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Abstract

Background: Terrestrial hot spring settings span a broad spectrum of physicochemistries. Physicochemical
parameters, such as pH and temperature, are key factors influencing differences in microbial composition across
diverse geothermal areas. Nonetheless, analysis of hot spring pools from the Taupo Volcanic Zone (TVZ), New
Zealand, revealed that some members of the bacterial genus, Acidithiobacillus, are prevalent across wide ranges of
hot spring pHs and temperatures. To determine the genomic attributes of Acidithiobacillus that inhabit such diverse
conditions, we assembled the genomes of 19 uncultivated hot spring Acidithiobacillus strains from six geothermal
areas and compared these to 37 publicly available Acidithiobacillus genomes from various habitats.

Results: Analysis of 16S rRNA gene amplicons from 138 samples revealed that Acidithiobacillus comprised on
average 11.4 ± 16.8% of hot spring prokaryotic communities, with three Acidithiobacillus amplicon sequence
variants (ASVs) (TVZ_G1, TVZ_G2, TVZ_G3) accounting for > 90% of Acidithiobacillus in terms of relative abundance,
and occurring in 126 out of 138 samples across wide ranges of temperature (17.5–92.9 °C) and pH (1.0–7.5). We
recovered 19 environmental genomes belonging to each of these three ASVs, as well as a fourth related group
(TVZ_G4). Based on genome average nucleotide identities, the four groups (TVZ_G1-TVZ_G4) constitute distinct
species (ANI < 96.5%) of which three are novel Acidithiobacillus species (TVZ_G2-TVZ_G4) and one belongs to
Acidithiobacillus caldus (TVZ_G1). All four TVZ Acidithiobacillus groups were found in hot springs with temperatures
above the previously known limit for the genus (up to 40 °C higher), likely due to significantly higher proline and
GC contents than other Acidithiobacillus species, which are known to increase thermostability. Results also indicate
hot spring-associated Acidithiobacillus have undergone genome streamlining, likely due to thermal adaptation.
Moreover, our data suggest that Acidithiobacillus prevalence across varied hot spring pHs is supported by distinct
strategies, whereby TVZ_G2-TVZ_G4 regulate pH homeostasis mostly through Na+/H+ antiporters and proton-efflux
ATPases, whereas TVZ_G1 mainly relies on amino acid decarboxylases.

Conclusions: This study provides insights into the distribution of Acidithiobacillus species across diverse hot spring
physichochemistries and determines genomic features and adaptations that potentially enable Acidithiobacillus
species to colonize a broad range of temperatures and pHs in geothermal environments.
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Background
Acidithiobacillus (formerly Thiobacillus) is a gram-
negative genus of rod-shaped bacteria that mostly
comprises chemolithoautotrophic, obligately acidophilic
(optimum pH < 4), and mesophilic or mesothermophilic
species [1–3]. They are commonly distributed in acidic
and sulfur-rich environments, such as acidic soil and
acid mine drainage [4, 5], and recent studies show that
they are widely distributed in hot springs [6, 7]. Outside
of hot springs, known members of Acidithiobacillus have
small differences in physiological tolerances to environ-
mental conditions, and all grow within a pH range of
0.5–6.0, and a temperature range of 5–52 °C [3, 8–14].
Of these, A. caldus, one of the most studied species in
the genus Acidithiobacillus, is the only thermoacidophile
(first recovered from coal spoils) and has the highest
known temperature limit (52 °C) [3, 12, 13, 15, 16].
Other members of the genus, such as A. ferrooxidans
and A. thiooxidans, as well as A. caldus, are used in bio-
hydrometallurgy to recover certain metals from sulfide
ores due to their ability to oxidize sulfide and solubilize
metals, and their preference for acidic environments [10,
11, 17–19]. Although members of Acidithiobacillus are
best known from highly acidic settings, such as ores dur-
ing bioleaching and acid mine drainage [4, 20], a search
of data from almost one thousand Taupo Volcanic Zone
(TVZ) hot springs, in New Zealand, showed that Acid-
ithiobacillus are present in springs encompassing a huge
range of physicochemistries, from very acidic to alkali
pHs (0.6–8.94) and across an extremely wide temperature
range (13.9–97.6 °C) [6, 21].
Terrestrial hot spring environments are highly hetero-

geneous, representing a huge spectrum of physicochemi-
cal conditions [6, 22]. Previous studies have suggested
that pH and temperature are key drivers influencing
microbial composition of hot springs [6, 7]. However, it
has been shown that Acidithiobacillus are present in
numerous hot springs that span a wide range of pHs and
temperatures in the TVZ [6, 7, 23]. This suggests that
this bacterial genus possesses mechanisms enabling it to
inhabit diverse environmental conditions. However, it
remains to be determined whether this cosmopolitanism
is due to the widespread occurrence of particular Acid-
ithiobacillus species or strains across different hot spring
environments, reflecting strain or species level metabolic
versatility, or whether different hot spring niches harbor
phylogenetically distinct Acidithiobacillus.
To determine the phylogenetic variation and distribu-

tion of Acidithiobacillus (clades or genome-inferred spe-
cies) across broad ranges of hot spring temperatures and
pHs, and to elucidate the genomic features underpinning
their prevalence, we collected 79 subaqueous sediment
samples from various geothermal sites in the TVZ and
analyzed these alongside a further 59 subaerial siliceous

hot spring deposits (sinters) we previously found to be
rich in the Acidithiobacillus genus [7]. Sediment-sampled
hot spring pHs ranged from 2.0–7.5 and temperatures
ranged from 17.5–92.9 °C, while sinter-sampled spring
pHs ranged from 1.0–6.6 and temperatures ranged from
24.2–92.9 °C (Table S1). We determined the distribution
of Acidithiobacillus across these samples and recovered
genomes from representative samples with widespread
Acidithiobacillus 16S rRNA gene amplicon sequence
variants (ASVs). Using these genomes, we determined
mechanisms of temperature and pH tolerance in the TVZ
Acidithiobacillus groups and compared these and other
genomic attributes to Acidithiobacillus from other envi-
ronments. Results show that the TVZ Acidithiobacillus
have distinct genomic features that potentially allow them
to inhabit broad ranges of temperature and pH.

