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Abstract

Background: Since the prolonged use of insecticidal proteins has led to toxin resistance, it is important to search
for novel insecticidal protein genes (IPGs) that are effective in controlling resistant insect populations. IPGs are
usually encoded in the genomes of entomopathogenic bacteria, especially in large plasmids in strains of the
ubiquitous soil bacteria, Bacillus thuringiensis (Bt). Since there are often multiple similar IPGs encoded by such
plasmids, their assemblies are typically fragmented and many IPGs are scattered through multiple contigs. As a
result, existing gene prediction tools (that analyze individual contigs) typically predict partial rather than complete
IPGs, making it difficult to conduct downstream IPG engineering efforts in agricultural genomics.

Methods: Although it is difficult to assemble IPGs in a single contig, the structure of the genome assembly graph
often provides clues on how to combine multiple contigs into segments encoding a single IPG.

Results: We describe ORFograph, a pipeline for predicting IPGs in assembly graphs, benchmark it on
(meta)genomic datasets, and discover nearly a hundred novel IPGs. This work shows that graph-aware gene
prediction tools enable the discovery of greater diversity of IPGs from (meta)genomes.

Conclusions: We demonstrated that analysis of the assembly graphs reveals novel candidate IPGs. ORFograph
identified both already known genes “hidden” in assembly graphs and potential novel IPGs that evaded existing
tools for IPG identification. As ORFograph is fast, one could imagine a pipeline that processes many (meta)genomic
assembly graphs to identify even more novel IPGs for phenotypic testing than would previously be inaccessible by
traditional gene-finding methods. While here we demonstrated the results of ORFograph only for IPGs, the
proposed approach can be generalized to any class of genes.
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Introduction
Biopesticides are important components of pest manage-
ment programs that have been successful as an alterna-
tive to conventional chemical pesticides. These
compounds, which are developed from the plant, animal,
and bacterial proteins, do not leave harmful residues, are
non-toxic to humans and the environment, and are
more target-specific than conventional pesticides [51].
These advantages led to a worldwide proliferation of
biopesticides and resulted in a multi-billion-dollar bio-
pesticide market.
Insecticidal proteins, representing an important class

of biopesticides, have been widely used in agriculture.
Entomopathogenic bacteria, especially strains of the spe-
cies Bacillus thuringiensis (Bt), produce crystal (Cry) and
cytolytic (Cyt) insecticidal proteins and secreted vegeta-
tive insecticidal proteins (VIPs) that specifically target
various insects, including insects from the orders Lepi-
doptera, Coleoptera, Hemiptera, and Diptera [51]. In-
secticidal proteins are used to control pests of crop
plants by mechanical methods, such as spraying to dis-
perse microbial formulations containing various bacterial
strains onto plant surfaces, and by using genetic trans-
formation techniques to produce transgenic plants ex-
pressing insecticidal proteins. Indeed, the development
of insecticidal transgenic crops has been transformative
for agriculture. In 2017, 101 million hectares of cropland
were devoted to their cultivation across the world and
the adoption of specific transgenic crops has been asso-
ciated with the reduction or elimination of broad-
spectrum synthetic chemical insecticides in those envi-
ronments [56].
Although insecticidal proteins from B. thuringiensis

have become an important biopesticide against a wide
range of insects, their prolonged use leads to rapidly de-
veloping toxin resistance [24]. Thus, it is important to
search for novel insecticidal proteins that are effective in
controlling resistant insect populations. Although the
number of known Cry-encoding genes grew from just 14
30 years ago [30] to over 700 today, there is a constant
need to identify new insecticidal protein genes (IPGs) to
overcome insecticide resistance. Since B. thuringiensis is
indigenous to many environments (its strains have been
isolated worldwide from soil, insects, and leaves), gen-
omic and metagenomic samples containing B. thurin-
giensis or other entomopathogenic bacterial strains
provide many opportunities for finding novel IPGs [59].
However, the search for novel IPGs faces computational
challenges that we describe below.
Initially, the Cry-encoding genes were searched for by

PCR-based techniques using primers from their highly
conserved regions [6, 10]. The basic PCR step was
followed by variations such as E-PCR [35], PCR-RFLP
[29], and PCR-SSCP [39]. Historically, these methods,

which are all limited by the success/failure of the primer
selection had only been applied to the discovery of the
three-domain Cry genes [48].
Next-generation sequencing opened new possibilities

for IPG discovery as novel Cry and Cyt genes in a newly
sequenced genome can be found by similarity search
against a database of known genes [52]. In particular,
the similarity search based on Hidden Markov Models
(HMMs) allows one to reveal more diverged Cry genes
than those found using PCR-based methods. However,
since Cry genes are rather variable, their HMMs typic-
ally represent only the main sequence domains rather
than complete Cry genes. Ye et al. [67] and Zheng et al.
[70] developed the BtToxin_scanner and BtToxin_Dig-
ger tools that use machine learning techniques to make
the search for Cry genes more sensitive. BtToxin_scan-
ner was applied for Cry gene identification in various
studies [13, 19, 57].
However, all existing methods for IPG discovery are

limited in their ability to reconstruct complete genes
when their fragments scattered over multiple contigs.
Since popular general-purpose gene prediction tools
GeneMark [7], Prodigal [32], and Glimmer [20], as well
as their metagenomic versions metaGeneMark [72],
metaProdigal [33], and metaGlimmer [37], analyze indi-
vidual contigs, they typically predict partial rather than
complete IPGs, a bottleneck in the downstream IPG en-
gineering efforts in agricultural genomics.
Development of a candidate IPG into a commercially

