness < 70
and contamination > 10% were assigned a likely
eukaryotic origin. We thus tentatively conclude that eu-
karyotes are rare or undetectable in the Microcystis micro-
biome, as defined here. Only five AB species were shared
among colonies from Canada and Brazil: Pseudanabaena
sp. A06, Methylobacterium sp. A30, Roseomonas sp. A21,
Burkholderia sp. A55 (a likely contaminant, as discussed
below) and Gemmatimonas sp. A63 (Supplementary Fig.
2). Because certain low-abundance AB might be present
in a colony but fail to assemble, we mapped reads from
each colony to a database of all MAGs and estimated AB
genome coverages. Using this approach, we found that
each colony contained an average of six AB (genome
coverage greater or equal to 1×), with a range of 0 to 15
(Supplementary Fig. 3). We found no strict “core” of AB
present in all colonies, either at the species or genus level.
However, several genera were quite prevalent. These in-
clude Phenylobacterium (present in 73.40% of colonies),
Roseomonas (70.64%), Pseudanabaena (43.12%), Rhodo-
bacter (46.79%), Methylobacterium (44.04%), Rhodocycla-
ceae G1 (unclassified genus) (39.45%), Rhodocyclaceae G2
(unclassified genus) (31.19%), Chitinophagaceae (unclassi-
fied genus) (26.60%), and Cytophagales (unclassified
genus) (22.94%). It is possible that a core Microcystis
microbiome does exist, but includes rare AB that were not
assembled into MAGs. To test this possibility, we used
two alternative assembly-independent metagenomic read
mapping approaches to define the microbiome: Kaiju and
MIDAS (Methods). We could not find a core microbiome
based on the reference MIDAS database, which contains
more than 30,000 reference genomes classified into 5952
species. With Kaiju, which is based on NCBI Reference
Sequences, we identified between 0 and 78 core species
depending on the read count cutoff (Supplementary Fig. 4
and Supplementary Table 6). However, the core micro-
biome detected by Kaiju is likely due to misclassification

of reads at the species level, which poorly matches the
species classification based on MIDAS. For example, the
inferred core species supported by at least 1000 reads by
Kaiju (still less than 1× coverage of a typical bacterial gen-
ome) were Pseudomonas aeruginosa and an Acidobacteria
species, which we consider likely contaminants. We there-
fore conclude that, at the resolution of reasonably deep
metagenomic sequencing, a strict core microbiome does
not exist.
To assess the evidence for phylosymbiosis, we first

asked if different Microcystis genotypes had distinct col-
ony microbiomes. The phylogeny illustrates how certain
Microcystis genotypes appear to be preferentially associ-
ated with particular AB (Fig. 1). For example, Phenylo-
bacterium and Methylobacterium were present in all
sampled colonies of genotype G15, while Rhodobacter
and Phenylobacterium occur in all colonies of genotype
G01. These anecdotal patterns are borne out in statis-
tical analyses of colony community structure, which
show that Microcystis genotypes have significantly dis-
tinct microbiomes relative to the null model of random
assignment of AB across genotypes (Fig. 3a). The geno-
type explains more variation in community structure
(PERMANOVA on Bray–Curtis distances, R2 = 38.7%, P
< 0.01; Supplementary Table 7) than any other measured
variable including pH (R2 ≤ 5%) or temperature at the
sampling site (R2 ≤ 5%), presence of microcystin (mcy)
genes in the genotype (R2 ≤ 5%), or location of sampling
(R2 = 11.8%). Genotype was still the best explanatory
variable when the analysis was performed on Lake
Champlain samples only to exclude the effects of geog-
raphy (Fig. 3b, PERMANOVA, R2 = 30.9%, P = 0.001).
A key piece of evidence for phylosymbiosis is not only

for microbiomes to differ among host lineages, but for
microbiome composition to change proportionally to
host phylogeny. To test this, we converted the Microcys-
tis host phylogeny into a distance matrix, which we cor-
related with the colony microbiome Bray–Curtis
dissimilarity matrix. Consistent with phylosymbiosis, we
found that variation in microbiome composition was
correlated with the host phylogeny according to a Man-
tel test (r = 0.5, P = 0.001), and further confirmed with
Procrustean superimposition (r = 0.6, P = 0.001) [36].
Similar evidence for phylosymbiosis was obtained using
Kaiju or an expanded MIDAS reference genome data-
base (Supplementary Table 8). While these alternative
approaches yielded significant Mantel and Procrustes
tests, the correlation coefficients were slightly lower than
obtained with our set of 72 MAGs. This suggests that
the alternative methods, which may be more sensitive to
rare, unassembled taxa, likely add noise rather than
strengthen the signal of phylosymbiosis. Taken together,
these results provide strong support for phylosymbiosis
in Microcystis colonies.
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Microcystis genotype abundances vary over time in Lake
Champlain and are correlated with prevalent members of
the microbiome
Toxigenic and non-toxigenic genotypes of Microcystis
are known to change in relative abundance within lakes
over time [34, 37, 38]. More generally, to what extent
different genotypes of Microcystis vary over time, along
with their colony-associated bacteria, is less well studied.
To investigate the Microcystis genotype diversity in
metagenomes from Lake Champlain, we used a database
of 15 single-copy taxonomic marker genes, which are
mostly involved in translation, and ribosomal structure
and biogenesis (Supplementary Table 9) [39]. This data-
base was used to distinguish among the 14 Microcystis
genotypes identified from colony sequencing (Methods),
and to estimate their relative abundance in 72 metagen-
omes sampled from filtered lake water during the sum-
mer months of 2006 to 2018 (Supplementary Fig. 5). It
is possible that these 14 genotypes do not represent the
total genotypic diversity of Microcystis occurring in the
lake. However, mapping metagenomic reads from the

lake to these genotypes with a 99% sequence identity
threshold allowed us to recover 93.5% of Microcystis
reads. Microcystis reads were defined at > 96% sequence
identity to the Microcystis reference genome M083S1
(Methods). Therefore, the 14 genotypes are representa-
tive of the vast majority of Microcystis diversity captured
in lake metagenomes.
Using a distance-based redundancy analysis (dbRDA),

we estimated the effects of total phosphorous, total ni-
trogen, dissolved phosphorous, dissolved nitrogen,
mean temperature and time (years, months and season)
on the Microcystis genotype community composition in
the 42 Lake Champlain metagenomes with complete
metadata, and with Microcystis genome coverage
greater or equal to 1×. Microcystis genotype diversity
was best explained by yearly temporal variation
(dbRDA, R2 = 51.1%, P < 0.01; PERMANOVA, R2 =
47.9%, P < 0.01; Supplementary Fig. 6). Years did not
differ significantly in their dispersion (PERMDISP P >
0.05; Supplementary Table 7). Environmental variables
such as nitrogen and phosphorus did not have a

