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An atlas of the tissue and blood
metagenome in cancer reveals novel links
between bacteria, viruses and cancer
Sven Borchmann1,2,3

Abstract

Background: Host tissue infections by bacteria and viruses can cause cancer. Known viral carcinogenic mechanisms
are disruption of the host genome via genomic integration and expression of oncogenic viral proteins. An
important bacterial carcinogenic mechanism is chronic inflammation. Massively parallel sequencing now routinely
generates datasets large enough to contain detectable traces of bacterial and viral nucleic acids of taxa that
colonize the examined tissue or are integrated into the host genome. However, this hidden resource has not been
comprehensively studied in large patient cohorts.

Methods: In the present study, 3025 whole genome sequencing datasets and, where available, corresponding
RNA-seq datasets are leveraged to gain insight into novel links between viruses, bacteria, and cancer. Datasets were
obtained from multiple International Cancer Genome Consortium studies, with additional controls added from the
1000 genome project. A customized pipeline based on KRAKEN was developed and validated to identify bacterial
and viral sequences in the datasets. Raw results were stringently filtered to reduce false positives and remove likely
contaminants.

Results: The resulting map confirms known links and expands current knowledge by identifying novel associations.
Moreover, the detection of certain bacteria or viruses is associated with profound differences in patient and tumor
phenotypes, such as patient age, tumor stage, survival, and somatic mutations in cancer genes or gene expression
profiles.

Conclusions: Overall, these results provide a detailed, unprecedented map of links between viruses, bacteria, and
cancer that can serve as a reference for future studies and further experimental validation.

Introduction
Bacterial [1, 2] and viral [3–5] infections have widely
been recognized as causes of cancer. Examples of car-
cinogenic viruses are Human Papillomaviridae, causing
head and neck [6, 7] as well as cervical cancer [3, 8, 9]
or Hepatitis B virus, causing liver cancer [10, 11]. The

main carcinogenic mechanisms for viral carcinogenesis
are thought to be (1) viral integration into and disrup-
tion of the host genome and (2) expression of oncogenic
viral proteins [12].
An important example of bacteria causing cancer is

Helicobacter pylori which can cause adenocarcinoma of
the stomach [13, 14]. The carcinogenic mechanism at
play here is thought to be an entirely different one
compared to carcinogenic viruses, namely sustained in-
flammation caused by a chronic, mostly subclinical in-
fection [1]. For some links between infections and
cancer, preliminary evidence has been presented, but the
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simultaneous presence of contradictory findings has led
to widespread debate. An example of this is the finding
that high levels of Fusobacterium nucleatum can be
found throughout the cancerous tissue of colorectal can-
cer at much higher levels than in the tissue of benign ad-
enomas or healthy colon mucosa [15–17]. Given the
diversity of carcinogenic mechanisms [18], it is likely
that other carcinogenic viruses and bacteria exist, al-
though currently unknown.
Recent advances in massively parallel sequencing have

made it possible to generate large amounts of data
informing about the genome, transcriptome, and epige-
nome of a tissue [19]. Resulting datasets contain traces
of non-host origin that are present either because of
genomic integration or the presence of the virus or
bacteria in the tissue itself. While some studies have
already been performed with the goal of repurposing this
data in order to reveal novel links between infections
and cancer [4, 5, 20, 21], these resources have so far
been underutilized.
With the above aim in mind, the present study lever-

ages a large, high-quality collection of over 3000 whole
genome sequencing datasets in order to gain insight into
novel links between viruses, bacteria, and cancer.

Results
Samples
A total of 3025 whole genome sequencing datasets com-
prising 3.79 trillion reads were included in this study
(Fig. 1a, Supplementary Table 1). These include 1330
whole genome sequencing datasets of tumor tissue
samples across 14 different cancers from 19 Inter-
national Cancer Genome Consortium (ICGC) [22]
studies (Supplementary Table 1). Included patients were
predominantly male (n = 1028, 60.6%) and elderly, with
47.3% of patients (n = 801) at least 60 years old (Fig. 1b,c).
Two types of controls were used throughout this study.
First, patient-matched normal (e.g., non-cancerous) tissue
controls (n = 1330, mostly blood-derived or from tissue
adjacent to the tumor, details in Supplementary Table 1)
were utilized as controls. Only patients, for whom such a
same-patient control was available were included in this
study. Additionally, whole genome sequencing datasets of
blood-derived DNA of 365 subjects from the 1000 gen-
ome project [23] were selected as a healthy control group
substituting for the lack of negative sequencing controls
to examine non-human DNA in the blood of healthy do-
nors. Samples in the healthy control group were processed
and sequenced at 5 different sequencing centers (86 at the
BGI-Shenzhen, 86 at the Broad Institute, 11 at Illumina,
113 at the Sanger Institute, and 69 at Washington Univer-
sity in St Louis). Only subjects, in whom blood-derived
DNA was directly subjected to whole genome sequencing,
as opposed to DNA derived from immortalized

lymphoblastoid cell lines (LCL) (subset analyzed, n = 102),
were included in the healthy control cohort. Whole gen-
ome sequencing datasets derived from LCL DNA showed
a markedly different species-level taxon distribution likely
representing taxa present due to LCL culture and not
present in the donor itself (Supplementary Figure 1A,
Supplementary Data 1-2). For validation purposes and to
assess differential gene expression in cancers linked to cer-
tain species-level taxa, all available, matching RNA-seq
datasets were also analyzed (n = 324).

Validation of pipeline
To perform taxonomic binning, a pipeline was built
around Kraken [24], which at its core is based on the
exact alignments of k-mers to their least common ances-
tor (LCA).
Kraken has been evaluated in two studies comparing

metagenomic classifiers. In the first study [25], Kraken
with its built-in filter performed well in species-level
taxonomic binning, only being outperformed by few
other tools, measured by F1 score, precision, recall, and
area under the precision-recall curve. Importantly, it was
only outperformed by tools that have a low recall if only
very little sequence coverage is present for a taxon.
These alternative tools are therefore not useful for this
study. The same applies to combining different tools to
arrive at a consensus binning. All tested combinations of
other tools with Kraken have a very low recall rate at
low coverage.
A low false positive rate is essential for this study and

Kraken achieves this if its built-in filter is used. These
performance characteristics were largely similar in an-
other comparative study of metagenomic classifiers [26];
however, this, second study also found that the taxo-
nomic binning by Kraken often contains false positive,
very small bins. This can be mitigated by ignoring
taxonomic bins that are very small, i.e., contain very few
reads, which has been done in this study. Additionally,
the filter stringency was increased. In one of the com-
parative studies of metagenomic classifiers, a filter
threshold of 0.2 was used [25]. In the present study, a
more stringent filter threshold of 0.5 was applied, aiming
to further reduce false positives. Furthermore, the pipe-
line was validated twofold. In brief, it was confirmed that
(i) the pipeline was able to identify already known bac-
terial and viral taxa in tissue-derived bacterial isolates
and cell lines with known integration of viral DNA (Sup-
plementary Data 2, Supplementary Figure 1B), and (ii)
identified taxa in pairs of RNA-seq and WGS data of the
same tumor tissue sample are correlated both in a com-
bined dataset of all pairs and within each sample for
which RNA-seq and WGS data was available (n = 324)
(Supplementary Figure 1 C-D).
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Fig. 1 (See legend on next page.)
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A map of cancer-linked bacterial and viral taxa
A total of 3,534,707 read pairs matching bacterial, viral,
or phage species-level taxa were detected across 19 stud-
ies in 3025 samples (Fig. 1d,e, Supplementary Table 1,
Supplementary Data 4). Subsampling 10% of all read
pairs did not alter the detected species-level taxa, and
their relative composition compared to analyzing all
non-human read pairs which was validated in a subset of
patients (Supplementary Figure 1E-F, Supplementary
Data 5). On average, 2.2 species-level taxa per sample
were detected, although variation was high (Supplemen-
tary Data 6, Supplementary Figure 3 A-D). The mean
number of total reads per sample was 1.25 × 109 (1.16 ×
107 standard error of mean (s.e.m.)), the mean number
of non-human, unmapped reads used for analysis per
sample was 9.91 × 105 (4.34 × 104 s.e.m.), and the mean
number of reads matching any taxon (excluding
phiX174) was 2072 (291.8 s.e.m.) (Fig. 1f). A total of 218
species-level taxa could be identified in all examined
samples (Fig. 1g, Supplementary Data 7). Escherichia coli
and Propionibacterium acnes were the most detected
species in all samples (Fig. 1h).
In order to control for differences in sequencing depth

between samples, all raw read pair counts were normal-
ized by dividing them by 1,000,000,000 total read pairs.
This normalized count was defined as read pairs per bil-
lion (RPPB). The mean RPPB detected in healthy control
samples from the 1000 genome cohort, matched normal
samples, and tumor tissue samples were 18,112 (4238
s.e.m.), 20,003(4295 s.e.m.), and 28,282 (9081 s.e.m.), re-
spectively, with large variation across samples and se-
quencing projects (Fig. 1i). Of note, particularly high
RPPB were detected in matched normal, saliva-derived
samples from acute myeloid leukemia (AML) patients,
as would be expected from a non-sterile source such as
saliva. Ralstonia pickettii was the species with the

highest RPPB and almost absent in healthy donors, while
being detected at higher levels in tumor tissue compared
to matched normal samples (Fig. 1j). Except for Bacillus
subtilis, Acidovorax sp. KKS102, and Bacillus cereus, all
species with very high RPPB were detected predomin-
antly in tumor tissue or matched normal samples. A
clustered heatmap of the species-level taxa detected in
all samples is provided in Fig. 2.