viable toxin is a complex and time-consuming process
that includes (i) prioritization of novel candidate IPGs
for follow-up synthesis, (ii) synthesis and expression of
selected IPGs for follow-up novel toxin production, and
(iii) testing these novel toxins against various insects.
ORFograph contributes to the first step of this pipeline
by providing additional candidate IPGs whose parts are
scattered over multiple contigs and thus were not avail-
able for a follow-up analysis in previous studies. This
new stream of novel IPGs is important not only for agri-
cultural genomics but also for biomedicine since some
Cry proteins, such as parasporins, preferentially kill can-
cer cells [50].
ORFograph searches for novel IPGs in the assembly

graphs (rather than individual contigs) that are generated
by modern genome assemblers such as SPAdes [5] and
metaSPAdes [49]. Given a read-set, SPAdes and metaS-
PAdes first construct the de Bruijn graph that consists
of nodes (k-mers that appear frequently in reads) and
edges connecting these nodes that are labeled by sub-
strings from reads [17]. Since each error in a read cre-
ates a bubble in the de Bruijn graph (making this graph
very complex), SPAdes and metaSPAdes error-correct
reads and transform the de Bruijn graph into a simpler
assembly graph. In the case of an “ideal” assembly graph,
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a genome is spelled by a path that visits all edges of the
assembly graph.
Given a read-set, an assembly graph consists of nodes

(k-mers that appear frequently in reads) and edges con-
necting these nodes that are labeled by substrings from
the genome [17]. In the case of an “ideal” assembly
graph, a genome is spelled by a path that visits all edges
of the assembly graph.
Figure 1 presents a small subgraph of the assembly

graph of the SRR6238356 dataset constructed by
SPAdes. The entire assembly graph consists of 1732 ver-
tices and 1288 edges (654 of them are long edges with
lengths exceeding 1000 bp). The green path in Fig. 1
represents one of three potential Cry1-like genes in this
subgraph that has a length 3378 bp and traverses 21
edges. The existing gene prediction tools run on linear
contigs and are not designed to predict genes on graphs.
Therefore, if an IPG is scattered over multiple contigs,
these tools can at best predict some fragments of this
gene (losing information about the order of these frag-
ments) rather than a complete gene, thus impairing any
further IPG engineering efforts.
Figure 1 illustrates the importance of “threading” a

known IPG (or an IPG domain represented by an
HMM) through the assembly graph to discover novel
IPGs. This sequence-to-graph alignment problem has
been addressed for gene prediction in splicing graphs
[25], for protein alignments in a graph describing all po-
tential secondary structure predictions [68], and for gene
prediction in metagenomic assembly graphs [, 31, 64, 66,
71]. However, since the existing sequence-to-graph
alignment approaches lack the ability to align HMMs to
metagenomic assembly graphs and do not take into ac-
count specific features of IPGs, they are not well suited
for IPG discovery.
Here, we describe the ORFograph algorithm (the

source code is publicly available at https://github.com/
ablab/orf-search) and apply it to all publicly available
read-sets representing the Bacillus genus as well as to an

underexplored metagenomic datasets. ORFograph uses
the SPAligner tool for graph-based sequence alignment
[21] and the PathRacer tool for graph-based HMM
alignment [62] to find novel IPGs (scattered over mul-
tiple contigs) that evaded detection by previous ap-
proaches. ORFograph identified nearly a hundred novel
IPGs that evaded detection in all previous studies. Our
work demonstrates that traditional “single contig” gene-
finding approaches (both ab initio and similarity-based
[46]) should be complemented by graph-based gene-
prediction algorithms that use databases of proteins and
protein domain models as additional evidence for find-
ing genes in (meta)genomes. These graph-based algo-
rithms can contribute to unmasking gene content and
diversity found in (meta)genomes, especially for large
and variable gene families. Although ORFograph is cur-
rently limited to insecticide toxins, our next goal is to
extend it into a general tool for identifying arbitrary pro-
tein families in assembly graphs such as glycoside hydro-
lases and CAS proteins that are often scattered over
multiple contigs.

Results
ORFograph pipeline
After constructing the assembly graph, ORFograph
searches for IPGs encoded in this graph. Below we de-
scribe the steps of the ORFograph pipeline (Fig. 2):

1. Aligning known insecticide proteins/HMMs to the
assembly graph. ORFograph uses SPAligner [21] to
align known insecticide proteins to the assembly
graph and retains all alignments with a length
exceeding 80% of the protein length. It also uses
PathRacer [62] to align insecticide HMMs to the
assembly graph and retains all alignments with e
value below 10−9 and length exceeding 90% of the
HMM length. These alignments reveal anchor-
paths (partial ORFs) that have to be further
extended into complete ORFs. An anchor-path ei-
ther traverses a substring of an edge, or an entire
edge, or multiple edges in the assembly graph.

2. Start and stop codon search. For each anchor-path,
ORFograph finds all putative start and stop codons
in the assembly graph by exploring all paths in this
graph as described in the “Methods” section.