Materials and methods
Sample collection and physicochemical measurements
Fifty-nine sinter samples (with spatial replicates in-
cluded) were collected from 10 hot springs across five
geothermal areas (Orange Spring, Te Kopia, Parariki
Stream, Rotokawa, and Tikitere) within the TVZ (Fig. 1
from [7]) in April 2018, as described in Sriaporn et al.
[7]. Seventy-nine additional sediment samples (with
spatial replicates included) were collected from 12 hot
springs across four geothermal areas (Parariki Stream,
Rotokawa, Tikitere, and Wai-O-Tapu) within the TVZ
in February and November 2019. Sediment was collected
from 0 to approximately a few centimeters below the
water-sediment interface using sterile spatulas, and
samples were placed into sterile 50 mL centrifuge tubes
and transported on dry ice, before storage at − 80 °C.
Hot spring pH and temperature measurements from the
April 2018 sinter sampling trip were measured using
portable sension™ 156 Multiparameter Meter (Hach
Company, USA) and COMARK Evolution IV9001
temperature probes (COMARK, UK) [7], and pH and
temperatures from the sediment sampling trips (February
and November 2019) were measured using a WTW 330i
handheld meter (WTW GmbH, Germany).

DNA extraction, amplicon, and metagenomic sequencing
DNA extraction was performed using the DNeasy
PowerSoil® Kit (Qiagen, USA) following the manufac-
turer’s instructions, using 0.25–0.35 g of sinter or sedi-
ment per sample (with a no-sample negative control
included). DNA quality and quantity were checked via gel
electrophoresis, a NanoPhotometer (Implen, Germany),
and Qubit 3.0 fluorometric quantitation (Invitrogen,
USA). 16S rRNA gene amplification was performed in
triplicate using 515′F/926′R primers, and 2 × 250 bp
paired-end Illumina MiSeq sequencing was performed
with the MiSeq Reagent Kit V2, as previously described
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[7], at Auckland Genomics (University of Auckland). To
explore the genomic features of the TVZ Acidithiobacil-
lus, 4 representative sinter and 18 representative sediment
samples were selected for whole genome sequencing
(WGS). Five to seven g of DNA was extracted per sample
using the DNeasy PowerMax Soil Kit® (Qiagen, USA). Due
to low DNA concentrations, multiple extractions were
performed for each sample, and DNA was concentrated
and cleaned by ethanol precipitation using 2× absolute
ethanol, 3M sodium acetate, and 20 μl/μg glycogen. Sam-
ples were then incubated at − 80 °C overnight before DNA
pellets were washed with 70% ethanol and resuspended in
25 μl of nuclease-free water. Final DNA quality and quan-
tity were checked using an Implen NanoPhotometer,
Qubit 3.0 fluorometric quantitation with the Qubit™
dsDNA HS Assay Kit, and gel electrophoresis. WGS se-
quencing was performed at the Otago Genomics Facility
(University of Otago, Dunedin, New Zealand). Thruplex
DNA-Seq libraries (Takara Bio USA, Inc, USA) were
prepared with 500–600 bp insert sizes and sequenced
using the Illumina HiSeq 2500 platform with the HiSeq
Rapid SBS Kit V2, yielding 2 × 250 bp reads, for the 4
sinter samples, and the HiSeq 2500 SBS Kit V4, yielding 2
× 125 bp reads, for the 18 sediment samples.

Amplicon data analysis
QIIME2 (version 2019.10) was used to process demulti-
plexed amplicon sequences by read-joining, quality filter-
ing (Q score cutoff of 25) and denoising (with singletons
removed), and to generate an ASV table [24–27]. Tax-
onomy was assigned by using the SILVA database version
132 [28–30]. R (version 3.4.4) with RStudio software (ver-
sion 3.4.1), and R package ggplot2 (version 3.0.0) were
used to visualize data [31–33].

Metagenomic sequence processing and genome
assembly
Quality filtering and trimming of raw metagenomic
sequences were undertaken using Sickle (version 1.33)
with a minimum quality score threshold of 30 and a
minimum retained read length of 80 bp, and FastQC
version 0.11.9 was used to check quality [34, 35]. After
trimming 86.5–92.2% of reads per sample were retained.
Paired-end trimmed reads from each sample were then
assembled separately using SPAdes version 3.11.1 with –
meta -m 900 -t 16 -k 41,61,81,101,127 parameters [36].
To determine differential coverage for genome binning,
reads were mapped to contigs using Bowtie version 1.2.0
with the following parameters: --phred33-quals -n 1 -l
111 --minins 100 --maxins 600 --best [37]. Contigs were
binned using MetaBAT version 2.12.1 [38], MaxBin
version 2.2.4 [39], and CONCOCT version 0.4.1 [40],
utilizing differential coverage and tetranucleotide fre-
quencies. The resulting bins (metagenome-assembled
genomes, MAGs) were compared, and representatives
were selected using DAS Tool version 1.1.1 [41]. Bin re-
finement was performed using VizBin with differential
coverage incorporated [42]. CheckM version 1.0.12 [43]
was used to estimate refined bin completeness and
contamination. Estimated genome size was calculated
following Castelle et al. [44]. Bins shared across the 4
sinter and 18 sediment sample assemblies were then
dereplicated using dRep version 1.4.3 based on the de-
fault 99% similarity threshold to generate a set of unique
representative bins [45].

Gene prediction, annotation, and genome analyses
Gene prediction was performed using Prodigal version
2.6.3 with -p meta mode [46]. Predicted coding DNA
sequences (CDS) were annotated against the UniRef100