Filtering strategy
Next, filtering was performed to exclude taxa that were
(i) frequently detected in the healthy control group, (ii)
detected in only very few (< 5) tumor tissue or matched
normal samples, (iii) phages, (iv) taxa that are commonly
detected as part of the normal oral microbiome and
were mainly detected in saliva, oral or esophageal cancer
tissue samples (Supplementary Data 8), (v) taxa that have
been previously described as sequencing contaminants
(Supplementary Data 9), and (vi) taxa, for which the
detected reads were unevenly distributed across the gen-
ome of the respective taxon (Supplementary Figure 4).
After all these filtering steps (Supplementary Figure 5), 27
species-level taxa remained for further analysis (Supple-
mentary Figure 6, Supplementary Data 10).
Among these, known tumor-linked taxa, such as

Hepatitis B virus [10, 11] or Salmonella enterica [27,
28], were detected. Furthermore, taxa that have previ-
ously been implicated in carcinogenesis, although with-
out enough evidence to support a carcinogenic role,
such as Pseudomonas species [29, 30], and taxa that have
never been implicated in carcinogenesis before, such as
Gordonia polyisoprenivorans, were detected. Of note,
most taxa in the final filtered species list were detected
at much higher RPPB levels in tumor tissue compared to
matched normal samples. However, lower RPPB of the
respective species could still be detected in most

(See figure on previous page.)
Fig. 1 Overview of sample characteristics and identified taxa. a Sample distribution by project. b Sample distribution by age group. c Sample
distribution by gender. d Distribution of read pairs matching any species-level taxa by project. e Distribution of read pairs matching any species-
level taxa by sample type. f Distribution of total reads per sample, analyzed unmapped reads per sample, and non-phiX174 taxon-mapped reads
per sample (non-phiX174 taxon-mapped reads per sample not shown for 365 samples as none were detected). g Species-level taxa detected in at
least 10 samples color-coded by project. h Detection of Escherichia coli and Propionibacterium acnes color-coded by project. i Average read pairs
per billion (RPPB) detected across all species-level taxa by project and sample type. Bars show mean of samples and error bars show standard
error of mean. j Average RPPB detected by species-level taxa and sample type. Average RPPB detected for all filtered species-level taxa identified
as likely tumor-linked by sample type. Filtered species-level taxa identified as likely tumor-linked color-coded by project. *, tumor tissue samples
were all primary solid tumor biopsy material for all projects with the following exceptions: CLL-ES, where tumor tissue samples were blood-
derived CLL cells; CMDI-UK, where 3 tumor tissue samples were bone-marrow-derived and 29 samples blood-derived; LAML-KR, where all 12
tumor tissue samples were bone-marrow-derived; PACA-AU, where 1 tumor tissue sample was cell-line-derived; and 96 solid tumor biopsy
material and PRAD-UK, where 4 samples were cancerous lymph nodes, 1 sample was a metastatic lesion, and 28 samples were solid tumor
biopsy material.**, matched normal samples were all blood-derived for CLL-ES, LINC-JP, ORCA-IN, PRAD-CA, and RECA-EU, all matched non-
cancerous tissue derived for BTCA-SG, LICA-FR, and PAEN-IT, a mix between blood-derived and matched non-cancerous tissue for BOCA-UK (69
vs. 7), BRCA-UK (44 vs. 1), ESAD-UK (87 vs. 10), LIRI-JP (250 vs. 6), PACA-AU (3 vs. 94), PACA-CA (55 vs. 68), and PAEN-AU (5 vs. 44), a mix between
blood-derived and buccal cell-derived for CMDI-UK (31 vs. 1), a mix between blood-derived and EBV immortalized cell-line-derived for OV-AU (59
vs. 14), and a mix between blood-derived and cancer-free lymph node derived for PRAD-UK (23 vs.10). For some samples, the source tissue was
not specified (BRCA-UK (n = 1), LAML-KR (n = 1), and PACA-CA (n = 24). ***, all healthy donor samples are blood-derived
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matched normal samples. Across all taxa, tumor tissue
samples and matched normal samples were highly corre-
lated (Supplementary Figure 1G).

Pan-cancer analysis
In order to better understand the link between detected
taxa and different cancers and their relation to each
other, a heuristic approach combining the non-linear di-
mensionality reduction and visualization method t-dis-
tributed stochastic neighborhood embedding (t-SNE)
with k-means clustering was used. To focus on taxa that
potentially play a more direct role in carcinogenesis and
considering that RPPB of detected taxa were highly cor-
related between tumor tissue and matched normal tissue
with lower levels detected in matched normal tissue
(Supplementary Figure 1G), only tumor tissues were in-
cluded in the following analyses.
Utilizing a pan-cancer approach, a combined dataset

of all tumor tissue samples was visualized using t-SNE
using the log2-transformed RPPB of all detected non-
phage taxa (n = 204) as input variables. First, two
distinct groups of patients with chronic lymphocytic

leukemia (CLL) could be identified. One group (n = 24)
with detection of Gordonia polyisoprenivorans and an-
other group (n = 15) with detection of Pseudomonas
mendocina in the tumor tissue. Second, one distinct
group (n = 23) of pancreatic cancer patients with detec-
tion of Cupriavidus metallidurans was observed. Third,
one group (n = 22) of bone cancer patients with detec-
tion of Pseudomonas poae, Pseudomonas fluorescens, and
Pseudomonas sp. TKP could be distinguished. Fourth, a
group of patients (n = 14) with bone cancer (n = 4) or
chronic myeloid disorders (n = 10) with detection of
Pseudomonas sp. TKP was identified (Fig. 3a). Of note,
all taxa that defined clusters in this analysis where de-
tected across cohorts with the same and cohorts with
different cancers making contamination unlikely.

Cancer-specific analysis
In order to gain further insight into links between de-
tected taxa and specific cancers, each cancer type (Sup-
plementary Data 11) was also analyzed separately.
Patient groupings with similar detected taxa were visual-
ized using t-SNE with log2-transformed RPPB of all

Fig. 2 Heatmap of all taxa detected in all samples. Log2-transformed RPPB of all taxa in all samples (also including taxa that were filtered out
subsequently as potential contaminants). Taxa were hierarchically clustered using Pearson correlation as a distance measure with average-linkage.
Samples were hierarchically clustered within each project and type subgroup using Pearson correlation as a distance measure with average-
linkage. Tumor tissue samples were all primary solid tumor biopsy material for all projects with the following exceptions: CLL-ES, where tumor
tissue samples were blood-derived CLL cells; CMDI-UK, where 3 tumor tissue samples were bone-marrow-derived and 29 samples blood-derived;
LAML-KR, where all 12 tumor tissue samples were bone-marrow-derived; PACA-AU, where 1 tumor tissue sample was cell-line-derived; and 96
solid tumor biopsy material and PRAD-UK, where 4 samples were cancerous lymph nodes, 1 sample was a metastatic lesion, and 28 samples
were solid tumor biopsy material. Matched normal samples were all blood-derived for CLL-ES, LINC-JP, ORCA-IN, PRAD-CA, and RECA-EU, all
matched non-cancerous tissue derived for BTCA-SG, LICA-FR, and PAEN-IT, a mix between blood-derived and matched non-cancerous tissue for
BOCA-UK (69 vs. 7), BRCA-UK (44 vs. 1), ESAD-UK (87 vs. 10), LIRI-JP (250 vs. 6), PACA-AU (3 vs. 94), PACA-CA (55 vs. 68), and PAEN-AU (5 vs. 44), a
mix between blood-derived and buccal cell-derived for CMDI-UK (31 vs. 1), a mix between blood-derived and EBV immortalized cell-line-derived
for OV-AU (59 vs. 14), and a mix between blood-derived and cancer-free lymph node derived for PRAD-UK (23 vs.10). For some samples, the
source tissue was not specified (BRCA-UK (n = 1), LAML-KR (n = 1), and PACA-CA (n = 24). All healthy donor samples are blood-derived
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Fig. 3 (See legend on next page.)
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species in the final filtered taxon list as input variables
(Supplementary Data 10). Additionally, k-means cluster-
ing of patients was performed, using the same input var-
iables. To confirm associations and clusters, two
statistical tests were performed. First, sample RPPBs of a
taxon in an identified cluster were compared to RPPBs
of all samples of the same cancer type not in that cluster
by Mann-Whitney U test to confirm an abundance
difference of samples in the respective cluster com-
pared to samples not in that cluster (denoted pcluster).
Second, sample RPPBs of a taxon in an identified
cluster were compared to RPPBs of all samples in the
healthy control cohort by Mann-Whitney U test to
confirm the association of this taxon with a particular
cancer (denoted pcontrol).
Furthermore, each cluster was linked with age, sur-

vival, gender, number of somatic mutations in known
cancer genes, or specific somatic mutations in one of
those cancer genes. Aiming to increase the validity of
findings, all identified links between certain taxa and
cancers were evaluated for presence in multiple inde-
pendent sample cohorts of the same cancer, wherever
possible. Multiple sample cohorts where available for
liver cancer (n = 3), prostate adenocarcinoma (n = 2),
pancreatic adenocarcinoma (n = 2), and pancreatic
endocrine neoplasms (n = 2).

Bone cancer
In bone cancer, this dual methodology revealed a cluster
of patients with detection of Pseudomonas fluorescens
(pcluster = 3.2 × 10−14, pcontrol < 1 × 10−15), Pseudomonas
sp. TKP (pcluster = 1 < 10−15, pcontrol < 1 × 10−15), and
Pseudomonas poae (pcluster = 2.8 × 10−13, pcontrol < 1 ×
10−15) (cluster 2), confirming the results of the pan-
cancer analysis (Figs. 3 and 4b, a).