3. Generation of complete coding sequences (CDSs).
Given a graph, we refer to the set of all paths
between its vertices v and w (found by bounded
exhaustive search limited to generating at most
1000 paths) as Paths(v,w). Given an anchor-path
AnchorPath between vertices start(AnchorPath) and
end(AnchorPath), a start codon ending at vertex
start-codon and a stop-codon starting at vertex
stop_codon, ORFograph generates path-sets

Fig. 1 A subgraph of the SPAdes assembly graph of the SRR6238356
dataset reveals a large number of potential IPGs. Green edges
represent a path that spells one out of ~3000 potential IPGs in this
subgraph. All potential IPGs arising from this subgraph form four
clusters and represent Cry1-like genes. The SPAdes assembly graph
was constructed in the iterative mode with the default k-mer sizes
(21, 33, 55). The subgraph was visualized using Bandage [65]
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Paths(start-codon,start(AnchorPath)) and Paths(en-
d(AnchorPath),stop_codon). For each pair of paths
PathFromStart and PathToStop from the con-
structed path-sets, it further constructs the concat-
enate formed by the start codon, PathFromStart,
AnchorPath, PathToStop, and stop codon. ORFo-
graph considers only the concatenated paths with
length below max_restorable_length threshold (de-
fault value 3000). This operation is repeated for
each anchor-path and each pair of start/stop co-
dons, followed by filtering of the concatenated paths
as described in “Methods” section. Finally, each
resulting path (in nucleotides) is translated into the
corresponding amino acid sequence and duplicates
are filtered out.

4. IPG clustering and selecting representative IPGs. In
the case of complex assembly graphs, ORFograph
may output dozens (and even hundreds) of very
similar IPGs, thus complicating further analysis.
ORFograph thus clusters the resulting potential
IPGs and selects a representative IPG in each
cluster (see “Methods” section). Since this paper
focuses on difficult-to-find IPGs scattered over mul-
tiple contigs, easy-to-identify sequences that are
found in a single contig and sequences that

represent known genes can be filtered out from the
main output.

Datasets
We benchmarked ORFograph using the following
(meta)genomic datasets publicly available at https://
figshare.com/s/f20604a5333bbe4514c9:

Bti1 and Bti2 datasets
These two Illumina read-sets (accession numbers
SRR8474067 and SRR8467560) correspond to Bti strains
ATCC35646 and AM65-52 that are further referred to
as Bti1 and Bti2, respectively [8]. ATCC35646 is a type
strain of Bti often designated as ATCC35646. AM65-52
is the main component of the Vectobac®, a water-
dispersible powder formulation of Bti for control of
mosquito larvae. Both datasets were assembled with
SPAdes (Table 1).
Statistics were generated with QUAST [27] and Meta-

QUAST [44] tools. The number of long edges (defined
as edges longer than 1 kb) reflects the complexity of the
assembly graph. The reads were trimmed and filtered
using Trimmomatic-0.38 (with parameters: ILLUMINA-
CLIP:adapters/TruSeq3-PE.fa:2:30:10 LEADING:3 TRAI
LING:3 SLIDINGWINDOW:4:15 MINLEN:70) and

Contigs
paths

HMMs ProteinsAssembly graph

PathRacer
(HMM aligner)

SPAligner
(Protein aligner)

HMM-graph 
alignments

Protein-graph 
alignments

CDS search

CDS clustering 
and filtering

Start codon 
distance 
estimator

IPGs

Fig. 2 The ORFograph pipeline

Table 1 Read and assembly statistics for Bti1, Bti2, and NYCS datasets

Dataset #reads (millions) #long edges in the assembly graph Total assembly length (Mb) N50 (kb)

Bti1 47 1268 6.4 98

Bti2 17 490 6.5 157

NYCS 5 2968 12.5 133
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assembled with SPAdes-3.12 (Bti1 and Bti2) and
metaSPAdes-3.12 (NYCS) with k-mer size 55.

All isolate IPG-containing bacteria in the NCBI database
(BALL dataset)
To extract all Bacillus datasets from the NCBI database,
we used the search query (((Bacillus[Organism]) AND
Illumina) AND WGS[Strategy]) AND Paired[Layout])
that resulted in 2749 datasets. We used the Diamond
tool [9] to align reads from each of the extracted data-
sets to known IPGs and detect datasets that contain Cry,
Cyt, or Vip toxin genes. We say that an IPG is covered
by a read-set if at least 50% of the IPG length is covered
by reads alignments with identity exceeding 80%. A
read-set was considered for further analysis if its reads
covered at least one known IPG, resulting in 342 data-
sets. Afterward, we assembled each selected dataset
using SPAdes and analyzed the resulting assemblies with
ORFograph. ORFograph identified 72 datasets (among
all 342 BALL datasets) that have IPGs alignments scat-
tered over multiple contigs (Supplementary Table S2).
Supplementary Figure S1 presents information about as-
semblies of these 72 datasets.

New York City subway metagenome (NYCS)
Afshinenkoo et al. [1] explored the microbial diversity of
New York City subways by analyzing read-sets from
multiple metagenomic samples (that we refer to as the
NYCS dataset). Although this study did not specifically
pursue the goal of finding IPGs, Parks et al. [53] identi-
fied a metagenome-assembled genome B. thuringiensis
UBA3967 in some of these samples (Illumina read-set
with accession number SRR1748627). Gillis et al. [26]
analyzed the B. thuringiensis UBA3967 strain and no-
ticed that, although it is very similar to the Bti genomes,
it cannot be classified as a Bti strain since it lacks the Bti
plasmids. Since all known Cry-encoding genes reside on
plasmids, Gillis et al. [26] came to a conclusion that the
reported B. thuringiensis UBA3967 assembly does not
encode the entire set of Bti Cry toxins. We used ORFo-
graph to search for potentially missed Cry and Cyt
toxins in the metagenomic dataset from which the B.
thuringiensis UBA3967 sequence was inferred.