Fig. 3 Microcystis genotypes have distinct microbiomes. Nonmetric multidimensional scaling (NMDS) plots are based on the coverage of the non-
Microcystis metagenome-assembled genomes (MAGs) per colony (Bray–Curtis distance). a All samples, including those from Pampulha, Brazil and
Lake Champlain, Canada. Ellipses show 95% confidence intervals of b samples from Lake Champlain only (stress = 0.225). The grey-shaded ellipse
shows Microcystis colonies that do not encode the mcy cluster for microcystin toxin production
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significant effect on the community composition. In a
shorter time series (April to November of 1 year) in
Pampulha, a more diverse community of four Microcys-
tis genotypes eventually became dominated by one
genotype (G15) encoding the mcy toxin biosynthesis
gene cluster (Supplementary Fig. 7). However, more ex-
tensive sampling is required to estimate the effect of
other environmental variables (e.g., phosphorus) on the
community composition in Brazil.
Similarly to Microcystis genotypes, the composition of

AB in Lake Champlain also varied significantly across
years (dbRDA, R2 = 44.3%, P < 0.01; PERMANOVA, R2

= 43.5%, P < 0.01; Supplementary Fig. 8). We asked if
the presence of dominant Microcystis genotypes could
explain the variation in the AB community composition.
A significant effect of the genotype was observed using
PERMANOVA (R2 = 31.5%, P < 0.01), but not using
dbRDA (R2 = 0.012, P > 0.05). Years and Microcystis ge-
notypes were the best explanatory variables for AB com-
position; however, their dispersions were significantly
different (P < 0.01) making the PERMANOVA results
difficult to interpret. In addition, the AB community
sampled from metagenomes includes both free-living
and colony-attached AB, possibly adding noise to any
signal of Microcystis genotypes selecting for specific AB
within colonies. While these results are statistically
somewhat ambiguous, they are generally consistent with
phylosymbiosis between Microcystis and its microbiome.
We further hypothesized that the most prevalent AB

in the Microcystis microbiome should co-occur with
Microcystis in lake metagenomes. In contrast, they
should not co-occur with another cyanobacterium fre-
quently observed in Lake Champlain, Dolichospermum,
which serves as a negative control. We first estimated
normalized read counts and coverage of Microcystis and
Dolichospermum in the 72 metagenomes from the Lake
Champlain time series (Supplementary Fig. 9). We then
estimated the Spearman correlations between Microcys-
tis or Dolichospermum and each AB species or genus.
The two cyanobacteria were weakly correlated with each
other across the environmental metagenomes (Spear-
man ’ s ρ = 0.29 and Q value = 0.027). As expected, the
nine most prevalent AB genera in the Microcystis micro-
biome were strongly correlated with Microcystis (Spear-
man ’ s ρ > 0.7, Q value < 0.001), and only weakly with
Dolichospermum (Spearman ’ s ρ < 0.4, Q value > 0.001)
with the exception of Phenylobacterium (Spearman ’ s ρ =
0.47, Q value < 0.001) which is nevertheless more strongly
associated with Microcystis (Supplementary Figs. 10 and
11). The positive correlation between the most prevalent
AB genera and Microcystis was also supported using an al-
ternative correlation method, SparCC, which corrects for
compositional effects in the relative abundance data
(SparCC r > 0.4, Q value < 0.05) (Supplementary Table 10

and Supplementary Fig. 12). These significant positive cor-
relations are consistent with close interaction between
Microcystis and the most prevalent genera in their micro-
biome. Genera found at lower prevalence in Microcystis
colonies (e.g., Phycisphaerales bacterium (unclassified
genus) and Telmatospirillum) were poorly correlated with
both Microcystis and Dolichospermum, suggesting weaker
or transient associations (Supplementary Table 10 and
Supplementary Fig. 10a).
Another AB belonging to the genus Burkholderia was

quite prevalent in colonies but poorly correlated with
Microcystis in metagenomes (present in the 40.37% of
the colonies; Spearman ’ s ρ = -0.16, Q value = 0.343)
suggesting contamination of colonies rather than a true
ecological association. The genomes within this Burkhol-
deria species showed nucleotide identity greater than
99% and short phylogenetic distances (0.0001), and was
found in both Canadian and Brazilian colonies, suggest-
ing a clonal lab contaminant rather than a batch or sam-
pling effect. However, this was the only signal of
contamination, suggesting that most of the other data
reflect true associations.
Having already provided general support for phylo-

symbiosis, we sought to illustrate examples of associa-
tions between specific Microcystis genotypes and specific
AB species. For example, Rhodocyclaceae bacterium G2
A13 was better correlated with genotype G05 than other
Microcystis genotypes (Supplementary Fig. 13), consist-
ent with the prevalence of this AB in 13 out of 14 col-
onies of genotype G05. In contrast, genotype G10 was
poorly correlated with certain species within the genera
Roseomonas and Methylobacterium (Spearman ’ s ρ <
0.38, Q value > 0.001). This illustrates how certain
Microcystis genotypes have strong preferences for certain
AB, while being unselective for others.

Signatures of co-speciation between Microcystis and
members of its microbiome
Phylosymbiosis can arise due to vertical inheritance of
microbiomes, or horizontal acquisition of micro-
biomes at each generation, provided that host lineages
preferentially “match” with distinct microbiomes [24].
To assess the evidence for vertical inheritance of
Microcystis AB, we used ParaFit to test for similarity
between the Microcystis phylogeny and the phyloge-
nies of the nine most prevalent AB genera strongly
correlated with Microcystis but not with Dolichosper-
mum in Lake Champlain (Supplementary Fig. 11).
Each of these genera was represented by at least 12
high-quality draft genomes and was found in at least
five different Microcystis genotypes. Significant co-
phylogenetic signal suggests co-speciation of hosts
and symbionts, consistent with a relatively long evolu-
tionary history of association (e.g., vertical descent).
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The ideal signal of co-phylogeny would be exactly
congruent tree topologies for Microcystis and AB. In
reality, we found tree topologies that were signifi-
cantly similar (according to the ParaFit test), despite
being non-identical. For example, Roseomonas, the
second most prevalent AB genus in colonies, and
Rhodobacter, the third most prevalent, had significant
signatures of co-phylogeny (Fig. 4), while Phenylobac-
terium and Chitinophagaceae were borderline cases
(Table 1). Overall, there was no clear tendency for
stronger co-phylogeny with more prevalent AB, or
with AB most correlated with Microcystis over time
in Lake Champlain metagenomes (Table 1). However,
such tendencies would be hard to discern in this rela-
tively small sample size. As expected, the suspected
contaminant Burkholderia A55 (Burkholderia cepacia)
present in 40.37% of colonies, was poorly correlated
with the presence of Microcystis in environmental
metagenomes (r = − 0.16, Q value = 0.343), with no
signal of co-phylogeny (P value = 0.732). Although

co-phylogenetic signal was detectable in at least two
of the most prevalent AB, the phylogenies are not
identical (Fig. 4), suggesting a mixture of vertical and
horizontal transmission. Even if horizontal transmis-
sion of AB among Microcystis lineages is likely, some
degree of non-random host–microbiome matching
must be occurring to explain the co-phylogenetic
signal.