Chronic lymphocytic leukemia
In chronic lymphocytic leukemia, 2 taxon-linked clusters
could be identified, one of patients with detection of
Human Mastadenovirus C (pcluster < 1 × 10−15, pcontrol <
1 × 10−15) (cluster 2) and one of patients with detection
of Gordonia polyisoprenivorans (pcluster = 1.5 × 10−10,
pcontrol = 5 × 10−15) (cluster 3). Clusters could be identi-
fied by both methods, t-SNE and k-means (Fig. 3c,

Supplementary Figure 3B). Of note, the clusters of pa-
tients linked to Human Mastadenovirus C (cluster 2)
and Gordonia polyisoprenivorans (cluster 3) were mutu-
ally exclusive (p = 0.0124) (Figs. 3 and 4c, b). There was
a tendency towards different ages at diagnosis between
the clusters (p = 0.0743) (Fig. 5a), with patients in clus-
ter 2 (Human Mastadenovirus C) being younger. Add-
itionally, there was a tendency towards a difference in
survival between the different clusters (p = 0.0745). Pa-
tients not in any taxon-linked cluster had worse survival
than patients in cluster 2 (Human Mastadenovirus C) or
3 (Gordonia polyisoprenivorans) (p = 0.0246) (Fig. 5b).
Patients linked to Gordonia polyisoprenivorans (cluster
3) were more likely to have Binet C stage disease (5/36
vs. 1/61, Binet C vs. not, p = 0.0252) (Fig. 5c). These pa-
tients were also more likely to have TP53 mutations
(p(cluster 3 vs. other) = 0.0335) (Fig. 5d).

Esophageal cancer
In esophageal cancer patients, 2 taxon-linked clusters
were identified. k-means clustering revealed one cluster
of patients with detection of Bifidobacterium dentium
(pcluster = 1.7 × 10−14, pcontrol < 1 × 10−15) (cluster 2) and
one cluster with detection of Human Herpesvirus 5
(pcluster = 7.8 × 10−11, pcontrol = 5 × 10−15) (cluster 3).
However, these 2 clusters could not be differentiated by
t-SNE (Figs. 3 and 4d, c). There was a tendency towards
different numbers of somatic mutations in cancer genes
between clusters (p = 0.0858), with patients in cluster 3
(Human Herpesvirus 5) having fewer mutations than
other patients (p = 0.0392) (Fig. 5e). Additionally, there
was a tendency towards a difference in survival between
the different clusters (p = 0.1). Patients in cluster 2 (Bifi-
dobacterium dentium) or 3 (Human Herpesvirus 5) had
worse survival than patients not in any taxon-linked
cluster (p = 0.040928). (Fig. 5f).

Liver cancer
Patients with liver cancer could be grouped into 3
taxon-linked clusters by both k-means clustering and t-
SNE. One cluster was defined by detection of Hepatitis
B virus (pcluster < 1 × 10−15, pcontrol < 1 × 10−15) (cluster
1). A second cluster was defined by detection of mainly
Pseudomonas (pcluster between 1.6 × 10−6 and 4.5 × 10−6,

(See figure on previous page.)
Fig. 3 Patient clusters defined by detected taxa can be identified across all patients and in cancer-type subgroups. a t-SNE visualization of all
tumor tissue samples color coded by project using the log2-transformed RPPB of all detected non-phage taxa as input variables. b–h t-SNE
visualizations of single cancer subgroup tumor tissues (b bone cancer, c chronic lymphocytic leukemia, d esophageal cancer, e liver cancer, f
pancreatic adenocarcinoma, g prostate adenocarcinoma, h renal cancer). Different colors indicate the k-means clusters of samples to indicate if k-
means clustering and t-SNE visualization results in comparable sample groupings (Supplementary Figure 4). Log2-transformed RPPB of all
detected non-phage taxa were used as input variables for t-SNE visualization. Dimension 1 and dimension 2 is shown on the x- and y-axis,
respectively. Cluster 4*, Pseudomonas sp., Serratia sp., and Salmonella enterica; Cluster 2**, Pseudomonas sp., Serratia sp., Salmonella enterica,
Parvibaculum lavamentivorans, and Human Herpesvirus 5; Cluster 5***, Thauera sp. MZ1T, Cupriavidus metallidurans, and Pseudomonas mendocina
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Fig. 4 Heatmaps of tumor-linked taxa for all cancers with discernible clusters. a–g log2-transformed RPPB of all species-level taxa identified as
likely tumor-linked and detected after filtering in all tumor-tissues of the indicated cancer. Results of k-means clustering of samples are shown
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Fig. 5 (See legend on next page.)
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pcontrol 1.3 × 10−9 for all) and Serratia species (pcluster be-
tween 2.8 × 10−6 and 1.1 × 10−4, pcontrol between 1.3 ×
10−9 and 4.8 × 10−7) and Salmonella enterica (pcluster =
7.0 × 10−7, pcontrol = 1.3 × 10−9) (cluster 2). A third clus-
ter was defined by additional detection of Parvibaculum
lavamentivorans (pcluster = 1.2 × 10−12, pcontrol = 2.9 ×
10−13) and Human Herpesvirus 5 (pcluster = 5.0 × 10−8,
pcontrol = 1.9 × 10−8) as well as two additional Pseudo-
monas species, Pseudomonas poae (pcluster = 1.2 × 10−12,
pcontrol = 2.9 × 10−13), and Pseudomonas protegens (pclus-
ter = 1.2 × 10−12, pcontrol = 2.9 × 10−13) (cluster 4), in
addition to those detected in the previous cluster (Figs. 3
and 4e, d). Hepatitis B virus and Serratia species were
detected in 2 independent cohorts, while abovemen-
tioned Pseudomonas species were detected in all 3
independent cohorts, making contamination unlikely.
There was a tendency towards different ages at diagnosis
between the clusters (p = 0.0015) with patients in cluster
1 (Hepatitis B), cluster 2 (Pseudomonas and Serratia
sp.), and cluster 4 (Pseudomonas sp., Serratia sp., Parvi-
baculum lavamentivorans, and Human Herpesvirus 5)
being younger than patients not in any taxon-linked
cluster (p = 0.0001) (Fig. 5g). In a similar pattern, these
patients had a higher frequency of mutations in RNF21
(p = 0.0121) (Fig. 5h).

Pancreatic adenocarcinoma
In patients with pancreatic adenocarcinoma, 3 taxon-
linked clusters could be identified using k-means cluster-
ing. One cluster was defined by detection of Cupriavidus
metallidurans (pcluster < 1 × 10−15, pcontrol < 1 × 10−15)
(cluster 2), one by detection of Methylobacterium populi
(pcluster < 1 × 10−15, pcontrol < 1 × 10−15) (cluster 4), and
a last one by detection of Pseudomonas protegens (pcluster
= 3.6 × 10−12, pcontrol = 2.9 × 10−13) (cluster 5). Only the
cluster of patients linked to Cupriavidus metallidurans
(cluster 2) could also be identified using t-SNE (Figs. 3

and 4f, e). All 3 taxon-species associations could be de-
tected in both independent sample cohorts that were in-
cluded, making contamination unlikely. Differences in
the frequency of mutations between patients in different
clusters were observed in KMT2C, CDKN2A, and
RNF21. Patients in cluster 2 (Cupriavidus metallidur-
ans), 4 (Methylobacterium populi), or 5 (Pseudomonas
protegens) had a higher frequency of mutations in these
genes compared to the majority of patients not in any
taxon-linked cluster (n = 187) (p (KMT2C) = 0.0308, p
(CDKN2A) = 0.0124, p (RNF21) = 0.0107) (Fig. 5i–k).

Prostate cancer
In patients with prostate cancer, 3 taxon-linked clusters
emerged using k-means clustering, one defined by detec-
tion of Gluconobacter oxydans (pcluster = 6.6 × 10−13,
pcontrol < 1 × 10−15) and Rhodopseudomonas palustris
(pcluster = 8 × 10-15, pcontrol < 1 × 10−15) (cluster 2), one
by detection of Pseudomonas sp. TKP (pcluster < 1 ×
10−15, pcontrol < 1 × 10-15) (cluster 3) and a last one by
detection of Thauera sp. MZ1T (pcluster = 1.3 × 10−11,
pcontrol < 1 × 10−15), Cupriavidus metallidurans (pcluster
< 1 × 10−15, pcontrol < 1 × 10−15), and Pseudomonas men-
docina (pcluster = 1.8 × 10-8, pcontrol < 1 × 10-15) (cluster
5). Out of these, the cluster defined by Gluconobacter
oxydans and Rhodopseudomonas palustris (cluster 2)
and the one defined by Thauera sp. MZ1T, Cupriavidus
metallidurans, and Pseudomonas mendocina (cluster 5)
could be confirmed using t-SNE (Figs. 3 and 4g, f).
Cupriavidus metallidurans, Rhodopseudomonas palus-
tris, and Pseudomonas species could be detected in both
independent sample cohorts that were included. How-
ever, Gluconobacter oxydans could only be detected in
one cohort. There were age differences at diagnosis ob-
servable between the clusters (p = 0.0099) with patients
in clusters 2 (Gluconobacter oxydans) and 5