Simulated datasets
In addition to real metagenomic datasets, we analyzed
the simulated dataset generated by the Critical Assess-
ment of Metagenome Interpretation (CAMI) consortium
[63], complemented by simulated reads from various Bt
strains that are enriched by the Cry genes. Supplemen-
tary Note “Benchmarking ORFograph on simulated data-
sets” benchmarks ORFograph on these datasets.

Analyzing IPGs predicted by ORFograph
We used Bti1, Bti2, BALL, and NYCS datasets to analyze
ORFograph predictions. For each dataset, we launched
SPAdes (Bti1, Bti2, and BALL datasets) or metaSPAdes
(NYCS dataset) to construct the assembly graph and fur-
ther launched the ORFograph pipeline applying SPA-
ligner (using all known Cry, Cyt, and Vip toxins) and
PathRacer (using all known HMMs derived from these
toxins). Supplementary Table S1 provides information
about ORFograph runtime and memory footprint.
Shikov et al. [61] recently developed the CryProcessor

pipeline for IPG discovery by applying the PathRacer
tool [62] to an assembly graph. However, since CryPro-
cessor only searches for the three-domain Cry toxins, it
cannot be used as a general pipeline for IPGs discovery
from assembly graphs. It cannot be benchmarked against
ORFograph since it only takes into account the se-
quences found by PathRacer rather than the paths that
contain these sequences.

ORFograph results for Bti1 and Bti2 genomes
Previous studies identified two genes encoding Cry pro-
teins in Bti1 and seven genes encoding Cry proteins in
Bti2 [8]. Both Bti1 and Bti2 have the pBtic100 plasmid
carrying cry60Aa and cry60Ba genes. In addition, Bti2
has the pBtoxis plasmid with five Cry genes (cry4Aa,
two cry4Ba, cry10Aa, cry11Aa) and three Cyt genes
(cyt1Aa, cyt2Ba, cyt1Ca).
ORFograph identified 17 (23) clusters of putative IPGs

in Bti1 (Bti2). We selected cluster representatives and
ran BLAST [2] against the non-redundant protein data-
base. Although most of these representatives have > 99%
identity with thioredoxins, metallophosphoesterases, and
disulfide reductases, ORFograph also identified cry60Aa
and cry60Ba toxins in Bti1 that each resided in a single
contig (and thus can be found without using ORFo-
graph). In the case of Bti2, it identified cry60Aa,
cry60Ba, five other known toxins (cry11Aa, cry10Aa,
cry4Aa, and cry4Ba), and three known Cyt proteins
(cyt1Aa, cyt2Ba, and cyt1Ca).
Proteins cry11Aa, cry10Aa, cry60Aa, and cry60Ba and

all three Cyt proteins are located within single contigs
and thus can be found without using ORFograph. How-
ever, cry4Aa and cry4Ba are scattered across several
contigs and thus would evade identification by existing
gene prediction tools (Fig. 3). Identification of these
genes by ORFograph is particularly important since they
contribute to the most valuable toxin activity against
mosquitoes [58].
Gene-paths for two copies of cry4Ba coincide since

one of them is a substring of another. The cry4Aa toxin
was found at the ORFs generation step but was filtered
out as its path conflicts with one of the contigs shown in
dark magenta in Fig. 3. This filtering is based on the

Dvorkina et al. Microbiome           (2021) 9:149 Page 5 of 14



concept of “unique edges” that are currently defined
based on a fixed threshold of 300 nt (see the “Methods”
section), pointing to the challenge of parameter selection
in ORFograph. Since the Bti2 dataset resulted in a high-
quality assembly (N50 = 157kb), increasing this thresh-
old for assemblies with high N50 (e.g., from 300 nt to
500 nt) would lead to identifying cry4Aa. In the future,
we will modify ORFosearch to make this threshold vari-
able rather than fixed.
As most Cry genes reside on plasmids, we also

checked if the specialized plasmid assembler plasmid-
SPAdes [3] can resolve the cry4 gene-paths in the Bti2
assembly graph. We launched plasmidSPAdes with de-
fault parameters on Bti2 reads and restored the same set
of Cry genes as with the standard assembly approach.
Although plasmidSPAdes succeeded in this (relatively

simple) case, our analysis revealed that it results in an
only modest contribution to ORFograph identifications
as compared to SPAdes. Supplementary Note “Bench-
marking ORFograph against plasmidSPAdes and meta-
plasmidSPAdes” analyzes plasmidSPAdes and

metaplasmidSPAdes [4] and demonstrates that these
tools have limited benefits for IPG identification.