Horizontal gene transfer (HGT) between Microcystis and
its associated bacteria
Unrelated bacteria sharing a common environment, such
as the human gut, are known to engage in frequent hori-
zontal gene transfer [40]. We hypothesized that Microcys-
tis would also exchange genes with members of its
microbiome, which share a similar physical niche—the
colony milieu—for at least some period of time. We began
by using a simple heuristic to look for similar gene se-
quences (≥ 99% amino acid identity) occurring in the
Microcystis genome and at least one AB genome, as a

Fig. 4 Co-phylogeny between Microcystis and two prevalent associated bacteria. a Roseomonas and b Rhodobacter core genome phylogenies
were compared to the Microcystis core phylogeny. The lines between the two phylogenies connect genomes coming from the same Microcystis
colony. The phylogenetic trees for Microcystis, Roseomonas and Rhodobacter were based on 706, 135 and 470 core genes, respectively. The
different Microcystis genotypes are highlighted in colour, and the Roseomonas or Rhodobacter species in gray. The asterisks indicate the presence
of the mcy cluster. While in a perfect co-phylogeny, the tree topologies of host and symbiont are identical; in these two comparisons, the co-
phylogenetic similarity is imperfect but greater than expected by chance (ParaFit Global test, P value < 0.01)
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proxy for relatively recent HGT events. Genome assembly
and binning could affect this analysis by misplacing identi-
cal sequences either in Microcystis or in an AB genome,
but not in both. To reduce this possible bias, we only con-
sidered a gene to be involved in HGT if it was present in
at least four genomes (which would be unlikely to occur
due to binning errors alone). We identified a total of 1909
genes involved in HGT between Microcystis and one of
seven AB species: Pseudanabaena A06, Pseudanabaena
A07, Burkholderiales bacterium G3 A12, Rhodocyclaceae
bacterium G2 A13, Chitinophagaceae bacterium A08,
Cytophagales bacterium A04 and Cytophagales bacterium
A05. Compared to the Microcystis core genes, these candi-
date HGTs are enriched in functions related to secondary
metabolite biosynthesis, replication and recombination,
and defense mechanisms (Fig. 5). As a control, we re-
peated the HGT inference using the likely contaminant
Burkholderia A55 genome instead of Microcystis. We
identified 558 putative HGT events, of which 523 involved
species were not found to engage in HGT with Microcys-
tis: Methylobacterium A30, Rhodocyclaceae bacterium G1
A54 and Cupriavidus A44. This suggests that Microcystis
engages in more HGT with its microbiome than a random
expectation (i.e., with a contaminant genome), and allows
us to conservatively estimate the false-positive rate of
HGT detection at 523/(523 + 1909), or 22%. Despite the
significant noise, we expect the broad gene functional cat-
egories and specific AB involved in HGT with Microcystis
to be relatively robust.

As an additional validation of our HGT heuristic, we
used Metachip, which uses phylogenetic incongruence in
addition to a sequence identity threshold [41]. Metachip
identified the same seven AB genera involved in HGT
with Microcystis based on our simple heuristic, except
for Rhodocyclaceae bacterium G2. Metachip is much
more conservative, identifying only 46 gene families in-
volved in HGT (Supplementary Table 11). Of these gene
families, 31 were also identified by our heuristic method,
suggesting they are high-quality candidates.

Cellular functions encoded by members of the Microcystis
microbiome
In contrast to genes shared by HGT, there may be a gen-
etic division of labour between Microcystis and its
microbiome, which would then be expected to encode
different and complementary sets of gene functions. To
compare these gene functions, we first characterized
orthologous genes using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) orthologues (KO) in both
Microcystis and its microbiome. We then used ANTI-
SMASH [42] to identify gene clusters involved in the
biosynthesis of cyanopeptides and other pathways of
interest. We further validated the presence of biosyn-
thetic pathways like biotin, cobalamin, nitrogen fixation
and carotenoids with gapseq [43]. As expected for dis-
tantly related bacteria, Microcystis genotypes and AB en-
code distinct sets of gene functions based on the
presence/absence of annotated genes (Supplementary

Table 1 Co-phylogeny analysis between Microcystis and the nine most prevalent associated bacterial genera within the Microcystis
microbiome

Associated
bacteria (AB)
genus

Number of
species per
genus

Number of AB genomes
used in the phylogeny

Prevalence of AB in colonies
from Canada and Brazil

Correlation with Microcystis in
Canada metagenomes (r2)

ParaFit
test
(P
values)

Phenylobacterium 5 60 73.40% 0.759 * 0.072
(0.008)

Roseomonas 13 36 70.64% 0.835 * 0.009**
(0.001)

Rhodobacter 4 34 46.79% 0.779 * 0.0018**
(0.0002)

Methylobacterium 3 29 44.04% 0.809 * 0.729
(0.081)

Pseudanabaena 2 20 43.12% 0.766 * 0.153
(0.017)

Rhodocyclaceae
bacterium G1

2 19 39.45% 0.769 * 0.225
(0.025)

Rhodocyclaceae
bacterium G2

2 21 31.19% 0.776 * 5.355
(0.595)

Chitinophagaceae
bacterium

3 22 26.60% 0.795 * 0.081
(0.009)

Cytophagales
bacterium

3 16 22.94% 0.740 * 0.702
(0.078)

* Significant correlation coefficients (Q < 0.01)
** Significant P values (P < 0.01) (Bonferroni correction). Uncorrected P values are shown between parentheses

Pérez-Carrascal et al. Microbiome           (2021) 9:194 Page 10 of 21



Fig. 14). Bacteria from the same Phylum tend to cluster
together in terms of their functional gene content. For
example, Microcystis clusters with its fellow cyanobacteria
Pseudanabaena, while Bacteroidetes (i.e., Cytophagales
bacterium and Chitinophagaceae bacterium) formed a dis-
tinct cluster (Supplementary Fig. 14).
Roseomonas and Rhodobacter, which show co-

phylogeny with Microcystis but appear not to engage in

significant amounts of HGT, are prime candidates for
functional complementarity to have evolved and be main-
tained with high partner fidelity. Both these genera con-
tain carotenoid biosynthesis pathways different from those
found in Microcystis genomes (Supplementary Table 12).
For example, neurosporene, spirilloxanthin and spheroi-
dene pathways are present in Rhodobacter but not in
Microcystis. Carotenoid pigments like zeaxanthin are