Fig. 1 Plots showing the proportion of Acidithiobacillus ASVs observed in microbial communities across the TVZ hot spring sites. a Total relative
abundance (%) of prokaryotic communities summed across all samples collected across six geothermal areas in the TVZ. b Boxplots showing total
relative abundance of Acidithiobacillus versus other prokaryotes in each sample. Note that there are 12 samples that did not harbor
Acidithiobacillus (shown at 0% in the left box plot, and 100% in the right box plot)
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[47], UniProt [48], KEGG [49], Pfam [50], and TIGR
FAM [51] databases using USEARCH version 9.0.2132
[52] with an e-value cutoff of 0.001. Prokka version
1.13.4 was used to predict tRNAs, tmRNAs, CRISPRs,
and non-coding RNA [53]. Taxonomic classification was
assigned based on core marker genes using GTDB-Tk
version 0.2.1 [54]. The genome sequences of nine
Acidithiobacillus type strains (A. caldus ATCC 51756, A.
caldus SM-1, A. thiooxidans ATCC 19377, A. ferrooxi-
dans ATCC 23270, A. ferrivorans SS3, A. albertensis
DSM 14366, A. ferridurans JCM 18981, A. ferrianus
MG, and A. sulfuriphilus CJ-2) and one unclassified spe-
cies (Acidithiobacillus sp. UBA2486), obtained from the
NCBI GenBank database, were included in these gene
prediction and annotation steps for comparison with the
studied TVZ Acidithiobacillus genomes.
To determine whether genomes belonged to the same

species, the TVZ Acidithiobacillus bins and reference
genomes were compared by calculating pairwise average
nucleotide identity (ANI) values via the average nucleo-
tide identity calculator [55] based on the approach
described by Goris et al. [56] with 96.5% threshold for
determining the same species [57, 58]. The Genome-to-
Genome Distance Calculator (GGDC) was used to
approximate in silico DNA-DNA hybridization (DDH)
values to determine the likelihood that any two genomes
belong to the same species using a 70% threshold [59, 60].
To examine mutation events discriminating subspecies
genome clusters, GSAlign was used to detect substitu-
tions, insertions, and deletions between genomes [61]. In
addition, BLAST was used to determine the identity of
16S rRNA genes among the TVZ and other Acidithioba-
cillus species using the > 99% species threshold [62].
To further compare Acidithiobacillus attributes, we

predicted genome minimum generation times and
optimal growth temperatures using GrowthPred [63].
Genome replication rates at the time of sampling were
estimated using the index of replication (iRep) [64].
Protein paralogs were determined using CD-HIT [65].
Proteins that were at least 30% identical over at least
50% of the longest sequence length were considered
paralogs [66]. Genome GC contents were derived from
CheckM output, and proline content was calculated
from predicted protein sequences using an in-house py-
thon script [67].
To explore the genomic features of Acidithiobacillus

from a wider set of environments, an additional 27
Acidithiobacillus genomes from Genome Taxonomy
Database (GTDB) [68] were included for comparative
analyses of genome size, optimal growth temperature,
paralogs, GC contents, and proline composition (Table S2).
Correlation plots between genomic features were generated
using RStudio (package ggplot2), and Pearson’s correlation
coefficients and t-distribution tables (df = n − 1) were used

to determine the correlation coefficients and significance of
correlations, respectively (via package ggpubr). A T-test was
used to determine if any significant differences were present
between two groups of genomes.

Extraction and reconstruction of partial and near full-
length 16S rRNA gene sequences
16S rRNA gene sequences were reconstructed from each
quality-filtered WGS sample using EMIRGE version
0.61.1 with a 97% clustering threshold [69]. Taxonomy
was assigned using USEARCH version 11.0.667 (SINT
AX algorithm) by searching sequences against the
SILVA SSU non-redundant database version 132 [29, 52].
In addition, MeTaxa2 [70] was used to extract 16S rRNA
genes from MAGs. In order to match independently
reconstructed 16S rRNA sequences (EMIRGE), MAG-
extracted 16S rRNA genes (MeTaxa2), and ASVs, relative
abundance correlations were undertaken using RStudio
(with package ggplot2). Pearson’s correlation coefficients
and t-distribution tables (df = n − 1) were used to deter-
mine the correlation coefficient and the statistical signifi-
cance, respectively (via package ggpubr) [71]. Sequences
derived from the three approaches were aligned with
Geneious version 11.1.2 using MUSCLE [72, 73].

Acidithiobacillus phylogenetic tree
A concatenated core gene phylogenetic tree was
constructed using the TVZ Acidithiobacillus MAGs and
the 10 Acidithiobacillus reference genomes obtained
from the GenBank and GTDB databases [68]. Sequences
were aligned using MUSCLE with Geneious [72, 73],
and PhyML 3.0 was used to build and visualize a
maximum-likelihood phylogenetic tree with 100 times
bootstrapping [74].

Results and discussion
Hot spring characteristics
Samples were collected from sulfur-rich hot springs,
which are common in the TVZ, and which spanned a
broad range of water temperatures (17.5–92.9 °C) to re-
cover mesophilic to hyperthermophilic communities,
and pHs (1.0–7.5) to sample acidophilic to neutrophilic
communities (Table 1, Fig. S1). Samples comprised sub-
aerial digitate sinter and subaqueous sediments. The
digitate sinters are stromatolitic siliceous deposits with
protrusive features that form around hot spring margins
or in shallow outflow channels just above water level
(reaching approximately 1 cm above the air-water inter-
face) [7], due to the deposition of silica from evaporative
wicking of spring water [75]. In contrast, sediments (i.e.,
hot spring mud and unconsolidated coarser geothermal-
influenced stream material) form within hot springs
when underground gases react with rocks to produce
clay, or are detrital (i.e., broken up pieces of sinter,
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surrounding rocks, and organic matter) [22], and for this
study were located a few millimeters to centimeters
below the water’s surface. Digitate sinter and sediment
from the same pool were connected by the thermal
fluids. Subaerial sinter samples were taken from five geo-
thermal areas, which are ~ 1 to 65 km apart, with a prox-
imal water temperature range of 24.2–92.9 °C and pHs
of 1.0–6.6 (Table 1, Fig. S1). Subaqueous sediment sam-
ples were collected from four geothermal areas (~ 1 to
65 km apart) with a direct water temperature range of
17.5–92.9 °C and pH range of 2.0–7.5. It is worth noting
that as the temperature and pH measurements in this
study were based on hot spring fluids, they may not rep-
resent actual values for the subaerial sinter samples, but
apply directly to sediment samples, which are submerged
within the spring water (Table S1).