ORFograph results for BALL datasets
ORFograph identified 72 datasets (among all 342 BALL

datasets) that have IPGs alignments scattered over mul-
tiple contigs and selected 419 novel cluster representa-
tives among them (Supplementary Table S2). One of
BALL datasets (SRR6238356) contained a very large num-
ber of potential IPGs, most of which arise from travers-
ing a highly complex area of the assembly graph (Fig. 1).
While this dataset greatly increased the number of po-
tential IPGs (increasing it from 2488 to over 5600), it
had only 40 representatives, that were included in the
follow-up analysis.
Unclassified Cry1, Cry1A, and Cry1C are the most

productive Cry families that served as seeds for identify-
ing most IPGs (≅ 3522 ORFs and ≅ 122 cluster represen-
tatives in total). CW_binding_1 and Bacillus HBL are the
most productive HMMs (Fig. 4).

Fig. 3 A subgraph of the Bti2 assembly graph aligned to the cry4Aa and two cry4Ba proteins. (Left) A subgraph of the Bti2 assembly graph with
contigs represented as edges of the same color. (Middle) The cry4Aa gene path. (Right) The cry4Ba gene paths. Since one cry4Ba gene sequence
is a substring of another, they belong to the same cluster. Subgraphs were visualized using the Bandage tool [65]
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Reliable and candidate IPGs
Since all gene prediction tools output some false posi-
tives, they face the challenge of assigning some measure
of reliability to the predicted genes [28]. For example,
short predicted genes are typically less reliable than long
predicted genes. We thus analyzed the similarities be-
tween cluster representatives and known IPGs to classify
the predicted IPGs into reliable (with similarity above a
threshold) and candidate (with similarity below a thresh-
old). We emphasize that candidate IPGs are not neces-
sarily incorrect since they may represent particularly
interesting cases of novel IPGs that have limited similar-
ity with known IPGs.
Since the Bacterial Pesticidal Protein Resource Center

[16] uses a rather stringent criteria for identifying reli-
able novel IPGs (at least 95% amino acid identity (AAI)
to an existing IPG), we decided to use a less stringent
criteria (at least 80% AAI to an existing IPG) to identify
IPGs that significantly diverged from known IPGs. We
classify a reliable IPGs as novel if it has AAI exceeding
90% (but less 100%) to a known IPG from the BLAST
database. Three hundred nine out of 419 cluster repre-
sentatives were classified as reliable and 232 of them
were classified as novel (Fig. 5 and Supplementary Table
S3).
One hundred forty-five out of 232 novel IPGs have the

length of 1000-1200 amino acids (Fig. 6). Sixty-seven
candidate IPGs with length around 750-900 bp are

similar to Vip1B, while other 20 candidate IPGs shorter
than 1000 bp are similar to Cry2, Cry4, Cry5, Cry11,
Cry13, Cry27, and Vip3 families. Most of 145 longer se-
quences have high identity with sequences from Cry1
family (Fig. 6, left) and only 8 of them are similar to
Cry4, Cry5, and Cry9 genes.
Figure 6, right illustrates that just three datasets

(SRR6238356, SRR6238345, and SRR4996216) contain
77 out of 232 reliable IPGs. The first two of these data-
sets were generated in Méric et al. [43] where the au-
thors analyzed the transfer of Cry-rich plasmids between
various species. Méric et al. [43] analyzed assemblies of
190 B. cereus group isolates, identified genes encoding
Bt toxins (Cry, Cyt, Vip, and Sip) using BtToxin_scan-
ner, and revealed that most Cry gene variants belong to
Cry1Ia2, Cry2Aa9, Cry2Ab3, and Vip3A families. Our
analysis of these datasets is consistent with the results in
Méric et al. [43] with respect to IPGs found in single
contigs. However, neither of 59 potential IPGs identified
by ORFograph was identified by BtToxin_scanner (Table
S4 in [43]). In addition, two potential IPGs identified by
BtToxin_scanner represent fragments (rather than
complete genes) of the reliable IPGs identified by
ORFograph.
SRR4996216 dataset (with 17 identified IPGs) contains

Illumina reads from B. thuringiensis serovar aizawai
strain HD-133 assembled via the A5-miseq pipeline [14]
in the original study [34]. Genome annotation was car-
ried out using Prokka [60] and the NCBI’s Prokaryotic
Genome Annotation Pipeline. The original study re-
vealed Cry1Aa, Cry1Ab, Cry1Ca, Cry1Da, Cry1Ia,
Cry2Ab, and Cry9Ea, which include many partial or ap-
parently fragmented genes. In contrast, ORFograph
found 16 full IPGs, including novel variants of Cry1Aa,
Cry1b, Cry1Ca, and Cry1Da.
All Vip1B-like IPGs were obtained from datasets gen-

erated in [41]), where authors characterized the patho-
gen genes involved in coevolutionary adaptation in an
animal host-pathogen interaction system of Caenorhab-
ditis elegans and Bacillus thuringiensis.
Our analysis of the diverse BALL datasets demonstrates

that ORFograph greatly extends the set of IPGs found in
previous studies. Although our analysis is not exactly
benchmarking (since we are identifying sequences not
previously assembled), Supplementary Figure S2 present
a comparison of putative novel IPGs to existing annota-
tions in the IPG database (the labeled nodes on the tree
show known IPGs and the others show putative novel
IPGs), illustrating the value of ORFograph as a tool for
novel IPG discovery.