(See figure on previous page.)
Fig. 5 Patient clusters defined by detected taxa are phenotypically distinct. a CLL patient clusters (1: no specific taxon link, 2: Human
Mastadenovirus C, 3: Gordonia polyisoprenivorans) and age (p = 0.0743). b Survival by cluster in CLL (p(1 vs. other) = 0.0246). c Binet stage by
detection of Gordonia polyisoprenivorans (p = 0.0252). d TP53 mutation frequency by cluster in CLL (p(cluster 3 vs. other) = 0.0335). e Number of
cancer consensus gene mutations by cluster (1: no specific taxon link, 2: Bifidobacterium dentium, 3: Human Herpesvirus 5) in esophageal cancer (p
= 0.0858). f Kaplan-Meier survival curves for each cluster in esophageal cancer (p(1 vs. other) = 0.0409). g Liver cancer patient clusters (1: hepatitis
B virus, 2: Pseudomonas sp., Serratia sp. and Salmonella enterica, 3: no specific taxon link, 4: Parvibaculum lavamentivorans and Human Herpesvirus 5
in addition to taxa from cluster 2) and age (p = 0.0015). h RNF21 mutation frequency by cluster in liver cancer (p = 0.0121). i KMT2C mutation
frequency by cluster (1: no specific taxon link, 2: Cupriavidus metallidurans, 3: no specific taxon link, 4: Methylobacterium populi, 5: Pseudomonas
protegens) in pancreatic cancer (p = 0.0308). j CDKN2A mutation frequency by cluster in pancreatic cancer (p = 0.0124). k RNF21 mutation
frequency by cluster in pancreatic cancer (p(RNF21) = 0.0107). l Detection of indicated taxa and age in prostate cancer (padj between 0.0015 and
0.0420). m Prostate cancer patient clusters (1: no specific taxon link, 2: Gluconobacter oxydans and Rhodopseudomonas palustris, 3: Pseudomonas
sp. TKP, 4: no specific taxon link, 5: Thauera sp. MZ1T, Cupriavidus metallidurans and Pseudomonas mendocina) and age (p = 0.0099). n Link
between Propionibacterium acne RPPB and number of cancer consensus gene mutations in prostate cancer (padj = 0.0041). o Kaplan-Meier
survival analysis of Ralstonia pickettii detection status in renal cancer (padj = 0.035). p PBRM1 mutation frequency by cluster (1: no specific taxon
link, 2: Serratia marcescens) in renal cancer (p = 0.0723). q Pseudomonas sp. TKP detection and age in chronic myeloid dysplasia (padj = 0.039). For
all: The midline of the boxplots shows the median, the box borders show upper and lower quartiles, the whiskers show 5th and 95th percentiles
and the dots outliers. Only tumor tissues were included in this figure
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(Rhodopseudomonas palustris) being older than the
other patients (p = 0.0005) (Fig. 5m).

Renal cancer
In patients with renal cancer, a cluster of patients linked
to Serratia marcescens (pcluster < 1 × 10−15, pcontrol < 1 ×
10−15) (cluster 2) was identified using k-means cluster-
ing, although t-SNE did not separate this group of pa-
tients (Figs. 3 and 4h, g). There was a tendency towards
a lower frequency of PBRM1 mutations in patients in
cluster 2 (Serratia marcescens) (p = 0.0723) (Fig. 5p).

Other cancers
In patients with pancreatic endocrine neoplasms, ovarian
cancer, chronic myeloid disorders, and breast cancer, no
discernable taxon-linked clusters could be identified
(Supplementary Figure 7A-D).

Unbiased linkage analysis between bacterial and viral
taxa and patient or cancer phenotypes
In addition to linking the above identified clusters with
patient or cancer phenotypes, an unbiased analysis of
links between the detection of a species-level taxa and
patient or cancer phenotypes, such as age, survival, gen-
der, number of somatic mutations in known cancer
genes, and specific somatic mutations in one of those
cancer genes, was performed utilizing both a pan-cancer
approach and by analyzing each cancer type separately.
In this analysis, all non-phage taxa detected (n = 204)
were included and multiple testing correction was
performed.
When analyzing cancer types separately, several links

were identified. A group of bacterial taxa was linked to
older patients in prostate cancer (padj between 0.0015
and 0.0420) (Fig. 5l). In chronic myeloid dysplasia, detec-
tion of Pseudomonas sp. TKP was also linked to older
age (padj = 0.039) (Fig. 5q).
In the cancer-specific analysis, detection of Ralstonia

pickettii was linked to improved survival in renal cancer,
in fact no patients died (padj = 0.035) (Fig. 5o).
In prostate cancer, detection of and increasing Propioni-

bacterium acne RPPB were linked to a decreasing number
of cancer gene mutations (padj = 0.0041) (Fig. 5n).

Somatic lateral gene transfer
The integration of viral nucleic acids into the human
host genome is well recognized as a carcinogenic
process. High-level evidence exists for the integration of
Hepatitis B [10, 11], Human Papillomavirus [8, 9], and
Epstein–Barr virus (Human Herpesvirus 4) [31, 32],
which are causally linked to hepatocellular carcinoma,
cervical cancer, and lymphoma, respectively. Addition-
ally, some evidence for somatic lateral gene transfer

from bacteria to cancerous tissue has already been pre-
sented [20] and subsequently controversially discussed.
Aiming to find evidence for bacterial or viral DNA in-

tegration into the human host genome in this dataset, a
pipeline for this purpose was developed. In brief, read
pairs in which one read mapped to the human genome
and one read to one of the taxa in the final filtered taxon
list (n = 27) were counted and then compared to the
number of read pairs in which both reads mapped to the
respective taxa. The number of divergently mapping
read pairs divided by the number of complete pairs map-
ping that respective taxa was used as a measure for gen-
omic integration and lateral gene transfer. This was
done for the tumor tissue datasets and the matched nor-
mal datasets including all patients (n = 79) for which the
pipeline revealed at least 1000 RPPB matching one of
the taxa in the final filtered taxon list (Supplementary
Data 12). The highest rate of integration was observed
for Hepatitis B in tumor tissue (9.62%) (Supplementary
Figure 8A, Supplementary Data 13). Across all analyzed
taxa, putative integrations were more common in
matched normal samples than in tumor tissue samples
(p = 0.0009, Wilcoxon paired signed rank test) (Supple-
mentary Figure 8B, Supplementary Data 13-14) and for
viral taxa compared to bacterial taxa (p = 0.0001, Mann-
Whitney U test) (Supplementary Figure 8C, Supplemen-
tary Data 13-14). In conclusion, there was no evidence
for a general phenomenon of lateral gene transfer for
any species in the final filtered taxon list, with the excep-
tion of Hepatitis B, for which integration into the cancer
genome has been widely described [10, 11].

Differential gene expression analysis
Differential gene expression analysis was performed for
all taxa and cancer combinations with available tumor
tissue RNA-seq data, in which at least 5 patients had
upwards of 100 RPPB matching the respective taxon
(Supplementary Data 15). Differentially expressed genes
(q < 0.05) were identified for chronic lymphocytic
leukemia patients with or without detection of Gordonia
polyisoprenivorans (258 genes) (Fig. 6a, Supplementary
Data 16), Human Mastadenovirus C (1725 genes) (Fig.
6b, Supplementary Data 17), and Pseudomonas aerugi-
nosa (50 genes, Supplementary Data 18), respectively.
Furthermore, differentially expressed genes were identi-
fied for ovarian cancer patients with or without the de-
tection of Escherichia coli (22 genes) (Supplementary
Data 19) and pancreatic adenocarcinoma patients with
or without detection of Propionibacterium acnes (3
genes) (Supplementary Data 20).
Next, differential gene expression data was used to

perform bidirectional functional enrichment in order to
identify pathways that are altered in patients with or
without detection of the respective taxon. Only the two
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Fig. 6 Differential gene expression and pathway analysis of chronic lymphocytic leukemia patients. a Heatmap of all differentially expressed
genes (q < 0.05) in tumor tissue samples of chronic lymphocytic leukemia (CLL) patients with (green) and without (orange) detection of Gordonia
polyisoprenivorans. Dendrograms show clustering with complete linkage and Euclidian distance measure. b Heatmap of all differentially expressed
genes (q < 0.05) in tumor tissue samples of CLL patients with (green) and without (orange) detection of Human Mastadenovirus C. c Boxplots of
the distribution of activating versus inhibitory gene t-test statistics for the indicated pathway is shown for tumor tissue samples of CLL patients
with (+, n = 23) and without (−, n = 49) detection of Gordonia polyisoprenivorans. The midline of the boxplot shows the median, the box borders
show upper and lower quartiles and the whiskers the maximum and minimum test statistic. d Boxplots of the distribution of activating versus
inhibitory gene t-test statistics for the indicated pathway is shown for tumor tissue samples of CLL patients with (+, n = 7) and without (−, n =
65) detection of Human Mastadenovirus C. The midline of the boxplot shows the median, the box borders show upper and lower quartiles, and
the whiskers the maximum and minimum test statistic. Dendrograms show clustering with complete linkage and Euclidian distance measure
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patient groups with a significant number of differentially
expressed genes, chronic lymphocytic leukemia with or
without detection of Gordonia polyisoprenivorans
(Supplementary Data 21) or Human Mastadenovirus C
(Supplementary Data 22) had enriched pathways.
Overall, patients with detection of Gordonia polyiso-

prenivorans exhibited a gene expression pattern indica-
tive of a decreased level of mitotic cell cycling, an
increased DNA damage response, reduced blood coagu-
lation, and reduced macrophage activation (Fig. 6c).
Contrary to that, patients with detection of Human

Mastadenovirus C exhibited a gene expression pattern
indicative of an increase in B cell proliferation, a reduc-
tion of tumor necrosis factor and interleukin beta 1 pro-
duction, a reduction of activated T cell proliferation, and
a decrease in cytokine secretion. In addition, the altered
tumor tissue gene expression pattern of patients with
detection of Human Mastadenovirus C indicated a
markedly reduced DNA damage response (Fig. 6d).