Distribution of TVZ Acidithiobacillus across wide ranges of
temperature and pH
16S rRNA gene amplicon sequencing of 138 subaerial
sinter and subaqueous sediment samples produced a
total of 28,204 ASV features (with 1,344,820 ASV
counts). These were classified into 49 phyla, and the
overall community distribution is shown in Figure S2.
Of these, 1195 ASV features (95,787 ASV counts) were
from genus Acidithiobacillus (order Acidithiobacillales),
which comprised 7.1% in total (or on average 11.4 ±
16.8%), of prokaryotic communities across all of the hot
springs sampled for this study (Fig. 1a, b). It was also the
third most abundant taxon, following the archaeal orders
Thermoplasmatales and Sulfolobales, and hence was the
most abundant bacterial genus (Fig. 1). This corresponds
well with our previous work and that of other studies,
confirming the high relative abundance of Acidithioba-
cillus in sulfuric hot spring environments (sediment, sin-
ter, soil, and water) in both New Zealand [6, 7, 23, 76]
and elsewhere [77, 78]. One explanation for Acidithioba-
cillus predominance in these settings is the various genes
for sulfur metabolism they characteristically possess,
which enable them to oxidize sulfur, thiosulfate, sulfide,
and sulfite in geothermal environments [13, 79].

Overall, we recovered more than 1000 Acidithiobacil-
lus ASVs from 126 out of 138 (91.3% of) samples, span-
ning a temperature range of 17.5–92.9 °C for sediment
samples and 24.2–92.9 °C for sinter samples, and a pH
range of 2.0–7.5 for sediment samples and 1.0–6.6 for
sinter samples (Fig. S1, Table S1, S3). Of these, just three
ASVs constituted more than 90% of the total Acidithio-
bacillus population and were detected across 126 of the
samples, suggestive of both their abundance and preva-
lence across a wide range of temperatures and pHs in
geothermal environments (Fig. 2a–c, Fig. S3, Table S3).
These are amongst the widest physicochemical ranges re-
corded for Acidithiobacillus (Fig. 3a, b) and are similar to
findings from the TVZ 1000springs project [21], in which
Acidithiobacillus was found in springs with pHs 0.6–8.94
and temperatures of 13.9–97.6 °C. However, this earlier
project did not classify to species level. The only currently
known thermoacidophilic Acidithiobacillus species, A.
caldus (type strain ATCC 51756), has a known upper
temperature limit of 52 °C (as characterized by growth ex-
periments), which is the highest for this genus [3]. Never-
theless, more than 50% of our samples that harbored
Acidithiobacillus were from sites with temperatures higher
than 52 °C (Fig. S1, Table S1). These results indicate that
the TVZ Acidithiobacillus may survive in conditions that
exceed the formerly known upper pH limit of 6.0, which
was recorded for A. albertensis (originally isolated from
acidic soil) [8].
Characterization and growth experiments of TVZ

Acidithiobacillus are needed to confirm the expansion of
the upper physicochemical limits of Acidithiobacillus to
include high temperature and circumneutral pH environ-
ments. Nevertheless, while the possibility of exogenous
transport cannot be excluded, this seems unlikely given
the high relative abundance of Acidithiobacillus in the
studied springs, implying that these organisms are not
transient. In addition, while all sampling sites were in the
TVZ, each site was isolated and distant (1–65 km apart).
Moreover, alpha diversity trends are consistent with
expectations based on hot spring physicochemistry [7].
Shannon indices show that Tikitere had the most diverse
communities overall, including the most diverse

Table 1 Site, pH and temperature ranges, and water chemistry of studied geothermal settings, including collected sample type and
studied data type

Site pH range Temperature range (°C) Water chemistry Sample type Data type

Tikitere 3.60–7.50 17.5–73.8 Acid-sulfate-bicarbonate Sinter, sediment WGS, 16S

Parariki Stream 1.00–2.14 33.4–77.0 Acid-sulfate-chloride Sinter, sediment WGS, 16S

Rotokawa 1.73–2.94 22.7–80.1 Acid-sulfate-chloride Sinter, sediment WGS, 16S

Te Kopia 2.14–2.22 43.6–92.9 Acid-sulfate Sinter WGS, 16S

Orange Spring 1.80–2.65 35.4–91.5 Acid-sulfate Sinter 16S

Wai-O-Tapu 2.51–5.70 32.4–92.9 Acid-sulfate-chloride Sediment WGS, 16S

WGS = Whole genome sequencing, 16S = 16S rRNA gene amplicon sequencing
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Acidithiobacillus population, likely due to the near-neutral
pHs and relatively moderate temperatures (Fig. S4, Table
S1). In contrast, Parariki Stream, Rotokawa, Te Kopia, and
Wai-O-Tapu shared the lowest overall community diver-
sity. Locations sampled at each of these sites were exclu-
sively or predominately low in pH. Accordingly, results
showed that, for Acidithiobacillus populations, the lowest
diversity was sampled at Te Kopia. This is likely due to
the very extreme temperatures and pHs (up to 93 °C and
with pHs of 2.1–2.2), which are amongst the highest and
lowest, respectively, in this study, and are potentially at or
near Acidithiobacillus limits in these systems.

Phylogeny of TVZ Acidithiobacillus and the prevalence
and predominance of distinct populations
To determine the phylogeny and genomic features that
potentially explain the broad temperature and pH
tolerances of the three abundant and prevalent Acid-
ithiobacillus ASVs, we reconstructed 19 Acidithiobacil-
lus MAGs from 22 representative samples (4 sinters and
18 sediments). All 19 MAGs were estimated to be largely
or near-complete (78.2–99.4%; Table S2) with low
contamination (0–2.59%; Table S2). Genomes were
clustered into four groups based on an average nucleic
acid similarity threshold of 99%. A partial 16S rRNA

sequence was extracted from each representative MAG
within each of the four groups. Additionally, EMIRGE
recovered 232 near full-length 16S rRNA gene sequences
from the 22 WGS samples, and three of these sequences
were identical to three out of four Acidithiobacillus
MAG-derived and three abundant and prevalent
Acidithiobacillus ASVs based on sequence alignments
(Fig. S5). The extra fourth MAG-derived 16S rRNA
sequence was identical to a rarer Acidithiobacillus ASV
(Table S3), which accounted for 0.4 ± 5.9% average (or
0.025% total) relative abundance. We designate these
four Acidithiobacillus groups: TVZ_G1, TVZ_G2, TVZ_
G3, and TVZ_G4 (Fig. 2a–d, Fig. S3, Table S3). Results
also indicate a broadly positive correlation between the
relative abundances of 16S rRNA sequences (amplicon
and EMIRGE) and the genome coverage of the four rep-
resentative MAGs (Fig. S6).
EMIRGE-derived 16S rRNA gene sequences of TVZ