ORFograph results for the NYCS dataset
ORFograph found 48 clusters of putative IPGs in the
NYCS metagenome assembly graph. We compared all

Over 3000 candidate IPGs

419 representatives 

309 reliable IPGs 

232 novel IPGs 

Representative selection

Identity to known toxins >90%

Not in the NR protein DB (BLAST)

Fig. 5 Outline of a step-by-step process for generating a shortlist of
novel IPGs in the BALL datasets
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cluster representative with the non-redundant protein
database using BLAST. Similar to the analysis of gen-
omic datasets, most cluster representatives have > 99%
identity with thioredoxins, metallophosphoesterases, and
disulfide reductases. However, ORFograph also identified
cry60Aa, cry60Ba, cry11Aa, cry10Aa, cry4Aa, and two
cry4Ba genes as well as three Cyt toxins. Similar to the
Bti2 dataset, since cry4 genes were scattered over several
contigs (Fig. 7), they would evade identification without
ORFograph. Since the NYCS dataset contains many Cry
and Cyt genes that are similar to genes identified in the
Bti2 dataset, we can conclude that UBA3967, also as-
sembled from this dataset, represents mostly the
chromosomal part of a viable Bti strain, but with only
traces of plasmids that should also be there. We thus de-
tected the corresponding toxins encoded by the plas-
mids, as it should be expected.

Previous analysis of B. thuringiensis UBA3967 strain
To analyze B. thuringiensis UBA3967 strain, Gillis et al.
[26] compared all plasmids from the strain AM65-52 to
all genome assemblies labeled as B. thuringiensis in
NCBI (Table 2 in Gillis et al. [26] lists only those rele-
vant to the Bti cluster). For the UBA3967 assembly, Gil-
lis et al. [26] found only a rather short region of
similarity with plasmids pBtic360, pBtoxis, and pBtic100.
However, to conclude that a plasmid is present in the as-
sembly, the similar region should typically cover almost
the entire plasmid. Since it was not the case, Gillis et al.
[26] concluded that no plasmid counterpart of those
from AM65-52 exists in the UBA3967 strain. The found
short similar regions may represent some insertions of
transposable elements (IS-elements) or parts of Cry
toxins existing in the assembly of the UBA3967 strain.
Since all known environmental Bti isolates contain most
of these plasmids, Gillis et al. [26] concluded that the
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Fig. 6 Statistics of 232 novel putative IPGs. (Left) The length distribution of 232 (164 Cry and 68 Vip) novel putative IPGs (in amino acids). (Right)
The number of the novel putative IPGs generated per dataset. Only 40 datasets that contain 232 IPGs are shown

Fig. 7 A subgraph of the NYCS assembly graph aligned to cry4AA and cry4BA (cry4Ba) proteins. (Left) A subgraph of the NYCS assembly graph
with contigs represented as edges of the same color. (Middle) The cry4AA gene-path. (Right) The cry4BA/cry4Ba gene-path. Subgraphs were
visualized using Bandage [65]
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UBA3967 assembly does not correspond to the entire
genome (i.e., chromosome and plasmids) of a Bti isolate.

Methods
Constructing database of known IPGs and their Hidden
Markov Models (HMMs)
Accession numbers of known Cry and Vip toxins were
taken from the Bt nomenclature list (Crickmore et al.
2018), and sequences were downloaded from the NCBI
database, forming the IPG database. This procedure re-
sulted in extracting 941 protein sequences (811 Cry and
Cyt toxins as well as 130 Vip toxins) with the average
length of each protein approximately 800 amino acids
(Fig. 8, left).
In addition to forming the IPG database, we selected

66 publicly available HMMs commonly found in IPGs
and downloaded them from the Pfam database [45]. The
number of hidden states in the selected HMMs (referred
to as HMM length) varies from 25 to 350 states (Fig. 8,
middle).

Gene discovery in the assembly graphs
ORFograph first attempts to find open reading frames
(ORFs) containing parts of Cry and Vip genes scattered
over multiple contigs. Since Bt genomes typically contain
multiple similar Cry and Vip genes, these genes are often
fragmented in genomic assemblies. Since the vast major-
ity of Cry and Vip genes are longer than typical bacterial
genes (Fig. 8, right), they are more susceptible to frag-
mentation than other genes. This fragmentation further
amplifies in assemblies of metagenomic samples that
contain multiple Bt strains.
ORFograph attempts to find all paths in the assembly

graph that represent Cry/Vip-encoding ORFs. It first
constructs anchor-paths by performing the HMM-to-
graph [62] or sequence-to-graph [21] alignments to de-
tect partial ORFs and further extends each anchor-path
into a complete ORF. Since HMMs for most Cry/Vip
genes represent a short domain rather than a full gene

sequence, ORFograph often finds a large number of
short alignments, with each such alignment-path reveal-
ing only a part of the potential gene rather than a
complete ORF. ORFograph removes such short
alignment-paths from further consideration if they rep-
resent subpaths of longer (and thus more informative)
alignment-paths resulting from longer gene segments.
Specifically, if an anchor-path is a subpath of another
anchor-path with the same frameshift, this anchor-path
is filtered out. Afterward, ORFograph extends each
remaining anchor-path to find the complete ORF con-
taining it.
Since insecticide toxins share some protein domains

with thioredoxins, metallophosphoesterases, and disul-
fide reductases (originating from alignments of thiore-
doxin, metallophos, and AhpC-TSA HMMs,
respectively), many HMM alignments found by ORFo-
graph arise from these three protein families rather than
IPGs. To filter out these three protein families from the
ORFograph output, we compare each putative IPG
found by ORFograph against the database of known in-
secticidal toxins using BLAST and only retain IPGs that
are similar to a known insecticide toxin (with percent
identity exceeding a threshold Identity = 80%).