Fig. 5 Inferred recent HGT between Microcystis and associated bacteria. Horizontally transferred genes between Microcystis and each AB species
were inferred with a simple heuristic and annotated in 23 Clusters of Orthologous Groups (COGs) functional categories using EggNOG mapper
(Methods). a Clustering analysis based on the relative abundance of the genes for each functional category, compared with the genes in the
Microcystis core genome. b COG functions showing differential abundance between Microcystis core genes (turquoise) and the set of putative
HGTs (other colors)
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generally produced by Microcystis for their photoprotec-
tive properties and their capacity to improve the efficiency
of photosynthesis [44]. Indeed, in our Microcystis ge-
nomes, we found the complete pathways for the biosyn-
thesis of zeaxanthin, echinenone and intermediaries in the
biosynthesis of carotenoids like trans-lycopene. It is
tempting to speculate that the Microcystis microbiome
could be involved in the production of additional caroten-
oids that could provide additional photoprotection under
certain environmental conditions; this deserves further
study. Certain AB (i.e., Roseomonas, Rhodobacter and
Methylobacterium) also encoded genes involved in anoxy-
genic photosynthesis (absent in Microcystis) and the trans-
port of rhamnose, D-xylose, fructose, glycerol and a-
glucoside (Supplementary Table 13), which could also
complement the metabolic repertoire of Microcystis [16].
To test for potential metabolic interactions between

Microcystis and its microbiome, we reconstructed
genome-scale metabolic models with CarveMe [45] and
used SMETANA [46] to identify exchanged metabolites
that are essential for the survival of the community
(Methods). We performed these analyses on Microcystis
genotype G01 and its microbiome of five AB, which are
among the most prevalent across the genus. This ana-
lysis suggests that Microcystis is a major recipient (but
not a donor) of metabolites from AB, including amino
acids and nutrients (Supplementary table 14A). As a
negative control, we analyzed the interactions between
Microcystis and taxa that did not co-occur (based on
SparCC and Spearman correlation results), yielding no
metabolic exchanges inferred by SMETANA. Microcystis
is unable to fix nitrogen, but it contains pathways to as-
similate nitrate and ammonia. Previous studies have
suggested that Microcystis might rely on its microbiome
for nitrogen [16, 47]. Although we found no complete
pathways for nitrogen fixation in AB genomes, meta-
bolic reconstruction suggests that Methylobacterium,
Roseomonas and Rhodobacter might provide Microcystis
with nitrate, nitrite and ammonium (Supplementary
Table 14A). In a second SMETANA “global” analysis of
species pairs, we found that Roseomonas is the AB with
the lowest metabolic resource overlap (MRO score) and
the highest metabolic interaction potential (MIP score),
suggesting metabolic complementarity (Supplementary
Table 14B). Roseomonas was the only AB with a lower
MRO score and a higher MIP score than observed in
negative controls (Supplementary Table 14C). To-
gether, these results suggest the potential for significant
metabolic exchange between Microcystis and its micro-
biome, particularly Roseomonas.

Discussion
By combining single colony sequencing and metagen-
ome analysis, we explored the genetic diversity of both

Microcystis and its microbiome, and their variation over
time in Lake Champlain, Canada and the Pampulha
reservoir in Brazil. We revealed a higher diversity of
Microcystis genotypes than previously described [48],
and a strong signal of phylosymbiosis between the host
and its microbiome. Despite the absence of a strict core
microbiome, the overall microbiome community com-
position tends to change proportionally along the Micro-
cystis host phylogeny—a hallmark of phylosymbiosis
[24]. Although some members of the microbiome might
be loosely associated, some—notably Roseomonas and
Rhodobacter—appear to be relatively stable over evolu-
tionary time (taking phylogenetic branch length as a
rough proxy for time). These two genera have been
previously reported to be correlated with Microcystis in
environmental samples [49, 50]. Whether these associa-
tions are beneficial to one or both partners remain to be
seen.
There has been some debate about whether Microcys-

tis colonies form by clonal cell division, or by aggrega-
tion of (potentially distantly related) cyanobacterial cells
[21, 51]. Our results suggest that clonal cell division is
more likely, based on our observation of much greater
genetic variation in the Microcystis genome between
than within colonies of the same genotype. This finding
applies to the relatively large colonies we sampled from
eutrophic lakes, and results could differ for smaller col-
onies, under oligotrophic conditions [32], or under
strong grazing predation, which could affect colony
structures [52]. Because DNA extraction is more likely
to have failed for smaller colonies, our collection likely
underrepresented smaller colonies, which could repre-
sent distinct genotypes. However, 93.5% of Microcystis
metagenomic reads from Lake Champlain were recruited
to our collection of colony genomes at 99% nucleotide
sequence identity, suggesting that the majority of natural
Microcystis diversity is represented in our sample of col-
onies. Of course, these results are specific to Lake
Champlain and Pampulha, and should be replicated in
other lakes under different environmental conditions
(e.g., oligotrophic lakes).
Phylosymbiosis and co-speciation appear to be rela-

tively common and strong in mammalian gut micro-
biomes [24, 25], and even in the more environmentally
exposed coral microbiome [24, 25]. It is unclear if such
tight and evolutionarily stable associations would apply
to Microcystis and its AB, or if more transient interac-
tions would prevail. While the idea of a Microcystis
microbiome has been suggested previously based on
bulk metagenomic and amplicon sequencing from lakes
[16, 53], here we refine the Microcystis microbiome con-
cept beyond co-occurrence patterns to physical associ-
ation within a colony. We found that the most prevalent
AB from individual Microcystis colonies also tend to co-
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occur with Microcystis over time in Lake Champlain. The
composition of the microbiome varies along the Microcys-
tis phylogenetic tree, consistent with phylosymbiosis and
relatively long-term evolutionary associations. At least two
AB show a significant co-phylogenetic signal, suggesting
co-speciation with Microcystis. Therefore, although pos-
sibly not as strong as in mammals or even coral, co-
phylogeny is a feature of at least certain members of the
Microcystis microbiome, yet co-phylogeny is unlikely to
explain most of the signal of phylosymbiosis. Alternatively,
phylosymbiosis can arise as a consequence of shared bio-
geography between hosts and microbiomes [54], and we
do observe distinct microbiomes in Brazil and Canada.
However, we found evidence for phylosymbiosis within a
single lake in Canada, suggesting that factors other than
biogeography—such as host–microbiome trait matching—
are likely at play.
As expected for distantly related bacteria, Microcystis