Discussion
The aim of this this study was to leverage a large, high-
quality dataset of over 3000 samples to reveal novel links
between viral and bacterial taxa and cancer. A total of
218 species-level taxa could be identified in tumor tissue,
matched normal and healthy donor samples. Out of
these, following extensive filtering, 27 taxa were likely
cancer-linked. While studies of the viral metagenome of
cancer tissues and patients have been performed using
datasets from cancer genomics studies [4, 5, 21], similar
large studies examining the bacterial metagenome are
lacking.
Studies examining the viral metagenome of cancer tis-

sues mainly identified known links of Human Papillo-
mavirus to cervical and head and neck cancer, of
Hepatitis B to liver cancer, and of Human Herpesvirus 5
to a variety of cancers while the detection of Human
Mastadenovirus C was controversial [4, 5, 21].
Smaller studies examining bacteria-tumor links in

pan-cancer datasets have identified Escherichia coli, Pro-
pionibacterium acne, and Ralstonia pickettii in multiple
cancers, while more specifically finding Acinetobacter sp.
in AML and Pseudomonas sp. in both AML and adeno-
carcinoma of the stomach [20, 33]. Studying cancer-
specific datasets, Salmonella enterica, Ralstonia pickettii,
Escherichia coli, and Pseudomonas sp. were detected in
breast cancer and adjacent tissue [34], while Escherichia
sp., Propionibacterium sp., Acinetobacter sp., and Pseudo-
monas sp. were frequently detected in prostate cancer
[30]. Confirming the findings of the present study, these
smaller studies found similar bacterial taxa, especially
Ralstonia pickettii, Escherichia coli, Propionibacterium
acne, Salmonella enterica, and Pseudomonas sp. Interest-
ingly, the present study identified a number of taxa that

have not been previously identified in cancer tissue or
matched normal samples of these patients, among them
Cupriavidus metallidurans, Gordonia polyisoprenivor-
ans, Serratia sp., and Bifidobacterium sp.. Reasons for
this are likely (1) the much higher number and diversity
of patients and samples included, (2) the larger amounts
of data examined per sample due to having higher-
coverage WGS datasets available for all patients com-
pared to RNA-seq or whole-exome sequencing (WXS)
datasets in previous studies, and (3) the optimized and
extensively validated bioinformatics approach used here.
Of note, the filtering strategy used in this study to ex-
clude taxa likely resulting from contamination has also
eliminated bacterial taxa that have previously been
linked to cancer such as Escherichia coli and Propioni-
bacterium acne, mainly due to the frequent detection of
these taxa in healthy donor samples from the 1000 gen-
ome cohort. Stringent filtering for species-level taxa that
were detected with at least 100-fold higher RPPB in
tumor tissue or matched normal tissue compared to
healthy donor samples excluded these species. Despite
that, Propionibacterium acne had about 1.4× and 3.1×
higher RPPB for matched normal and tumor tissue, re-
spectively, compared to healthy donors. These values
were even higher in the case of Escherichia coli, namely
7.1× and 13.4× for matched normal and tumor tissue,
respectively. Thus, it is well possible that tumor-linked
taxa were eliminated due to the stringent filtering uti-
lized. Therefore, some analyses in this study, such as the
unbiased linkage analysis between detected taxa and
phenotypes, were performed using the unfiltered dataset
and all raw data is provided along with this manuscript
for further analysis with different filtering approaches.
Examining specific cancer-pathogen links, a subgroup

of bone cancer patients with detection of Pseudomonas
sp. in the tumor tissue was identified. Consistent links
between viral or bacterial taxa and bone cancer have not
been described before, apart from some evidence linking
simian virus 40 (SV40) infection to bone cancer [35].
Interestingly, Pseudomonas sp. are frequently implied in
difficult to treat cases of osteomyelitis. Thus, one might
speculate that chronic, subclinical infection exists and
could be carcinogenic.
For CLL patients, two links were identified, one to

Gordonia polyisoprenivorans and one to Human Masta-
denovirus C. Gordonia polyisoprenivorans has not been
linked to cancer before. Interestingly, the bacterium has
been identified as a rare cause of bacteremia, so far ex-
clusively in patients with hematological cancers [36–38].
Hematological cancers and their treatment are often as-
sociated with profound immunosuppression, allowing
for infections with unusual environmental pathogens. It
is conceivable that these patients had a latent infection
with Gordonia polyisoprenivorans which exacerbated
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into bacteremia and sepsis upon treatment-induced im-
munosuppression. To date, Human Mastadenovirus C
has not been clearly linked to cancer, although recent
reports have found it frequently detected in various can-
cer tissues, with one treating it as contamination [4].
Further indirect evidence for a role of both Gordonia
polyisoprenivorans and Human Mastadenovirus C in
CLL carcinogenesis is provided by (1) the observed age
difference—patients with detection of Human Mastade-
novirus C were markedly younger, (2) the mutual exclu-
sivity of detection of Gordonia polyisoprenivorans and
Human Mastadenovirus C, and (3) the fact that survival
was different—patients with detection of either taxa had
improved outcome. This was despite the higher likeli-
hood of patients linked to Gordonia polyisoprenivorans
having Binet C stage and patients linked to Gordonia
polyisoprenivorans having a higher likelihood of having
TP53 mutations, which are prognostically disadvanta-
geous in CLL [39]. Strikingly, marked differences in host
cancer tissue gene expression were observed for patients
in which one of the taxa was detected with differences
between cases with detection of Gordonia polyisopreni-
vorans and Mastadenovirus C. The observed tumor tis-
sue gene expression pattern for patients linked to
Gordonia polyisoprenivorans, especially an increased
DNA damage response and reduced mitotic cell cycling,
could explain the improved survival of these patients.
The tumor tissue gene expression pattern of patients
linked to Human Mastadenovirus C pointed towards re-
duced immune activity, especially reduced T cell func-
tion and a decrease in cytokine production and
secretion, providing a potential explanation for the ob-
served high detection frequency of Human Mastadeno-
virus C DNA in line with an uncontrolled infection due
to a diminished immune response. Detection of Masta-
denovirus C was linked to a decreased DNA damage re-
sponse, which has been described as an important
pathomechanism of CLL [40]. In addition to CLL pa-
tients, both Gordonia polyisoprenivorans and Human
Mastadenovirus C were also detected frequently in other
cancers, sometimes at high levels, while never being de-
tected in healthy donors.
Two taxon-tumor links in esophageal cancer were

identified, one to Bifidobacterium dentium and one to
Human Herpesvirus 5. Interestingly, patients with detec-
tion of Human Herpesvirus 5 had less somatic mutations
in cancer consensus genes than the other patients, point-
ing to a possibly different carcinogenic mechanism,
where the accumulation of multiple somatic mutations
is not stringently needed for malignant transformation.
Furthermore, patients not in any taxon-linked cluster
had better survival. While the link of Human Herpes-
virus 5 to esophageal cancer is a novel finding, Human
Herpesvirus 5 has frequently been detected in adjacent

adenocarcinoma of the stomach [5]. Of note, overt
Human Herpesvirus 5 esophagitis can occur in immuno-
compromised hosts [41], which could be indicative of a
latent infection of the esophagus by Human Herpesvirus
5 in some hosts.
In patients with liver cancer, one subgroup of patients

was defined by detection of Hepatitis B, a known cause
of liver cancer [10, 11]. Interestingly, two other sub-
groups could be identified. Pseudomonas sp. and Serratia
sp. were detected in both groups, with additional detec-
tion of Parvibaculum lavamentivorans and Human
Herpesvirus 5 in one group. There is some evidence that
Human Herpesvirus 5 might play a role in the carcino-
genesis of liver cancer, among them detection of Human
Herpesvirus 5 DNA in tumor tissue and an increased
seroprevalence in liver cancer patients [42] as well as fre-
quent hepatitis in Human Herpesvirus 5 infection under-
scoring hepatotropism of Human Herpesvirus 5 [43].
The other identified taxa have not yet been implied in
liver cancer carcinogenesis. Interestingly, hepatocellular
carcinoma at younger age has been linked to chronic
Hepatitis B infection [44]. Similarly, younger age of on-
set was also observed in liver cancers linked to the other
taxa in this study.
Three bacteria-tumor links were identified in pancre-

atic adenocarcinoma, one with Pseudomonas protegens,
one with Methylobacterium populi and one with Cupria-
vidus metallidurans. While Pseudomonas sp. have been
shown to be a contributor to the pancreatic adenocar-
cinoma tissue microbiome [29], Methylobacterium
populi and Cupriavidus metallidurans have not been de-
tected in pancreatic cancer tissue. In fact, both taxa have
not been discovered in human hosts but in environmen-
tal samples and are thus not considered part of the hu-
man microbiome, making it possible that they are
contaminants not truly present in the tumor tissue sam-
ples analyzed. On the other hand, few infections of
humans by these taxa have been described [45, 46] and,
of note, the first published report of a Cupriavidus
metallidurans infection was a case of septicemia in a pa-
tient with a pancreatic tumor [46].
In patients with prostate cancer, the most interesting

findings were age differences between patient clusters
defined by the detection of different taxa and a negative
correlation of Propionibacterium acne detection and
number of mutations in cancer consensus genes.
Patients with detection of Gluconobacter oxydans and
Rhodopseudomonas palustris as well as patients with de-
tection of Thauera sp. MZ1T, Cupriavidus metallidur-
ans, and Pseudomonas mendocina were markedly older
than the other patients. Gluconobacter sp., Rhodopseudo-
monas sp., Cupriavidus sp., and Pseudomonas sp. have
previously been identified in prostate cancer and normal
prostate tissue [30], but their precise role in prostate
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disease is entirely unclear. Propionibacterium acne has
been implied as a potential carcinogenic bacterium in
prostate cancer [47, 48], possibly by creating a chronic
inflammatory microenvironment [49]. In this study, the
Propionibacterium acne detection frequency correlated
negatively with the number of somatic mutations in can-
cer consensus genes. This could point to an alternative
driver of carcinogenesis by chronic inflammation in the
absence of accumulation of many mutations in cancer
driver genes.
In renal cancer, a link to Serratia marcescens was iden-

tified in a subgroup of patients. While Serratia marces-
cens has been described as a frequent cause of urinary
tract infections, especially in immunocompromised hosts
in a nosocomial setting [50], it has so far not been impli-
cated in cancer. Interestingly, survival of patients with
detection of Ralstonia pickettii in their tumor tissue was
markedly improved. Ralstonia pickettii is a bacterium
that has been filtered out in this study because of fre-
quent detection in healthy donor samples. It could be
speculated that, while not causing any overt infection,
low-level presence of Ralstonia pickettii in the human
host is common and improves immunogenicity of renal
cancer, thus, improving outcome. It has been shown that
alterations of local and systemic immunity by the host
microbiome influence the anticancer immune response
[51], which might be highly relevant for a naturally im-
munogenic tumor, such as renal cancer [52].
The intriguing observation of increased somatic