Acidithiobacillus shared < 99% identity with other
reference Acidithiobacillus 16S rRNA gene sequences
(Table S4), indicating their novelty [62]. Pairwise in
silico DDH and ANI comparisons also showed that
representative MAGs within the four Acidithiobacillus
groups shared values below the in silico DDH (70%) and
species delineation (96.5%) cut-offs [57–60] (Tables S5-6),

Fig. 2 Scatter plots showing relative abundances and prevalence of the four TVZ hot spring Acidithiobacillus ASVs that correspond with
recovered genomes of a A. caldus TVZ_G1; b Acidithiobacillus sp. TVZ_G2; c Acidithiobacillus sp. TVZ_G3; and d Acidithiobacillus TVZ_G4. Bubble
size represents the relative abundance of each ASV per sample. The number of bubbles represents the prevalence of each Acidithiobacillus ASV
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suggesting each are a distinct species. In comparison, MAGs
within each group represent conspecific populations, on the
basis of DDH and ANI values of 91.1–100% and 98.8–
100%, respectively—above the species threshold. Results
indicate that three out of four of the groups (TVZ_G2-
TVZ_G4) are novel species, while TVZ_G1 belongs to
A. caldus. TVZ_G1 shares an in silico DDH value of

96% and ANI of 99.6% (based on the representative
genome) with the A. caldus type strain ATCC51756
(Table S5-6). Accordingly, a concatenated core gene
phylogenetic tree shows the four TVZ groups formed
three distinct clades within the genus Acidithiobacillus
(Fig. 4), with closely related TVZ_G3 and TVZ_G4
populations representing sub-clades of Clade III, and

Fig. 3 Plots showing the physicochemical ranges of TVZ Acidithiobacillus and those known for other Acidithiobacillus. Ranges are given for a
temperature (with black bars indicating optimal growth temperatures calculated by GrowthPred) and b pH. Ranges shown for subaerial sinters
are from the corresponding hot spring waters from which the digitate sinters form. All temperature and pH ranges shown for the TVZ species
represent the springs from where they were found, while those for other Acidithiobacillus are from growth experiment characterizations
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the six MAGS comprising TVZ_G1 representing a
discrete clade within A. caldus (Clade I). In addition,
while TVZ_G2 is unrelated to any formerly designated
and cultivated species, its five MAGs clustered with one
uncultivated bacterium from a Taiwanese hot spring,
Acidithiobacillus sp. UBA2486 (Clade II, Fig. 4), which
ANI and in silico DDH values indicate are the same
species (Table S5-6).
Of the three most abundant Acidithiobacillus popula-

tions, A. caldus TVZ_G1 was the least abundant (10.6 ±
2.7% ASV relative abundance) (Fig. 2a–c, Fig. S3, Table S3).
This is contrary to previous studies, where it has been
suggested that the dominant Acidithiobacillus species in
geothermal settings is A. caldus [23, 78], although such
classifications were based on relatively low percent identity
matches (i.e., 97% partial 16S gene sequence identity). In-
stead, we found that the novel TVZ_G3 population was the
most abundant overall, representing on average 58.8 ± 1.3%
of the Acidithiobacillus population (or 41.5 ± 22.4% based
on genome coverage) (Fig. 2a–d, Fig. S3, S7-8, Table S3),
while its close relative, TVZ_G4, comprised only 0.4 ± 5.9%
of Acidithiobacillus ASVs (or 5.3 ± 2.2% genome abun-
dance). Of these, TVZ_G3 was also the most prevalent
group, being distributed across 86.2% of samples based on
the ASV (or 45.5% of the WGS subset of samples). This
was followed by TVZ_G2 (52.2% ASV prevalence or 45.5%
of the WGS subset) and TVZ_G1 (40.6% ASV prevalence
or 36.4% of the WGS subset) (Fig. 2a–d, Fig. S3, S7-8, Table
S3). In addition to its low abundance, TVZ_G4 was also the

least prevalent among the four as shown by amplicon data
(2.2%) and genome coverage (31.8%) (Fig. 2d, Fig. S3, S8).
Our study shows that three of the TVZ Acidithiobacil-

lus species were present across diverse and spatially dis-
tinct hot spring environments and were therefore
unconstrained by geographical isolation. However, only
two genomes within TVZ_G2 were found to share 100%
ANI based on their alignable fractions with the group
reference MAG (Table S5). To further explore genetic
diversity within the TVZ Acidithiobacillus species, we
determined substitutions (single-nucleotide variants,
SNVs) and insertions and deletions (indels). Results indi-
cated a predominance of substitutions, and relatively few
indels, when comparing MAG consensus sequences with
the representative per group (Fig. S9). MAGs belonging
to A. caldus TVZ_G1 and Acidithiobacillus TVZ_G2 ex-
hibited the least intra-group genomic variation, with
0.005–0.15% SNVs and 0–0.002% indels (74 to 1746
substitutions and 0 to 26 indels per Mbp). The highest
amount of genetic variation was detected in TVZ_G3
and TVZ_G4, with up to and 0.003% and 0.004% indels
(44 and 45 events per Mbp), respectively, and up to 0.5%
and 0.9% SNVs (8087 and 10,722 of substitutions per
Mbp), respectively.
These intraspecies genetic diversities are small, com-

pared to other studies where 2.6–9.7% SNVs were
observed among non-hot spring A. caldus strains, and
2.5–3.5% single-nucleotide polymorphisms among A. fer-
rooxidans strains [80, 81]. Nevertheless, the upper values

Fig. 4 A maximum-likelihood concatenated core gene phylogenetic tree with 100 times bootstrapping of TVZ and other Acidithiobacillus species.
Bold script indicates the representative MAG of each species (TVZ_G2-4) or subspecies (TVZ_G1) level cluster. Thermithiobacillus tepidarius from
another family and Acidiferrobacter thiooxydans from another class are used as outgroups
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for single-nucleotide differences detected among TVZ
populations are above Illumina sequencing error rates
determined for metagenomics (0.04–0.12% for SNVs
and 0.00028–0.00051% for indels) [82], and support for
the consensus sequences is afforded by overall high
genome coverages (on average 37.4 ± 45.7 × coverage)
(Table S2), which indicates variations represent real
biological differences. Genetic variations among MAGs
recovered from unique TVZ hot springs between 1 km
and 65 km apart suggests that successful colonization of
these diverse habitats by cosmopolitan Acidithiobacillus
species is achieved via population-level diversification,
either due to environmental selection controlled by the
unique chemical conditions of each hot spring or genetic
drift and dispersal limitation [83, 84]. This is exemplified
by habitat-differentiated ecotypes of the pelagic cosmo-
politan genus Prochlorococcus [85]. Similarly, distinct
clades of Sulfolobus have been found in remote hot
springs [86], indicating a high degree of genetic variation
driven by spatial separation.