and its AB encode different functional gene repertoires,
some of which could be complementary and mutually
beneficial. We found that both Microcystis and AB have
biosynthetic functions for a wide range of carotenoids.
Metabolic pathways for carotenoids in Microcystis dif-
fered from those found in AB. Carotenoids act as antiox-
idants and may broaden the photosynthetic light
absorption spectrum [55, 56]. In a previous study, het-
erotrophic bacteria producing carotenoid pigments
showed higher survival to environmental stressors (e.g.,
solar radiation) than their unpigmented counterparts
[57]. Further studies are required to understand whether
the additional carotenoid pathways in the AB enhance
the host photo protection.
Horizontal gene transfer (HGT) is relatively common

in bacteria, and may occur among unrelated bacteria
[58] particularly when they share an ecological niche
such as the human gut [40]. Microcystis is physically as-
sociated with its microbiome for at least part of the col-
ony life cycle, and we hypothesized that HGT could
occur within colonies. Using two methods to detect
HGT, we found evidence for gene transfers between
Microcystis and at least six different species of AB: two
species of Pseudanabaena, two Cytophagales, one Bur-
kholderiales, and one Chitinophagaceae species. Certain
gene functions, including secondary metabolite biosyn-
thesis, replication and recombination, and defense mech-
anisms, are particularly prone to HGT between
Microcystis and its microbiome, and the ecological func-
tions of these genes deserves further study. Notably,
prevalent AB with evidence of co-phylogeny with Micro-
cystis (Roseomonas and Rhodobacter) shared relatively
few (less than seven) HGT events with Microcystis. This
counter-intuitive result could be explained if these co-
phylogenetic associations are relatively ancient, but our
HGT detection is biased toward recent events.

Alternatively, it is possible that HGT is more likely
among less intimately associated AB, whereas more in-
timate associations would select for only one, but not
both partners, to encode the gene. This would also re-
quire that metabolites are shared between partners. To
explain this result, we hypothesize that such long-term
associations might favour the loss of redundant genes, as
predicted by the Black Queen Hypothesis [59]. In other
words, a gene needs to be encoded by only one partner,
provided that gene products or metabolites are shared
between partners. Such metabolic interdependencies ap-
pear to be relatively strong between Microcystis and
Roseomonas. Therefore, even if HGT does occur be-
tween partners, we would not expect to find the same
gene redundantly encoded in both partners. These
evolved co-dependencies would further reinforce partner
fidelity and could help explain the co-phylogenetic signal
between them.

Conclusions
Overall, our results provide evidence for eco-
evolutionary associations between Microcystis and its
microbiome. Some members of the microbiome may be
more tightly associated than others, and based on their
gene content, we hypothesize that they might provide
complementary functions to Microcystis. Such comple-
mentary functions can be encoded by a variety of spe-
cies, such that there is no strict species- or genus-level
core microbiome. These hypotheses could be tested in
experimental co-cultures, which have recently shown
how the Microcystis microbiome can alter its competi-
tive fitness against eukaryotic algae [60]. Such experi-
ments could be extended to the combinations of
Microcystis genotypes and AB which we have shown to
be intimately associated in nature.

Materials and methods
Sample collection and DNA extraction for colonies and
metagenomes
To access the genomic diversity of Microcystis in Lake
Champlain and Pampulha reservoir, 346 individual
Microcystis colonies were isolated across the bloom sea-
son in 2017 and 2018 (July to October in Quebec,
Canada (45° 02’ 44.86” N, 73° 07’ 57.60” W) and April to
November in Minas Gerais, Brazil (19° 55’ 09” S and 43°
56’ 47” W)) during 2018. Colonies were isolated from
surface water samples (~ 50 cm depth) after concentra-
tion using a plankton net (mesh size 20 μm). One litre
of concentrated water was collected and stored at 4 °C
for a maximum of 36 h until colony isolation. Colonies
were isolated using micropipes, sterile medium (Z8
medium) and a microscope (Nikon E200 Eclipse). Each
colony was washed 15–20 times using sterile Z8 medium
and stored at − 80 °C until DNA extraction. The DNA
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extraction was performed directly on each colony using
the ChargeSwitch® gDNA Mini Bacteria Kit. Two add-
itional steps were added to ensure the rupture of the
Microcystis colonies and cells (see Supplementary
Methods). Briefly, each colony was added to a tube con-
taining 50 mg of beads (PowerBead tubes, glass 0.1 mm,
Mo-bio), incubated with lysis solutions, and then vor-
texed using the TissueLyser LT (Qiagen) for 3 min at 45
oscillations per second. The tube was then centrifuged
for 1 min at 9000 rcf. This procedure yielded DNA for
109 colonies (Supplementary Figs. 15 and 16), sequenced
as described below. Matched water samples were col-
lected at the same place and time as colonies, spanning
16 time points (Supplementary Table 15). Water
temperature and pH were also measured at each sam-
pling point.
For metagenomic sequencing, a total of 72 lake water

samples were collected over 10 years (2006 to 2018) dur-
ing the ice-free season (April to November) from the
photic zone of Missisquoi Bay at two different sites
(littoral and pelagic) of Lake Champlain, Quebec,
Canada (45° 02’ 45” N, 73° 07’ 58” W). Lake water was
filtered, and DNA was extracted using a Zymo Kit
(Zymo, D4023) as described previously [61]. The filtra-
tion was performed the same day of the sampling, using
between 50 and 250 mL of water samples, depending on
the amount of biomass, onto 0.2 μm hydrophilic polye-
thersulfone membranes (Millipore, Etobicoke, Ontario,
Canada). Samples were obtained at relatively low fre-
quency between 2006 and 2016, and at higher frequency
(approximately weekly or more often) during bloom pe-
riods between 2015 and 2016 (Supplementary Table 3).
Note that no colonies were isolated from 2006 to 2016.
Water samples corresponding to six sampling points
from Minas Gerais Brazil were also collected for DNA
extraction and metagenome sequencing. Environmental
variables were measured for each sample. Sample water
were collected (50 mL) for measuring nutrients (DN,
DP, TP and TN), except for the samples from Brazil
(Supplementary Table 3) [61].

DNA sequencing of single colonies and metagenomes
DNA extracted from Microcystis single colonies was se-
quenced using the Illumina HiSeq 4000 platform with 150
bp paired-end reads. The sequencing libraries (with aver-
age fragment size 360 bp) were prepared using the NEB
(New England Biolabs®) low input protocol. The DNA ex-
tracted from filtered bulk lake water for each sampling
point (2017 and 2018) from Canada and Brazil were se-
quenced using Illumina NovaSeq 6000 S4 platform with
150 bp paired-end reads. The earlier lake water samples
from a previous long-term experiment in Lake Champlain
(2006 to 2016) were sequenced using Illumina Hiseq2500
with 125 paired-end reads (Supplementary Table 3). The

quality score and number of reads per sequenced sample
are reported in Supplementary Table 16. Quality scores
were calculated using the program fastp (v0.20.1) [62].