bacteria-human lateral gene transfer by Riley et al. [20]
could not be made in this study. The only taxa for which
more integration into the host genome was observed in
tumor tissue compared to matched normal was Hepatitis
B, for which integration into the genome of cancerous
cells has been well recognized [53]. Additional integra-
tion of gut microbiome data would enhance this manu-
script. The gut microbiome has recently emerged as
being highly relevant to carcinogenesis, especially of can-
cers exposed to it, such as colorectal cancer [54]. It has
also emerged that the gut microbiome can modulate
cancer treatment efficacy, particularly of immunotherapy
[55]. However, gut microbiome data was not available
for the patients included in this study.
It is important to note, that this study is an explorative

analysis of potential novel relationships between cancers,
viruses, and bacteria and only experimental validation
can really prove the postulated links of bacterial and
viral taxa to certain cancers. Nevertheless, every attempt
has been made to reduce false positives, by carefully
choosing a pipeline based on available comparison stud-
ies [25, 26], applying stringent filtering, removing low
complexity sequence, and removing taxonomic bins with
only very few hits. Looking at genetic variation on the
strain level between different patients could further

validate the findings and rule out contamination [56].
However, this is not possible, as methods to do so all re-
quire a minimum coverage of the taxon in question. Due
to the nature of this study—examining low-level pres-
ence of viruses or bacteria in cancer tissues—sufficient
coverage is not available. Further validation could come
from validating some of the findings on long-read se-
quencing platforms [57]. However, this study reused
datasets already available and had no access to the ori-
ginal samples; therefore, such a further validation is not
possible.

Conclusions
In conclusion, the present study provides an unprece-
dented atlas of links of both bacterial and viral taxa to
cancer. In addition to confirming known or recently pos-
tulated links, several novel associations between, bac-
teria, viruses, and cancer were identified across multiple
cancer entities, laying the groundwork for further studies
and experimental validation.

Methods
Data sources and data availability
Mapped sequencing data for the included ICGC studies
was obtained via the ICGC DCC [22, 58] and down-
loaded using customized scripts. The use of controlled
access ICGC data for this project was approved by the
ICGC data access compliance office. Mapped sequencing
data for the 1000 genome healthy control samples was
obtained from the 1000 genome FTP server [59] using
customized scripts. Sequencing data used for validation
was obtained from the European Nucleotide Archive
(ENA) [60]. Each sample is clearly identified by the iden-
tifiers in Supplementary Data 4. These identifiers can be
used to obtain further sample and donor information
from the ICGC data portal (https://dcc.icgc.org/). While
basic data is available without approval, downloads of
raw sequencing data via the ICGC data portal have to be
requested from the ICGC data access compliance office.
Raw read counts and analysis data are available in full
and included in Supplementary Data 4.

Computing environment
Data analysis was performed using a HP Z4 workstation
in a Unix environment either using software as men-
tioned throughout the “Methods” section or customized
scripts. Some analyses were performed employing the
Galaxy platform [61].

Pipeline for taxonomic classification
First, unmapped (non-human) read pairs were extracted
from a random 10% subsample of each sample’s down-
loaded sequencing data using Samtools (version 1.7)
[62]. Subsampling 10% did not alter the detected
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species-level taxa and their relative composition (Supple-
mentary Figure 1E-F, Supplementary Data 5). Bam files
were sorted by query name with Picard Tools (version
2.7.1.1) [63] and converted to FastQ files using Bedtools
(version 2.26.0.0) [64]. Subsequently, Trimmomatic (ver-
sion 0.36.3) [65] was used to trim reads with sliding win-
dow trimming with an average base quality of 20 across
4 bases as cutoff and dropping resulting reads with a re-
sidual length < 50. Read pairs, in which one read was
dropped according to these rules, were dropped
altogether. Remaining read pairs were joined with FAST
Q joiner (version 2.0.1) [66] and converted to FASTA
files using the built-in function FASTQ to FASTA (ver-
sion 1.0.0) from Galaxy [61]. Next, VSearch (version
1.9.7.0) [67] was used to mask repetitive sequences by
replacing them with Ns using standard settings. These
masked and joined read pairs were fed into Kraken (ver-
sion 1.1.1) [24] using a database of all bacterial and viral
genomes in Refseq (release 85). The output of each run
was filtered with Kraken (version 1.1.1) [24] setting a
confidence threshold of 0.5. A report combining the out-
put of all samples and runs was generated using Kraken
(version 1.1.1) [24]. The output was then arranged using
customized scripts in R (beginning with version R 3.3.2.
and subsequently updated) [68] to generate the raw
metagenome output of each sample. Next, the raw meta-
genome output of each sample was filtered by only in-
cluding species-level taxa and excluding all species-level
taxa that were supported by less than 10 read pairs
across all samples using R (beginning with version R
3.3.2. and subsequently updated) [68]. Read pairs
assigned to Enterobacteria phage phiX174, which is ubi-
quitously used as a spike-in control in next-generation
sequencing were omitted from all counts and analyses as
an intended contaminant, except for Fig. 2, which aims
to visualize the full, raw dataset.
To correct for the variation of sequencing depth across

samples, matched read pairs per billion read pairs raw
sequence (RPPB) were calculated for each sample and
each taxon.
RPPB was calculated using the following formula:

109 � read pairs of a sample assigned to a given taxon
total available read pairs for a given sample

A taxon was heuristically considered detected, when a
respective sample had at least 100 RPPB assigned to that
taxon.

Filtering strategy
First, all taxa that were also highly prevalent in the
healthy control group were excluded from further ana-
lysis. In detail, a taxon was required to have a mean
RPPB across either the tumor tissue samples or the

matched normal samples compared to the healthy con-
trol samples of at least 100-fold higher, to be included.
This cutoff excluded all taxa that were also highly preva-
lent in the healthy control samples while at the same
time allowing to further analyze taxa that were enriched
in matched normal samples such as blood as well as taxa
that were dominant in tumor tissue. After this step, 147/
218 (67.4%) potential tumor-linked species-level taxa
remained. Next, taxa that were detected in fewer than 5
tumor tissue or matched normal samples were excluded
(n = 78), as well as all remaining phages (n = 2). Hepa-
titis B as a known cancer-linked virus was re-included
despite being detected in fewer than 5 tumor tissue or
matched normal samples according to these criteria so
that 68/218 (31.2%) taxa remained.
Taxa that survived this filtering strategy were likely to

be tumor-linked but could also represent artifacts from
contamination. To account for that, all taxa were filtered
out that are known to be regularly present in the oral
microbiome [69–71] and were at the same time mainly
(> 50% of all RPPB matching a respective taxon) detected
in samples that are likely contaminated with the oral
microbiome (saliva matched normal, oral cancer tissue,
and esophageal cancer tissue samples) (Supplementary
data 8). For example, this filtered out taxa that are a
commonly present in the oral human flora such as
Streptococcus mitis and were indeed mainly detected in
tumor tissue samples of oral cancer or esophageal cancer
and likely a contaminant based on the biopsy location.
Similarly, these taxa were detected in the matched nor-
mal of leukemia cases whose matched normal was a sal-
iva sample likely containing taxa of the normal human
microbiome. After this filtering step, 49/218 (22.5%)
species-level taxa remained.
It has recently emerged that both reagents and kits

used in DNA extraction and library preparation as well
as ultrapure water used in laboratories can contain con-
taminants that can hamper the detection of truly present
taxa in low biomass or high background (e.g., human)
samples. As this study was performed using samples that
were both low in non-human biomass and in the context
of high human background, the aim was to further re-
duce false positives by compiling a list of common
contaminants in microbiome studies. Recommended ap-
proaches, such as the sequencing of blank controls [72],
were not feasible as the present study was conducted
utilizing already sequenced primary material. Therefore,
a database of common contaminants from various stud-
ies [73–77] examining this issue was compiled (Supple-
mentary data 9). All previously recognized contaminant
taxa apart from those that were described as a contamin-
ant on the genus level but where different species within
the genus were detected differently in 1000 genome con-
trol samples and matched normal or tumor tissue
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samples were excluded. This was the case for the genera
Pseudomonas and Methylobacterium. While the species
Pseudomonas aeruginosa, Pseudomonas putida, and
Pseudomonas stutzeri were detected in both 1000
genome control and matched normal or tumor tissue
samples and thus likely contaminants, Pseudomonas
fluorescens, Pseudomonas mendocina, Pseudomonas
poae, Pseudomonas protegens, and Pseudomonas sp. TKP
were not detected in 1000 genome healthy control sam-
ples. Thus, it is likely that the species-level resolution of
this analysis was able to differentiate between common
contaminants and possibly tumor-linked taxa. Similarly,
differentiation was possible between Methylobacterium
radiotolerans and Methylobacterium extorquens (likely
contaminants) and Methylobacterium populi, which was
only found in tumor samples. The same held true for
Cupriavidus metallidurans and Propionibacterium pro-
pionicum. Of note, the 1000 genome healthy control co-
hort used within this study contains samples processed
and sequenced in 5 different sequencing centers (86 at
the BGI-Shenzhen, 86 at the Broad Institute, 11 at Illu-
mina, 113 at the Sanger Institute, and 69 at Washington
University in St Louis). Thus, this control cohort itself
serves as a bona fide contamination control including
potential sequencing contaminants originating in differ-
ent reagents, different suppliers, and different laboratory
or environmental contaminants. After this filtering step,
27/218 (12.4%) species-level taxa remained (Fig. 1i,j,
Supplementary Figure 6). While it cannot be ruled out
that all these filtering steps removed truly cancer-linked
taxa, the aim was to be cautious and rather accept a
false-negative than a false positive finding. Of course, ex-
perimental validation of the relevance of one of the taxa
eliminated by one of the filters could prove that this
taxon is both, a sequencing contaminant and a relevant
taxon in cancer.
If a taxon is indeed present in a tissue, matching read

pairs are expected to be uniformly distributed across its
genome. Consequently, a further filtering step was intro-
duced. The sequencing data from all samples was com-
bined and matched against a reference database
constructed out of the genome of these 27 taxa. Next,
the coverage distribution of reads across each taxon’s
genome was assessed (Supplementary Figure 4). If detec-
tion of the respective taxa is the result from misalign-
ment or sequence similarity between the taxa and for
example cloning vectors used in the production of se-
quencing reagents, an uneven coverage would result. It
was found that all read pairs matching Human Mastade-
novirus C aligned to short parts of its genome with a
maximum length of a few hundred base pairs and abrupt
drops in coverage (Supplementary Figure 4). This was
also found in another study using different cancer tissue
sequencing data and resulted in excluding