Search for start and stop codons in IPGs
ORFograph uses HMMs and known IPGs to find the
highest-scoring anchor-paths that correspond to a par-
tial Cry or Vip gene sequence. However, it is unclear
how to extend these partial sequences into a complete
coding region of a gene (referred to as CDS) since the
choice of the start and stop codon for a given anchor-
path is often ambiguous. In addition, the selected start
and stop codons are often connected with the anchor-
path by multiple paths. ORFograph finds all possible
start/stop codons that can be reached from the leftmost/
rightmost position of the anchor-path.
For each anchor-path, ORFograph finds all putative

start and stop codons in the assembly graph by

Fig. 8 Histograms of the lengths of 941 known Cry and Vip insecticide proteins (left), 66 HMMs representing IPGs (middle), and all bacterial genes
from the Uniprot database (right). 84% of the Cry and Vip genes have a length exceeding 600 amino acids (left) while only 7% of all genes have
a length exceeding 600 amino acids (right)
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exploring all paths in this graph using the Breadth-First-
Search [18]. During this search, it assigns a frameshift
string (of length 1, 2, or 3) that specifies the part of the
last codon traversed on the way to this node. A vertex is
classified as terminal if its frameshift string represents a
stop codon. The Breadth-First-Search identifies all ter-
minal vertices and stops further graph exploration in
these vertices. Information about sequences with start
codons that are positioned after a stop codon or the
Shine-Dalgarno sequence in the graph is reflected in the
CDS file.

CDS generation
After identifying the set of start and stop codons for
each partial alignment, ORFograph explores CDSs corre-
sponding to these alignments. A CDS given by the par-
tial alignment corresponds to a path between a pair of
start and stop codons that passes through the partial
alignment and represents a putative IPG. For each pair
of start and stop codons, the path is divided into prefix
(an unknown path from the start codon to the leftmost
position of the alignment), middle (the known partial
alignment), and suffix (an unknown path from the right-
most position of the alignment to the stop codon).
ORFograph performs an exhaustive search to generate

all potential prefixes and suffixes separately and concate-
nates them with the middle part to construct a set of full
paths that represent potential IPGs. To speed up CDS
generation, ORFograph pre-calculates a set of edges that
can be traversed on the way from potential start codons
to the beginning of the anchor-path (and from the end
of the anchor-path to the potential stop codons) using
the Depth-First Search [18]. ORFograph only uses these
edges (rather than all edges of the graph) to generate
prefixes and suffixes and further concatenates each pre-
fix, the anchor-path, and each suffix to generate the pu-
tative IPG. Since the number of putative full-length
genes is typically large, ORFograph filters and ranks the
constructed putative IPGs as described below.

Analyzing HMM positions within IPGs
We aligned all HMMs to the IPG database using the
HMMer tool [22] and constructed the distribution of
their starting positions inside the IPGs. ORFograph uses
this distribution to find the most likely distance from the
start codon to the position of the HMMs within an IPG.
We aligned each HMM to all known IPGs and generated
a histogram of all distances from the gene start to the
start of each full HMM alignment. As Supplementary
Figure S3 illustrates, this distance is very conserved for
some HMMs (e.g., PA14) and less conserved for other
HMMs (e.g., Aegerolysin). We thus defined the likeli-
hood of a given distance d as the fraction of distances in
the interval [d-binSize, d+binSize] in the histogram (the
default value binSize=150). Using the computed likeli-
hoods, ORFograph derives a set of the most likely dis-
tances from the start codon for each HMM alignment in
the assembly graph and uses these distances to find the
most likely prefixes as the prefixes with likelihoods ex-
ceeding the default threshold (a similar procedure is
used to find the most likely suffixes).

Filtering putative IPGs that conflict with contigs
ORFograph compares each putative IPGs with the set of
contigs output by SPAdes/metaSPAdes and filters out
IPGs that “contradict” to the contig-set as described
below.
While any genome segment is expected to be repre-

sented as a path (correct path) in the assembly graph,
many paths do not correspond to genome fragments (in-
correct paths). Figure 9 shows a fragment of an assembly
graph that can be traversed in four different ways:
AB1CD1E, AB1CD2E, AB2CD1E, and AB2CD2E. Each of
these paths may be either correct or incorrect. Since al-
ternative sequences in bulges (B1/B2 and D1/D2) are typ-
ically similar, it is likely that if one of them is chosen as
an anchor-path, then another will be chosen as well.
This effect can exponentially amplify the number of re-
ported paths. Finding the correct path among many in-
correct paths is not unlike the repeat resolution problem