Metagenome assembly and genome binning
For each individual Microcystis colony, the sequencing
reads were filtered and trimmed using Trimmomatic
(v0.36) [63] then assembled with MEGA-HIT (v1.1.1)
[64], producing contigs belonging to both Microcystis
and AB (see Supplementary Fig. 17 showing the dis-
tribution size of the contigs). We performed manual
binning on each individual colony assembly separately
using Anvi’o (v3.5) with default parameters, only
including contigs larger than 2500 bp, as described
previously [31, 65]. This contig size cutoff of 2500 bp
improves binning based on k-mer frequencies, and is
standard for metagenomic analyses of microbial com-
munities from diverse environments [66–68]. Briefly,
for each sample, we generated a contig database, and
the reads were mapped back to contigs using bowtie2
(v2.3.4.3) [69]. The contigs were interactively manu-
ally curated in Anvi’o based on the read coverage
from the mapping, tetranucleotide frequency, GC con-
tent and taxonomic annotations obtained from centri-
fuge (v1.0.3) [70], and using the program ‘anvi-profile’
as implemented in Anvi’o [65]. The quality of each
resulting MAG was estimated using Anvi’o and based
on a collection of 139 bacterial single-copy core genes
[33, 65]. From the 109 colonies, 500 MAGs were
identified (defined as having completeness ≥ 70% and
contamination ≤ 10% as in Lee et al. [71]) (Supple-
mentary Tables 1 and 5). We used the program dRep
(v3.2.0) with default parameters to investigate the
presence of redundant MAGs in each colony meta-
genomes [72]. However, within an individual colony,
we found no redundant MAGs. MAGs were anno-
tated using Prokka (v1.14.0) [73]. Pairwise average
nucleotide identity (ANI) values between genomes
were estimated using pyani (v0.2.8) [74, 75]. MAGs
were classified into species-level taxonomic groups at
a threshold of ANI ≥ 96% (Supplementary Tables 5
and 17). The MAGs were assigned species and genus
names using BLASTp of the recA and RpoB proteins
against the NCBI database, and refined using the
Genome Taxonomy Database Toolkit (GTDB-Tk)
(v1.0.2), which uses a set 120 universal bacterial gene
markers [76]. To assess the presence of eukaryotic
microbes, the contigs in the uncomplete or MAGs
with completeness < 70% and contamination > 10%
were classified taxonomically using the program CAT
(v5.2.3) (Supplementary Table 18) [77].
For each taxonomic group, we selected at least two

representative sequence types (for a total of 138
genomes), from which we inferred a maximum
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likelihood phylogenetic tree based on the core gene
alignment using RAxML (v8.2.11) [78]. The core
genome was estimated using panX (v1.5.1). Core
genes were defined as those genes present in at least
the 80% of sampled genomes (e value < 0.005) [79].
Each of the resulting 62 core genes was alignment
using muscle (v3.8.3) [80]. Filter.seqs from mothur
(v1.41.3) was used to remove the gaps per each gene
alignment [81]. Individual alignments were
concatenated into a single alignment (16,400-bp
long) input into RAxML. For the phylogenetic recon-
struction, we used a GTR-GAMMA substitution
model with 100 bootstraps, and best maximum like-
lihood tree inference.

Assessment of the Microcystis genotype diversity in
freshwater colonies
A core genome was also estimated for the 109 Micro-
cystis genomes and 122 NCBI references genomes
(Supplementary Table 1 and 19). The resulting align-
ment of the 115 core genes was degapped (68,145-bp
long) and used to infer an ML phylogeny using
RAxML as we described previously. Two outgroups
(Anabaena variabilis ATCC29413 and Synechocystis
sp. PCC6803) were included. Based on ANI values
greater or equal to 99%, the monophyletic clades of
Microcystis genomes were classified into 18 genotypes
(Supplementary Table 2). A phylogenic tree without
the outgroups is also included in Supplementary Fig.
18. Monophyletic clades and tree branches remained
similar.

Assessment of the Microcystis genomic (within-colonies)
variation versus intra-genotype variation (between
colonies)
We first confirmed that Microcystis is haploid, as poly-
ploidy has been observed among other cyanobacteria [82].
We estimated ploidy variation in Microcystis colonies
using k-mer frequencies and raw sequences. We first
mapped the reads of each colony (containing reads from
both Microcystis and its microbiome) to a Microcystis ref-
erence genome using BBmap with minimum nucleotide
identity of 99% [83]. Mapped reads were extracted using
Picard (http://broadinstitute.github.io/picard/) and ana-
lyzed using Genomescope and Smudgeplot (https://github.
com/tbenavi1/genomescope2.0; https://github.com/
KamilSJaron/ smudgeplot). All colonies appeared to be
haploid, with a low rate of heterozygosity that could be
due to paralogs.
To determine whether Microcystis colonies were

likely formed by clonal cell division or cell aggregation,
we called SNVs within colonies and between colonies
of the same genotype. As a point of comparison, we
also called SNVs that occurred over a period of

approximately 6 years in nineteen laboratory cultures
of Microcystis with genome sequences reported previ-
ously [31]. We used snippy (v4.4.0) (https://github.com/
tseemann/snippy) with default parameters to call SNVs.
Genotypes represented by only one sampled colony
were excluded from the analysis (G02, G04, G09, G11,
G12, G16 and G18).
SNV calling within and between colonies was executed

by mapping reads against reference genomes. This was
done independently for each genotype. We selected at
least four reference genomes per genotype when pos-
sible. SNVs within colonies were detected by mapping
the reads of the references to their respective genome
assemblies. SNVs between colonies were detected by
mapping the reads of different colonies of the same
genotype to the genome assemblies of the references.
We ignored positions where the reference nucleotide
was poorly supported (threshold percentage for the
minor variant < 14.4%; mean = 1.1%) by the reads in
both the within- and between-colony read mapping ana-
lyses because these were considered to be assembly
errors.

Identifying associated bacterial genomes in colonies
Non-Microcystis MAGs from each colony were clas-
sified in 72 species based on taxonomical analysis
and ANI values ≥ 96%. Because individual assemblies
could affect MAG completeness, we created a cus-
tom database of the 59 AB genomes from Quebec,
and another database for the 18 species from Brazil.
Using MIDAS (v1.3.0) [39], we mapped the reads
from each colony (downsampled to 8,000,000 reads
per colony) against the custom databases to estimate
the relative abundance and coverage for each of the
72 AB species. These custom databases contain one
representative genome per species, chosen as the
highest quality MAG within that species. We defined
a species to be present when it had a genome-wide
average depth of coverage of 1× or more. This
allowed us to generate a matrix of AB presence or
absence across colonies. To take into account both
assembled and unassembled taxa, the microbiome
composition was assessed using two additional ap-
proaches: (1) by mapping the reads against the
complete MIDAS reference genome database con-
taining 5952 species and (2) by using the read
counts and taxonomical annotation based on the
program Kaiju (v1.8) with default parameters [84].