Mastadenovirus C from further analysis [4]. Using Blast
(beginning with version 2.7.1 and subsequently updated)
[78], it was found that read pairs matching Human Mas-
tadenovirus C aligned all equally well to commonly used
cloning vectors, such as pAxCALGL, which might have
been used in the production of reagents used for se-
quencing. This form of contamination was recently ana-
lyzed and found to be frequent [79]. However, read pairs
aligning to Human Mastadenovirus C originated from
very few, seemingly unlinked samples from diverse can-
cer sequencing projects, making contamination by re-
combinant DNA unlikely. Another explanation for the
observed coverage pattern is somatic genomic integra-
tion of parts of the Human Mastadenovirus C genome
into a specific cancer genome. On balance, Human Mas-
tadenovirus C was therefore not excluded from further
analysis.

Clustering of pipeline hits
t-SNE was performed using a web-based TensorFlow
Embedding Projector implementation [80]. The learning
rate and the perplexity were heuristically set to 10 and
30 for all analyses, respectively, except for the liver can-
cer subset, for which the perplexity was set to 50 due to
improved cluster discrimination. The number of itera-
tions was heuristically chosen, so that no major changes
of cluster composition occurred upon increasing the
number of iterations. Depending on the subset analysis,
between 500 and 1500 iterations were needed to reach
that point. t-SNE was performed in 3 dimensions for the
pan-cancer analysis and in 2 dimensions for the cancer-
specific analyses.
k-means clustering was performed using Morpheus

[81]. Unsupervised k-means clustering using Euclidean
distance as a similarity measure was employed with the
number of clusters being heuristically informed by com-
bining visual inspection, comparing t-SNE and k-means
clusters and by examining marginal reduction of within-
group variance with increasing numbers of clusters (i.e.,
the elbow method) (Supplementary Figure 9 A-J).
To combine the information obtained by both

complimentary methods, t-SNE clustering was repeated
with the same settings for each analysis, while color-
coding clusters inferred from k-means clustering.

Assessment of taxonomic differences between cell
culture-derived and blood-derived DNA samples from the
1000 genome project
All taxa in the final taxon list (n = 218) (Supplementary
data 10) which were identified in blood-derived 1000
genome healthy control samples were selected (n = 76)
(Supplementary data 1). The pipeline was subsequently
applied to randomly selected (identifier ending with 8 or
8) LCL-derived 1000 genome samples (n = 102) ( 2).
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Finally, RPPB in these LCL-derived samples were calcu-
lated for all 76 taxa that were identified in the blood-
derived 1000 genome samples and compared between
blood-derived and LCL-derived samples.

Assessment of effect of subsampling of read pairs on
relative taxon distribution
To show that subsampling alters neither the detected
species-level taxa nor their relative composition com-
pared to analyzing all non-human read pairs, a subset of
184 tumor tissue samples (Supplementary data 6) was
analyzed, without any subsampling and subjected to the
pipeline in the same way as in the main analysis. For ex-
ample, read pairs matching Human Mastadenovirus C,
Pseudomonas poae, Ralstonia pickettii, and Propionibac-
terium acnes were used to compare absolute read pair
counts between full data and the subsample for all
taxon-sample pairs in which the 10% subsample had at
least 10 matches to the respective taxon.

Concordance between WGS and RNA-seq
In order to assess the concordance between RNA-seq
and WGS experiments performed on the same sample,
the main pipeline was applied with the same settings to
all samples with RNA-seq and WGS paired data avail-
able (n = 324). Pearson correlation coefficients of log10
transformed data were calculated for both a combined
dataset of all RNA-seq / WGS pairs and for each
sample for which RNA-seq and WGS data was avail-
able (n = 324).

Assessment of somatic lateral gene transfer
In order to assess the integration of bacterial DNA into
human DNA, read pairs with one read matching the hu-
man genome and one read matching one of the taxa in
the final filtered taxon list (n = 27) (Supplementary data
10) were identified. First, representative bacterial and
viral genomes for the final filtered taxon list were down-
loaded (Accession numbers in Supplementary data 10).
These genomes were merged with the human reference
genome (hg1k_v37, downloaded from the 1000 genome
FTP server [59]) into one FASTA file using customized
scripts. Second, all read pairs in which only one read of
a read pair was mapped to the human genome were fil-
tered using Samtools (version 1.7) [62]. All tumor tissue
samples and matched normal samples of all patients in
which at least 1000 RPPB matching one of the taxa in
the final filtered taxon list were identified in that re-
spective patient’s tumor tissue sample (n = 79, Supple-
mentary data 12) and were included in this analysis.
BWA mem (version 0.7.17) [82] with standard settings
in paired end mode was used to align all such read pairs
to the merged FASTA file of all taxa and the human ref-
erence genome. Next, all read pairs that were now

divergently mapped were extracted using Samtools
(version 1.7) [62] and customized scripts by only includ-
ing read pairs where one read mapped to one of the in-
cluded non-human taxa and the other read mapped to a
human sequence. Only read pairs with a mapping quality
of at least 40 were retained. Customized scripts were
used to count and tabulate all obtained divergently
mapped read pairs by taxa and sample, respectively
(Supplementary data 13-14). In order to normalize read
pairs mapping to putative integration sites (i.e., diver-
gently mapped read pairs as defined above) by correcting
for the total number of read pairs matching a taxon with
a similar approach (i.e., non-divergently mapped, puta-
tively non-integrated reads), a comparable pipeline was
applied to the data used for the main analysis (i.e., both
reads in a read pair not mapped to the human genome)
of all patients included in the integration analysis (n =
79) (Supplementary data 12). First, the genomes of all
taxa in the final filtered taxon list were downloaded (Ac-
cession numbers in Supplementary data 10) and merged
without adding any further human sequences into one
FASTA file to create a reference genome containing all
taxa in the final filtered taxon list. BWA mem (version
0.7.17) [82] with standard settings in paired end mode
was used to align these reads to the merged FASTA file
of all taxa in the final filtered taxon list. Subsequently,
Samtools (version 1.7) [62] was used to filter the aligned
data to only include read pairs that mapped as a proper
pair to only one taxon with a minimum mapping quality
of 60. Samtools (version 1.7) [62] and customized scripts
were used to count and tabulate all mapped reads. The
integration rate of a taxon in either tumor tissue samples
or matched normal samples was calculated by dividing
the number of divergently mapping read pairs by the
number of read pairs mapping as a proper pair to the re-
spective taxon.

Assessment of links of taxon-defined patient clusters to
patient or cancer phenotypes
Differences in age at diagnosis between patient clusters
were first analyzed by ANOVA for each cancer. All re-
sults with panova ≤ 0.1 are shown in Fig. 5. Such clusters
or combinations of clusters were then compared to the
other clusters by Student’s t test.
Differences in the gender distribution between patient

clusters were analyzed by chi-square test for each
cancer.
In order to analyze relationships between the number

or type of cancer-associated somatic mutations and de-
tection of specific taxa, all somatic mutations for all pa-
tients included in this study were obtained from the
ICGC data portal [22, 58]. All synonymous mutations
were filtered out. Subsequently, only Tier 1 cancer gene
census [83] genes that were altered in more than 20
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cases were filtered using customized scripts and included
in the analysis (Supplementary data 23).
Differences in the number of somatic mutations in

cancer genes between patient clusters were first analyzed
by ANOVA for each cancer. All results with panova ≤ 0.1
are shown in Fig. 5. Such clusters or combinations of
clusters were then compared to the other clusters by
Student’s t test.
The Kaplan-Meier method was used to estimate sur-

vival curves for each patient cluster in each cancer type
with available survival data. Differences in survival be-
tween patient clusters were analyzed by log rank test.
Links between patient clusters and somatic mutations

in single cancer genes were analyzed if the gene was al-
tered in at least 10 patients in that respective cancer
type. Clusters or combinations of clusters were then
compared to the other clusters by Fisher’s exact test.
All calculations were performed with R (beginning

with version R 3.3.2. and subsequently updated) [68].

Unbiased linkage analysis between single bacterial and
viral taxa and patient or cancer phenotypes
For this analysis, a taxon was considered detected in a
patient if at least 100 RPPB matched the respective taxa
in the patient’s tumor tissue sample. All phages were ex-
cluded from the analysis. All included projects were
grouped by cancer (Supplementary data 11). Cancer
genes were defined as above.
All calculations were performed with R (beginning

with version R 3.3.2. and subsequently updated) [68]. All
p values were corrected for multiple testing using the
FDR method to obtain a q-value, which was considered
significant if < 0.05.

Survival analysis
First, the Kaplan-Meier method was used to estimate
survival curves for each cancer-taxon pair that was de-
tected in at least 10 patients. Differences in survival be-
tween patients with or without detection of a respective
taxon were analyzed using log rank tests, stratified by
ICGC project. Additionally, a pan-cancer analysis was
performed in the same way, also stratifying by ICGC
project.

Links between bacterial or viral taxa and patient gender
Links between detection of a taxa and patient gender
were analyzed by Fisher’s exact test for each cancer-
taxon pair that was detected in at least 10 patients. Add-
itionally, a pan-cancer analysis was performed in the
same way, using a logistic regression model that in-
cluded the ICGC project as an independent variable.