GC contents correspond with optimal growth
temperatures in Acidithiobacillus
Predicted optimal growth temperatures for the TVZ
Acidithiobacillus species and other Acidithiobacillus type
strains by GrowthPred are shown in Fig. 3a, along with
the actual temperature ranges across which they were
found. Results show that for Acidithiobacillus isolates
GrowthPred predicted optimal growth temperatures
near or at the reported upper temperature limits of these
organisms, as expected based on the master reaction
model for temperature growth curves [87, 88]. On the
other hand, for TVZ populations, GrowthPred predicted
optimal growth temperatures to typically fall in the mid-
dle of the temperature ranges at which they were de-
tected, possibly due to different tolerances within
populations.
In order to determine whether GC content contributes

to heat tolerance, we examined the compositions of GC
in the TVZ Acidithiobacillus and reference genomes.
Data show that the TVZ Acidithiobacillus groups have
an average GC content of 59.0 ± 2.9%, whereas the other
37 reference Acidithiobacillus have an average GC con-
tent of 56.9 ± 3.2% (Fig. 5a, d). Interestingly, A. caldus
TVZ_G1 bins alone have average GC contents of 62.8 ±
0.1%. These contents are significantly higher (p = 1.2 ×
10-13) than all other known Acidithiobacillus (GC con-
tent data retrieved from GTDB and also recalculated by
CheckM), of which the GC contents range from 52.6 to
61.7% (Table S2). Even when compared to other strains
of A. caldus, we found that the TVZ_G1 clade still had
a significantly higher GC content (p = 2.27 × 10-6). Al-
though some studies have reported that A. caldus DSM
8584 (or ATCC 51756) contains 63.9% GC [2, 3], this

was based on only the 16S rRNA gene sequences, while
the whole genome GC content was instead shown to be
61.7% [12].
As it has been debated whether GC content and opti-

mal growth temperature are correlated in prokaryotes
[89–92], we determined the relationship between the
GC content of taxa and their preferred growth tempera-
tures in order to verify this. Our results indicate that
Acidithiobacillus GC contents and optimal growth tem-
peratures, as predicted by GrowthPred, are positively
correlated (R = 0.75, p = 3.0 × 10−11; Pearson’s
correlation coefficient) (Fig. 5a). This suggests higher
GC contents might contribute to heat tolerance in
Acidithiobacillus from the TVZ and elsewhere. Higher
thermostability is a well-known characteristic of GC-rich
DNA, owing to the greater thermostability imparted by
the three hydrogen bonds binding GC, in contrast to the
two hydrogen bonds binding AT pairs [90, 92]. In
addition, the stacking arrangement of adjacent bases is
another important factor contributing to the thermal
stability of DNA, as there is more favorable stacking en-
ergy for GpC/CpG pairs than for ApT/TpA pairs, such
that genomes consisting of more GpC/CpG islands tend
to be more thermostable than those that have fewer
islands [93].
It is worth noting that GrowthPred calculates an

organism’s optimal growth temperature from the
frequency of a set of amino acids (IVYWREL), which is
the only set (out of all amino acids) that was found to be
remarkably positively correlated with optimal growth
temperature [94]. The predicted optimal growth temper-
atures could therefore be influenced by GC-rich codons,
associated with five out of seven of this set, which
account for more than 40% of GC-rich codons, such as
GUC and GUG (for Val, V), UGG (for Trp, W), CGC
and CGG (for Arg, R), GAG (for Glu, E), and CUC and
CUG (for Leu, L). Nevertheless, positive correlations
between GC content and optimal growth temperatures
in the TVZ Acidithiobacillus are reinforced by the high
hot spring temperatures in which these species were
detected (Fig. 2a–d).

High proline composition contributes to heat tolerance in
TVZ Acidithiobacillus
To examine heat tolerance capability, we determined the
correlation between proline content and optimal growth
temperature of the TVZ Acidithiobacillus groups. Re-
sults indicated that the TVZ Acidithiobacillus genomes,
along with the Taiwanese hot spring strain UBA2486,
have significantly higher proportions of codons encoding
proline than other Acidithiobacillus (5.5% ± 0.1 versus
5.2% ± 0.1, p = 3.8 × 10-10) (Table S2). The proline-
coding contents are also positively correlated with opti-
mal growth temperature (R = 0.92, p < 2.2 × 10−16) (Fig.

Sriaporn et al. Microbiome           (2021) 9:135 Page 9 of 17



5b). Notably, proline is not one of the amino acids
used by GrowthPred to calculate optimal growth
temperature. Protein thermostabilization by proline
substitutions is a strategy thermophiles use to cope
with high-temperature environments by reducing the
conformational degrees of freedom in the main poly-
peptide chain [95, 96]. The structure of proline is
more similar to α-imino acid, rather than α-amino
acid, such that its side chain is folded back to form a
peptide bond with nitrogen, which results in rigid
constraints on the N-C α-rotation. Alongside higher
GC contents, higher proline compositions might

explain the widespread occurrence of TVZ Acidithio-
bacillus in extremely hot environments that exceed
the temperature limits of many other
Acidithiobacillus.
In addition, we explored differences in heat-shock

proteins (HSPs) in the TVZ genomes compared to other
reference Acidithiobacillus species; however, no difference
in HSP abundances (copies per genome) was observed
between these groups. We believe the reason for this is that
HSPs are designed initially for upshifts/downshifts in
temperature. As the TVZ strains were found in high-
temperature springs, this suggests adaptation to high