Microcystis’ microbiome composition variation according
to environmental variables and host genotype
The following statistical analyses were conducted in R
(v3.6.2). We first performed a distance-based RDA
using the capscale function from the R vegan package
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(v2.5.61, [85]) with the square root of the Bray–Curtis
distance from a coverage table describing the
composition of the Microcystis microbiome for each
genotype. The variables included genotype informa-
tion, presence/absence of mcy genes, temperature, pH,
site (Canada or Brazil) and the temporal variables
years and months. In a second approach, we calculated
the beta diversity using the same dissimilarity distance
and tested the differences in Microcystis microbiome
structure variation using permutational multivariate ana-
lysis of variance (PERMANOVA, [86]) with the adonis()
function from the R vegan package. As PERMANOVA
tests can be sensitive to dispersion, we have also tested for
dispersion in the data by performing an analysis of multi-
variate homogeneity (PERMDISP, [87]) with the permuted
betadisper() function of the vegan package).
We quantified phylosymbiosis by comparing the

phylogenetic distance matrix of Microcystis genotypes
and the microbiome composition distance matrix using
a Mantel test (999 permutations, Spearman correlation)
and the protest() R function to test the non-randomness
between these two matrices (999 permutations) (R vegan
package). The pairwise phylogenetic distance matrix was
estimated using the RAxML tree of the Microcystis core
genome and the cophenetic.phylo function of the ape R
package (v5.3) [88]. The results based on the extended
MIDAS reference database and Kaiju taxonomic assign-
ments are described in the supplementary material (Sup-
plementary Table 8).

Microcystis genotypic diversity from metagenomic
samples
Microcystis genomes from Quebec and Brazil were clas-
sified into 14 and four genotypes, respectively. This
genotype classification was based on pairwise genome
similarities greater or equal to 99%. Using the Microcys-
tis genotypes and the software MIDAS (v1.3.0) [39], we
built two custom gene marker databases for the Micro-
cystis genotypes (15 universal single-copy gene families),
one for genotypes from Quebec and the other for geno-
types from Brazil.
Using MIDAS and the custom databases, we esti-

mated the relative abundances, the read counts and
the read coverage of the Microcystis genotypes in 72
shotgun metagenomes from Lake Champlain, Quebec
(62 metagenomes from a long-term experiment (2006
to 2016, excluding 2007 and 2014), plus 10 metagen-
omes from 2017 and 2018). Due the low number of
Microcystis genotypes and metagenomes (6 sampling
points for Brazil during 2018) from Brazil, these sam-
ples were not formally analyzed. Metagenomic reads
with similarity greater or equal to 99% were mapped
against the MIDAS database of Microcystis genotypes.
We used 14,000,000 reads per metagenome after

downsampling to the lowest-coverage metagenome
(Supplementary Table 3). The metagenome sequen-
cing from Brazil were mapped against a separate
MIDAS database of the four Microcystis genotypes
from Brazil (Supplementary Fig. 19).
To test if the 14 Microcystis genotypes identified in

the colony genomes are representative of the diversity
present in the Lake Champlain metagenomes, we first
mapped the downsampled metagenomic reads to a
custom database including a single reference Micro-
cystis genome (M083S1) (alignment identity cutoff =
96%), and also mapped the reads to the database in-
cluding all the 14 genotypes (alignment identity cutoff
= 99%). By using a cutoff value equal to 96%, we ex-
pect to recover most sequences from the Microcystis
genus, regardless of which genotype the reads come
from. We recovered 102,608 reads at 99% identity
and 109,729 at 96%, showing that the 14 genotypes
(defined at 99% identity) account for 93.5% of the
Microcystis reads in the metagenome samples. Add-
itionally, we observed that the total coverage using all
the Microcystis genotypes (alignment identity cutoff =
99%) and the total coverage using a single Microcystis
genome as a reference (alignment identity cutoff =
96%) are nearly perfectly correlated (correlation coef-
ficient r = 1, P < 2.2e–16) (Spearman correlation)
(Supplementary Fig. 20).

Microcystis genotypic diversity variation according to
environmental variables
To determine the factors that explain the variation in
Microcystis community composition, we used a dataset
of 42 metagenomes and 14 genotypes from Lake
Champlain. Metagenomes with incomplete metadata
were excluded. We focused on Lake Champlain as we
observed a greater diversity of Microcystis genotypes
compared to Brazil, including both microcystin-
producing and non-producing genotypes. Statistical
analyses were performed in R (v3.6.2). We first used
dbRDA with the square root of the Bray–Curtis dis-
tance matrix to investigate Microcystis–environment
relationships [89, 90] (capscale function from vegan R
package, R vegan package). Variables were pre-
selected using the ordiR2step R function (R vegan
package) (see Supplementary Methods). The environ-
mental matrix variables included: total phosphorus in
micrograms per litre (μg/L) (TP), total nitrogen in μg/
L (TN), soluble reactive phosphorus in μg/L (DP),
dissolved nitrogen in μg/L (DN), 1-week-cumulative
precipitation in millimetres (mm), 1-week-average air
temperature in Celsius, temporal variables (Years,
Months and Season) and sampling sites within Lake
Champlain (Pelagic or Littoral) (Supplementary Table
3) [61]. To determine the significance of constraints,
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we used the anova.cca() function from the R vegan
package.
We also calculated the beta diversity between groups

of samples using the Phyloseq R package (v1.30.0) [91]
and the square root of Bray–Curtis distance. We used
nonmetric multi-dimensional scaling (NMDS, from the
phyloseq package that incorporates the metaMDS()
function from the R vegan [85, 92, 93] package to
ordinate the data. Differences in community structure
between groups were tested using permutational multi-
variate analysis of variance (PERMANOVA, [86]) with
the adonis() function. As described previously for similar
analysis, we also tested for differences in dispersion
between groups (genotypes) with the permuted betadis-
per() function.