A

B1

B2

C

D1

D2

E

Fig. 9 Examples of conflicting and non-conflicting gene paths in an assembly graph. Purple edges B1 and D1 are classified as unique but black
edges B2 and D2 are classified as non-unique since they are shorter than the minLength threshold. Edges A, C, and E are classified as non-unique
because their indegrees and/or outdegrees prevent their classification as unique edges. The green path conflicts with the red path but does not
conflict with the blue and yellow paths. Purple edges represent unique edges of the green contig-path
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in genome assembly [5]. State-of-the-art genome assem-
blers solve this problem using a variety of additional in-
formation (e.g., paired-end reads) for finding correct
paths (contig) in the assembly graph [54]. ORFograph
takes advantage of contigs output by SPAdes/metaS-
PAdes and uses them to filter out incorrect IPGs as de-
scribed below.
Two paths in the assembly graph are called compatible

if they overlap (suffix of one of them coincides with a
prefix of another) or if one of them is contained within
another. ORFograph relies on unique edges in the as-
sembly graph, i.e., the edges that are only passed once by
the path representing the genome (genome path). If two
correct paths both contain the same unique edge then
these paths are compatible. Thus, any putative IPG that
contains the same unique edge as a contig path and is
not compatible with it can be filtered out as incorrect. In
this case, we say that a putative IPG and a contig contra-
dict each other.
Since the identification of unique edges in the assem-

bly graph is a non-trivial problem, we use a simple (al-
beit error-prone) heuristic for finding them. An edge is
considered unique if its length exceeds a threshold min-
Length (the default value 300 nucleotides), its start node
has an outdegree larger than 1, and its end node has an
indegree larger than 1. Figure 9 illustrates an example
with a putative (red) IPG B1CD2 that contradicts the
green contig AB1C and thus is filtered out. Although the
putative (blue) IPG AB2CD2 shares an edge with the
green contig, it does not contradict this contig because
the shared edge is non-unique.

IPG clustering
Even after applying the described filters, many putative
IPGs may still remain, making it difficult to determine
which of them are correct. ORFograph organizes puta-
tive IPGs into clusters using the single linkage clustering.
Two sequences are clustered together if one of them is a
substring of another or their percent identity exceeds a
threshold PI (the default value PI = 90%). We further
consider all edges of the assembly graph that contribute
to IPGs in a given cluster and classify long (exceeding 1
kb) edges in the IPGs from a given cluster as long cluster
edges.

Selecting representative IPGs
In some cases, the set of putative IPGs remains large
even after the filtering step. Since many of them may
represent erroneous variants of the correct IPGs and
since reporting all of them may be counter-productive
for the downstream experimental analysis, ORFograph
selects the most reliable putative IPGs as the best candi-
dates for a further experimental analysis. Since long
cluster edges (in difference from the potentially spurious

short cluster edges) likely belong to some IPGs, we re-
quire that each long cluster edge belongs to at least one
representative IPGs.
ORFograph selects a small set of the reliable potential

IPGs in each cluster (representative IPGs) in such a way
that paths spelled out by representative IPGs include
each long cluster edge. For each path, we consider a
triplet (start codon distance likelihood, coverage by reads,
path length) and classify a path P as more reliable than a
path P’ from the same cluster if its triplet is lexicograph-
ically larger.
To select representative IPGs, we consider all potential

IPGs in each cluster in a lexicographically non-
decreasing order of their triplets. ORFograph scans the
resulting ordered list and classifies an IPG in this list as
representative if it contains a long edge that was not
present in the previously considered IPGs from this list.

Discussion
Although the recently developed SPAligner [21] and
PathRacer [62] tools offer a possibility to search for any
protein family in assembly graphs, we have decided to
limit the scope of this project to insecticide toxins as
each protein family has specifics that have to be taken
into account during the tool development. Our next goal
is to extend ORFograph into a general tool for identify-
ing arbitrary protein families in assembly graphs such as
glycoside hydrolases [36] and CAS proteins [40]. Existing
tools for identifying protein families, such as GeneHunt
[47], CasFinder [12], and HMMCAS [11] are limited to
single contigs, thus missing proteins whose parts are
scattered over multiple contigs. biosyntheticSPAdes [42]
is the first tool from the SPAdes toolkit aimed at gene
finding in assembly graphs. However, since biosynthetic-
SPAdes has a rather narrow focus on non-ribosomal
peptide synthetases (NRPSs), it is not clear how to ex-
tend it to an arbitrary protein family.
ORFograph, currently limited to IPG finding, repre-

sents the first software from the SPAdes toolkit that can
be easily extended into a more general tool for identify-
ing an arbitrary protein family based on a set of family-
specific HMMs and a set of approaches generalizing
various metrics described in this paper. Development of
such a general tool will enable mining breadth of genes
from meta(genomes) for a variety of biotechnological
uses, such as the discovery of novel antibiotic biosyn-
thesis clusters, gene editing enzymes, or metabolic path-
ways for industrial biosynthetic use.
Although this paper analyzes IPGs predicted by ORFo-

graph in the SPAdes assemblies, ORFograph can be ap-
plied to assembly graphs constructed by any genomic
(e.g., Velvet [69]) or metagenomic (e.g., Megahit [38])
assembler.
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It is important to note that B. thuringiensis is a mem-
ber of the Bacillus cereus group and is closely related to
the pathogenic B. anthracis and B. cereus strains. Since
ORFograph facilitates high-throughput discovery of
novel IPGs, it is important to verify that the newly dis-
covered insecticide toxins do not harm humans.

Conclusions
We demonstrated that analysis of the assembly graphs
reveals novel candidate IPGs. ORFograph identified both
already known genes “hidden” in assembly graphs and
potential novel IPGs that evaded existing tools for IPG
identification. As ORFograph is fast, one could imagine
a pipeline that processes many (meta)genomic assembly
graphs to identify even more novel IPGs for phenotypic
testing than would previously be inaccessible by trad-
itional gene-finding methods.
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