Fig. 5 Scatter plots of the TVZ and other Acidithiobacillus species. Plots a–c show positive correlations between a GC content (%) and optimal
growth temperature (°C) (R = 0.75, p = 3.0 × 10−11); b predicted proline contents (%) and optimal growth temperature (°C) (R = 0.92, p < 2.2 ×
10−16); and c percentage of paralogous proteins and coding sequences (CDS) (R = 0.63, p = 1.7 × 10−7). Plots d–f show negative correlations
between d GC content (%) and estimated genome size (Mbp) (R = − 0.51, p = 7.0 × 10−5); e predicted proline content (%) and estimated
genome size (Mbp) (R = − 0.81, p = 3.4 × 10−14); and f optimal growth temperature (°C) and estimated genome size (Mbp) (R = − 0.86, p < 2.2 ×
10−16). g Shows a positive correlation between minimum generation time (hr) and estimated genome size (Mbp), with reference A. caldus and
the Taiwanese Acidithiobacillus (UBA2486) as outliers (R = 0.36, p = 0.008). h Shows a negative correlation between number of non-coding RNA
and optimal growth temperature (°C) (R = − 0.45, p = 0.00044). i Shows a positive correlation between percent of non-coding RNA and estimated
genome size (Mbp) (R = 0.24, p = 0.08). Optimal growth temperatures were derived from GrowthPred calculation. The nearest (co-clustering)
unclassified Acidithiobacillus species (black rimmed-circle) to TVZ_G2 is Acidithiobacillus sp. UBA2486 in all plots. Pearson’s correlation coefficients
and t-distribution tables were used to determine the correlation coefficients and the significances, respectively, as described in the methods
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temperatures, and no noticeable difference in HSP abun-
dances. However, differences in expression cannot be
excluded.

Evidence of genome streamlining in the TVZ
Acidithiobacillus
We compared the estimated genome sizes of TVZ and
other Acidithiobacillus and found the TVZ hot spring
groups and the Taiwanese hot spring strain (UBA2486)
had considerably smaller genome sizes on average (2.1 ±
0.3 Mbp) compared to those of the reference genomes
(3.3 ± 0.4 Mbp, p = 3.2 × 10−12) (Fig. 5d–g, i). Notably,
the genome sizes of the TVZ A. caldus clade were also
much smaller than other A. caldus strains (2.1 ± 0.1
Mbp versus 3.1 ± 0.1 Mbp, p = 1.83 × 10-10) that are not
typically associated with hot spring environments. The
smaller estimated genome sizes, particularly for
Acidithiobacillus spp. TVZ_G3 and TVZ_G4, are indica-
tive of genome streamlining. During streamlining,
prokaryotes minimize complexity in their cells in order to
make the most use of resources required for replication
and, thus, increase fitness [97]. In addition, despite the
geographical distance, Acidithiobacillus sp. UBA2486,
which was recovered from a hot spring environment in
Taiwan (temperature = 50–85 °C and pH = 2.5) [98],
shares a similar estimated genome size (along with other
studied genomic attributes) with the TVZ Acidithiobacil-
lus (Fig. 5a–i). Results are in agreement with prior
research demonstrating that prokaryotes adapted to high
temperatures (in this case, hot springs) tend to have
smaller genome sizes, alongside lower proportions of non-
coding RNA, suggestive of streamlining (Fig. 5f, h) [99].
Accordingly, we also found broadly lower proportions of
non-coding RNA to estimated genome size in TVZ
Acidithiobacillus spp. (Fig. 5i).
To further explore the link between adaptation to high

temperatures and genome reduction in hot spring Acid-
ithiobacillus, we plotted estimated genome size against
predicted optimal growth temperature. Results illustrate
a strong negative correlation between optimal growth
temperature and increasing estimated genome size (R =
− 0.86, p < 2.2 × 10−16; Pearson’s correlation coefficient)
(Fig. 5f). Both smaller genome sizes and higher optimal
growth temperatures can underpin faster genome repli-
cation rates [97, 99]. Consistent with this, we found that
predicted genome replication rates were highest for the
smaller hot spring Acidithiobacillus genomes, and mini-
mum generation times were lower than for most other
Acidithiobacillus (Fig. 5g, Table S2). High predicted rep-
lication rates may explain the overall high relative abun-
dance of the TVZ Acidithiobacillus across the hot spring
environments tested. In addition, the identified ranges of
iRep values are consistent with those from other studies
of actively growing communities [64, 100], implying that

these organisms were active in the environment at the
time of sampling.
Results further indicate that estimated genome size in

Acidithiobacillus is negatively correlated with GC con-
tent and proline composition (R = − 0.51, p = 7.0 × 10−5

and R = − 0.81, p = 3.4 × 10−14; Pearson’s correlation co-
efficient) (Fig. 5d, e), even though GC content has been
shown elsewhere to be positively correlated with genome
size in prokaryotes [101, 102]. Although A. caldus TVZ_
G1 genomes, in particular, have a relatively high GC
content, this contradiction is likely due to the import-
ance of high GC composition for thermotolerance. It is
possible, therefore, that TVZ_G1 underwent genome re-
duction, resulting in smaller genome sizes than other A.
caldus, yet preserved high GC contents as an adaptive
strategy for high-temperature environments.
Finally, streamlined prokaryotes also tend to have a

lower fraction of paralogs compared to CDS [57, 84].
We determined the amount of paralogous predicted pro-
tein sequences in Acidithiobacillus genomes and found
that the TVZ Acidithiobacillus (along with UBA2486)
have lower proportions of paralogous predicted protein
sequences than other Acidithiobacillus genomes (on
average 18.8% ± 4.5 versus 24.0% ± 4.2, p = 9.6 × 10−5) (Fig.
5c). Our results also show that the percent of paralogs is
correlated with CDS (R = 0.63, p = 1.7 × 10−7; Pearson’s
correlation coefficient) and genome size (R = 0.24, p =
0.008; Pearson’s correlation coefficient), consistent with re-
sults from other studies [66, 103].