Correlations between and Microcystis and its microbiome
in freshwater metagenomes from Canada
Using the 59 species identified in the Microcystis micro-
biome from Canada and the software MIDAS, we built a
custom gene marker database of 15 universal single-copy
gene families. This database also included a reference gen-
ome from Microcystis (M083S1) and two Dolichospermum
reference genomes (D. circinale AWQC131C and
AWQC310F). Using MIDAS, we estimated the relative
abundances, reads count, and the read coverage of each
AB species in 72 shotgun metagenomes from Quebec,
Canada. Reads were mapped against the custom database
including the AB species. A cuff-off value of nucleotide
identity greater or equal to 96% was used for the read
mapping. By merging the values (coverage and read
counts) for species within the same genus, obtained cover-
age and read counts at the genus level, for 32 genera of
AB. We used the Spearman correlation to investigate pat-
terns of co-occurrence between Microcystis, Dolichosper-
mum and the AB species and genera in environmental
metagenomes. First, the read counts in the matrices con-
taining the genera and species were used to estimate the
Spearman correlation values (r) and P values between pair
of species or genera by using the rcorr() function of the
Hmisc (v4.3.0) R package [94]. We also calculated Spear-
man correlations on the coverage values, yielding similar
results. P values were corrected to control the false discov-
ery rate using the qvalue() function from the qvalue
(v2.18.0) R package. We also estimated the correlation be-
tween Microcystis and the AB using the software FastSpar
(v0.0.10) [95]. This method is a faster implementation of
the Sparse Correlation for Compositional Data algorithm
(SparCC) [96]. The significance of the test was evaluated
using 100 permutations and a bootstrap of 1000. In gen-
eral, the most prevalent AB taxa in Microcystis colonies
had significant correlation (P < 0.05) with Microcystis
using both Spearman and SparCC.

Co-phylogeny between Microcystis and members of the
microbiome
The nine most prevalent AB genera were selected for
co-phylogeny analysis, which would be underpowered to
detect phylogenetic associations with low-prevalence
bacteria (i.e., small phylogenies). Core genomes were
generated using panX and core alignments were
computed as described above, for each AB genus.
Phylogenic core genome trees were built individually
for each genus using RAxML under the GTR-
GAMMA substitution model [78]. Support values of
the tree nodes were estimated using 100 bootstrap
replicates. Patristic distances (pairwise distances
between pairs of tips on a tree) for the Microcystis
and AB phylogenies were estimated using the cophenetic.-
phylo() function from the ape R-package [88]. The Micro-
cystis core genome tree and the tree of the AB were
compared using Parafit test (parafit() function of the ape R
package) (see Supplementary Methods) [88, 97]. Co-
phylogeny trees were built using the function cophylo()
from the phytools R package [98].

Recent HGT between Microcystis and associated bacteria
To infer recent HGT events between Microcystis and
AB, we first inferred the pangenomes for each combin-
ation of one AB and Microcystis, and repeated this for
the 72 AB species. Core and accessory genes with a
minimum percentage identity for blastp equal to 99%
were identified. We retained those clusters of genes
present in at least four genomes, and present in both AB
and Microcystis. The remaining putatively horizontal
transferred genes were annotated in 23 COG (clusters of
orthologous groups) categories using eggNOG-mapper
(v2.0.1) [99]. Using the package STAMP (v2.1.3) and a
chi-squared test, we estimated if there were statistical
differences in the COG categories between Microcystis
core genes and the putative horizontally transferred
genes [100]. P values were corrected using the
Benjamini–Hochberg (controlling the false discovery
rate) method. We also estimated HGT events between
Microcystis and associated species using a second
method, Metachip (v1.8.2) (default parameters). The
Metachip approach uses both the best match approach
(blastn) and a phylogenetic approach to infer HGT (rec-
onciliation between a gene tree and its species tree) [41].

Gene functional annotation
The Microcystis and AB genomes were functionally anno-
tated using enrichM (v0.5.0) (https://github.com/
geronimp/enrichM) [101]. A PCA based on the presence/
absence of KEGG Orthologous genes (KO) in Microcystis
and AB genera was generated using the option ‘enrich-
ment’ in enrichM. Genome groups (Microcystis vs each
AB genus) were compared using the same option. KEGG
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modules differentially abundant in Microcystis or the AB
genus were filtered based on a completeness greater or
equal to 70%. Additionally, we used the program gapseq
(v1.1) with default parameters and the MetaCyc database
[43, 45] to validate the presence the metabolic pathways
involved in the biosynthesis of biotin, cobalamin,
thiamine, carotenoid and nitrogen fixation.
Microcystis and AB genomes (109 Microcystis and 391

associated genomes) were annotated using Roary (v3.13.0)
[102]. The resulting genomes in GenBank format were used
to predict the biosynthetic gene clusters (BGCs) using
default parameters (--taxon bacteria --cb-general --cb-
knownclusters --cb-subclusters --asf --pfam2go --smcog-
trees --genefinding-tool prodigal-m) in antiSMASH (v5.1.2)
[42, 103]. The BIG-SCAPE package (v1.0.1) with default
parameters analyzed the ANTISMASH BGCs and based on
a similarity network classified them into Gene Cluster
Families (GCFs) [104]. BGCs were classified in BiG-SCAPE
classes (e.g., polyketide synthases nonribosomal peptide
synthetases (NRPSs), post-translationally modified peptides
(RiPPs) and terpenes. A total of 2395 BGCs were identified
in 415 genomes.

Metabolic pathway reconstruction
We reconstructed genome scale metabolic models from
the genomic sequences of one Microcystis genotype
(G01) and its microbiome composed of Roseomonas,
Rhodobacter, Methylobacterium, Phenylobacterium and
Pseudanabaena, which are among the most prevalent
AB for Microcystis as a whole. We used MAG annota-
tions from prokka (v1.14.0) [73] as input for CarveMe
(v1.5.0) [105] to generate the models, with default pa-
rameters. We next assessed the metabolic interactions
using SMETANA (v1.1.0) [46] excluding inorganic com-
pounds which we assumed are generally present in the
water system, and using the –molweight parameter to
minimize the total mass of the compounds in the media,
which is less prone to degenerate solutions. SMETANA
is a flux balance analysis-based simulation tool that first
estimates the minimal amount of nutrients required for
the community to survive. A “detailed” analysis estimates
the interspecies dependencies under a minimal con-
strained nutritional environment, by calculating a species
coupling score (SCS), metabolite uptake score (MUS),
metabolite production score (MTS) and a SMETANA
score (a combination of the three other scores). A sec-
ond “global” analysis characterizes the general interac-
tions of all members in noninteracting and interacting
communities by calculating the metabolic resource over-
lap (MRO) and metabolic interaction potential (MIP)
[46]. As a control, we analyzed the interactions with taxa
(i.e., Phycisphaerales, Burkholderia and Acidobacteria-
ceae) that were not co-occurrent with Microcystis in
metagenomes based on SparCC and Spearman

correlation results. The output was empty meaning that
there were no cross-feeding interactions between Micro-
cystis and these taxa. When at least one species depends
on the others to survive, cross-feeding interactions are
listed in the SMETANA detailed output file.
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