Amino acid decarboxylases, Na+/H+ antiporters, K+

transporters, and proton-efflux ATPases contribute to
habitation across wide pH ranges
All four TVZ Acidithiobacillus populations were de-
tected across wide pH ranges exceeding the previously
known limits of other Acidithiobacillus species. Here we
examined genes encoding five groups of proteins in-
volved in pH homeostasis: amino acid decarboxylases
(using H+ in the decarboxylation of amino acids), K+

transporters, deiminases/deaminases (generating ammo-
nium ions from ammonia and H+), Na+/H+ antiporters,
and plasma membrane proton-efflux P-type ATPases
[104–107] (Table S7). Gene prediction results show that
all four TVZ populations share similar numbers of gene
copies encoding proteins in K+ transporters (two to
three copies each) and that this is also similar to those
found in other Acidithiobacillus genomes (Fig. 6). Com-
parably, we found the TVZ and other Acidithiobacillus
share one copy each of genes encoding proteins in the
deiminases/deaminases group (agmatine deiminase, N-
carbamoylputrescine amidase, and adenosine deami-
nase), with few exceptions (e.g., A. caldus ATCC 51756
and A. albertensis DSM 14366 lack adenosine deami-
nase) (Fig. 6). K+ uptake helps maintaining pH
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homeostasis by generating the internal positive mem-
brane potential [104, 108], while deiminase/deaminase
reactions create ammonia as a by-product which later
combines with protons to produce ammonium ions
[106]. Nevertheless, TVZ populations differ in the num-
ber of gene copies they respectively have that encode
amino acid decarboxylases, Na+/H+ antiporters, and
plasma membrane proton-efflux P-type ATPases.

We predict that TVZ_G1 and other A. caldus primar-
ily rely on amino acid decarboxylases, in addition to K+

transporters, to maintain pH balances (Fig. 6). They
were found to possess one copy each of genes encoding
three distinct amino acid decarboxylases, and fewer cop-
ies of genes than the other TVZ groups (only one each)
for Na+/H+ antiporter and plasma membrane proton-
efflux ATPase. The pH homeostasis genes detected in A.

Fig. 6 Heatmap showing the number of proteins associated with pH homeostasis in the TVZ and other Acidithiobacillus species. Bold script
indicates the representative genome of the TVZ Acidithiobacillus species. Accession IDs of genes analyzed can be found in Table S7
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caldus TVZ_G1 were similar to those of other A. caldus
strains. This is likely due to their close phylogeny
(Fig. 4). These genes are likely preserved by TVZ_G1,
despite genome streamlining, due to their significance
for inhabiting acidic environments. Although the
amino acid decarboxylation indeed helps in eliminat-
ing intracellular protons, whether the decarboxylated
product (e.g., GABA from glutamate decarboxylation)
is exported from the cells is still being debated. Some
studies claim that GABA might be kept in the cells
after decarboxylation and can be further transformed
and included in the TCA cycle [109, 110]. Other
studies suggest that it is exported right after decarboxyl-
ation [104–107]. Either way, all 19 TVZ and 10 reference
Acidithiobacillus genomes studied here were found to lack
the genetic capacity to convert GABA into succinate
semialdehyde and succinate (via GABA transaminase (EC
2.6.1.19) and succinate-semialdehyde dehydrogenase (EC
1.2.1.16)), and the complete glutamate decarboxylase
exporting system was also not identified. Nonetheless, a
previous study has shown that amino acid decarboxylation
was highly expressed by A. caldus when introduced to
acid stress [111].
In contrast to the A. caldus group, up to three gene

copies encoding Na+/H+ antiporters and another three
for plasma membrane proton-efflux ATPases are present
in TVZ_G2 MAGs, alongside three more for amino acid
decarboxylases. These results suggest TVZ_G2 rely on
all three mechanisms to cope with excess protons to
maintain their intracellular pH. MAGs in both the
closely related TVZ_G3 and TVZ_G4 Clade III groups
also tended to possess more than one gene copy encod-
ing Na+/H+ antiporters (up to three). Strikingly, how-
ever, none contained genes for glutamate decarboxylase.
In addition, TVZ_G3 MAGs tended to have fewer gene
copies than TVZ_G2 for plasma membrane proton-
efflux ATPase (one or two) (Fig. 6), while TVZ_G4
MAGs were found to possess up to four plasma mem-
brane proton-efflux ATPase gene copies.
As for TVZ_G2-G4, Na+/H+ antiporter gene copies

were also found to be high, similar to those found in A.
thiooxidans, A. ferrooxidans, A. ferrivorans, and A. alber-
tensis (Fig. 6); all except for A. ferrivorans have wide pH
growth ranges (0.5–6.0) (Fig. 3b). This implies that pos-
sessing more Na+/H+ antiporters genes might be a key
strategy allowing these Acidithiobacillus to live across
wide pH ranges. In addition, Na+/H+ antiporters are
driven by proton motive force generated by the respira-
tory chain, i.e., electrochemical gradients [104, 105].
They, therefore, potentially consume less energy than
amino acid decarboxylation (which requires the uptake
of amino acids and the exclusion of decarboxylated
products) and plasma membrane proton-efflux P-type
ATPases (which cost ATP) [104, 105, 112, 113]. As such,

the use of antiporters for pH tolerance could also be an
energy-efficient mechanism for streamlined
microorganisms.

Conclusions
Four thermoacidophilic populations of Acidithiobacillus,
which included three novel genome-inferred species and
one new A. caldus clade, were recovered in this study.
Three of these are abundant, cosmopolitan populations,
widely distributed across TVZ geothermal environments
and extreme ranges of temperature (17.5–92.9 °C) and pH
(1.0–7.5); in both cases exceeding the previously known
upper physiological limits of Acidithiobacillus. Hot spring
Acidithiobacillus genomes were found to have high GC and
proline-coding contents, which are interpreted to increase
thermostability, potentially enabling them to live at high
temperatures. Moreover, results indicate the hot spring
Acidithiobacillus have undergone genome streamlining,
likely as a result of thermal adaptation. In addition, we pre-
dicted that some TVZ Acidithiobacillus (TVZ_G1-G2)
cope with the broad pH conditions via dependence on a
higher number of amino acid decarboxylase genes. TVZ_
G2-G4 also shared a roughly similar number of Na+/H+

antiporters and plasma membrane proton-efflux proteins
with other reference Acidithiobacillus species that have
similarly wide pH ranges, suggesting the importance of
these two predicted proteins in organisms inhabiting a
broad spectrum of pHs. While experimental confirmation
of bioinformatic predictions is needed, results provide in-
sights into genomic features and adaptations that we infer
enable hot spring-associated Acidithiobacillus species to
colonize a broad range of physicochemically diverse
environments.
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