Links between bacterial or viral taxa and patient age
Links between the detection of a taxon and patient age
at diagnosis were analyzed by Student’s t test for each
cancer-taxon pair that was detected in at least 10 pa-
tients. Additionally, a pan-cancer analysis was performed
in the same way, using a linear regression model that
was stratified by ICGC project.

Links between bacterial or viral taxa and number of
somatic mutations in cancer genes
Links between the detection of a taxon and the number
of non-synonymous somatic mutations in cancer con-
sensus genes [83] of a patient were analyzed by Student’s
t test for each cancer-taxon pair in which a taxon was
detected in at least 10 patients. Additionally, a pan-
cancer analysis was performed in the same way, using a
linear regression model that was stratified by ICGC
project.

Links between bacterial or viral taxa and specific somatic
mutations
Links between the detection of a taxon and non-
synonymous somatic mutations in one of the cancer
consensus genes [83] of a patient were analyzed by
Fisher exact test for each cancer-taxon pair that was de-
tected in at least 10 patients. Additionally, a pan-cancer
analysis was performed in the same way, using a logistic
regression model that included the ICGC project as an
independent variable.

Assessment of differential gene expression
Reads per kilobase of transcript, per million mapped
reads (RPKM) data was downloaded from http://dcc.
icgc.org/pcawg for all available tumor tissue samples.
Ensemble gene ID was substituted by the standard
Human Genome Organization (HUGO) Gene Nomen-
clature Committee (HGNC) symbol downloaded from
http://genenames.org/download/custom and the RPKM
data was then linked to the identified species-level taxa
in each sample using R (beginning with version R 3.3.2.
and subsequently updated) [68]. sRAP [84] was used to
normalize RPKM values, perform quality control and
differential gene expression analysis, and to identify
pathways that are differentially expressed. For these ana-
lyses, each cancer was analyzed separately and patients
that had more than 100 RPPB matching one species-
level taxon in the final filtered taxon list were compared
with those who did not. Differential gene expression
analysis was performed for all taxa that were detected
with more than 100 RPPB in at least five patients and
RNA-seq data available (Supplementary data 15). Next,
sRAP [84] was used to perform bidirectional functional
enrichment of gene expression data to identify pathways
up- or downregulated between patients with or without
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detection of a taxon. Briefly, the distribution of activa-
tion versus inhibition t-test statistics for all samples
linked or not linked to a specific taxon was compared
using ANOVA and corrected for multiple testing using
the FDR method [84]. A gene set was considered func-
tionally enriched if q < 0.05. Gene sets likely not relevant
for the respective cancer were excluded and gene sets
provided with sRAP [84] were reduced to gene ontology
(GO) gene sets [85].
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org/10.1186/s40168-021-01039-4.

Additional file 1: Supplementary Table 1. Included patients and
samples. Supplementary Figure 2. Validation of pipeline and analytical
approach. A, mean RPPB detected for indicated species in blood-derived
and lymphoblastoid cell line 1000 Genome samples sorted by mean of
blood-derived samples. B, proportion of non-human read pairs matching
the indicated taxon of read pairs matching any species-level taxon for
each external validation sample. C, comparison of Kraken matched read
pairs in RNA-seq and WGS data of the same sample. Each dot represents
one species-level taxon in one sample with both RNA-seq and WGS data
available. The line represents the best-fitted line (log-log linear regres-
sion). Pearson correlation coefficients (log-log) are shown with two-sided
p-values. D, plot of Pearson correlation coefficient (log-log) distribution of
all samples with both RNA-seq and WGS data available. Each dot repre-
sents the Pearson correlation coefficient within a single sample. E, com-
parison of 10% subsample and full dataset. Each dot represents one
species-level taxon in one sample for which both the full and the sub-
sampled dataset has been analyzed and indicates the absolute read
count identified in both samples. The line represents the best-fitted line
(log-log linear regression). Pearson correlation coefficients (log-log) are
shown with two-sided p-values. F, Ratio of absolute read counts in the
full sample to the 10% subsample for 4 selected taxa. The mean ratio of
all samples in which the respective taxon was detected is indicated by
the symbol and the error bars indicate the standard error of the mean.
The dotted line shows the expected ratio of 10. G, comparison of tumor
tissue and matched normal by patient and taxon. Each dot represents
one species-level taxon in one patient with both tumor tissue and
matched normal analyzed and indicates the RPPB in both samples. The
line represents the best-fitted line (log-log linear regression). Pearson cor-
relation coefficients (log-log) are shown with two-sided p-values. Supple-
mentary Figure 3. Alpha diversity. A, counts of 1000 Genome samples
by species-level richness. B, counts of tumor tissue samples by species-
level richness color-coded by project. C, counts of matched normal sam-
ples by species-level richness color-coded by project. D, comparison of
richness between projects and sample type. Bars show mean and error
bars standard deviation. N in brackets indicates total sample number for
each project. Supplementary Figure 4. Coverage distribution for all
tumor-linked species-level taxa. Coverage distribution across each
species-level taxon identified as tumor-linked. Supplementary Figure 5.
Flow chart of taxa filtering strategy. Flow chart of filtering strategy to de-
rive likely tumor-linked species-level taxa. Supplementary Figure 6.
Heatmap of filtered taxons. Log2-transformed RPPB of all species-level
taxa identified as likely tumor-linked after filtering in all samples. Taxa
were hierarchically clustered using Pearson correlation as a distance
measure with average-linkage. Samples were hierarchically clustered
within each project and type subgroup using Pearson correlation as a dis-
tance measure with average-linkage. Supplementary Figure 7. Heat-
maps of tumor-linked taxa for all cancers without discernible clusters. A-
D, log2-transformed RPPB of all species-level taxa identified as tumor-
linked and detected after filtering in all tumor-tissues of the indicated
cancer. Results of k-means clustering of samples are shown. Supplemen-
tary Figure 8. Host integration. A, integration rate by species for tumor
tissue and matched normal sample. B, difference in integration rates be-
tween bacterial and viral taxa (p < 0.0001, Wilcoxon rank-sum test, two-

tailed). The midline of the boxplot shows the median, the box borders
show upper and lower quartile, the whiskers show 5th and 95th percen-
tiles and the dots outliers of species-specific integration rates in tumor tis-
sue or matched normal samples. C, difference in integration rate
between tumor tissue and matched normal samples (p = 0.0009, Wil-
coxon signed rank test, two-tailed). The midline of the boxplot shows the
median, the box borders show upper and lower quartile, the whiskers
show 5th and 95th percentiles and the dots outliers of species-specific in-
tegration rates. Supplementary Figure 9. “Elbow method” to determine
k for k-means clustering. A-J, plot of reducing within group sum of
squares for increasing k (number of clusters) in k-means clustering (Sup-
plementary Figures 4 and 5) of log2-transformed RPPB of all species-level
taxa identified as tumor-linked and detected after filtering in all tumor-
tissues for each indicated cancer.

Additional file 2: Supplement_1-3. control and validation.
Supplement_4. rppb and read counts raw data_revised.
Supplement_5. downsampling vs full dataset. Supplement_6. number
of species detected in each sample. Supplement_7-9. filtering and
grouping. Supplement_10. final taxa hit list. Supplement_11. cancer
study groupings. Supplement_12-14. integration analysis.
Supplement_15. differential gene expression analysis overview.
Supplement_16-22. differential gene expression and pathway analysis.
Supplement_23. most commonly mutated genes in dataset.

Additional file 3:. Supplementary note.

Acknowledgements
Not applicable

Author’s contributions
SB is the sole author of the manuscript. The author(s) read and approved the
final manuscript.

Funding
Supported by Else-Kröner-Fresenius-Stiftung, Grant No. 2016-Kolleg-19,
Deutsche Forschungsgemeinschaft (DFG), Grant No. EN 179/13-1 and Frauke
Weiskam + Christel Ruranski-Stiftung, Grant No. T 0136 – 33.661. Open Access
funding enabled and organized by Projekt DEAL.

Availability of data and materials
All raw data generated in this study is included in the supplement. Original
sequencing datasets are available here: https://dcc.icgc.org/. To access
original sequencing data, a request has been made to the ICGC DACO,
which will be granted according to the conditions set out here: https://icgc.
org/index.php?q=daco.

Declarations

Ethics approval and consent to participate
For each study which was included in this reanalysis of data, appropriate
ethics approval has been granted and all patients consented to participate.
Detailed information is available here: https://dcc.icgc.org/.

Consent for publication
Not applicable

Competing interests
The author declares that he has no competing interests

Author details
1Department I of Internal Medicine, Center for Integrated Oncology Aachen
Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.
2Cancer Center Cologne Essen – Partner Site Cologne, CIO Cologne,
University of Cologne, Cologne, Germany. 3German Hodgkin Study Group,
Cologne, Germany.

Borchmann Microbiome            (2021) 9:94 Page 20 of 22

https://doi.org/10.1186/s40168-021-01039-4
https://doi.org/10.1186/s40168-021-01039-4
https://dcc.icgc.org/
https://icgc.org/index.php?q=daco
https://icgc.org/index.php?q=daco
https://dcc.icgc.org/


Received: 29 April 2020 Accepted: 18 February 2021

References
1. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;

13(11):800–12. https://doi.org/10.1038/nrc3610.
2. Goodman B, Gardner H. The microbiome and cancer. J Pathol. 2018;244(5):

667–76. https://doi.org/10.1002/path.5047.
3. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical

application. Nat Rev Cancer. 2002;2:342–50.
4. Tang K-W, Alaei-Mahabadi B, Samuelsson T, Lindh M, Larsson E. The

landscape of viral expression and host gene fusion and adaptation in
human cancer. Nat Commun. 2013;4(1):2513. https://doi.org/10.1038/
ncomms3513.

5. Cantalupo PG, Katz JP, Pipas JM. Viral sequences in human cancer. Virology.
2018;513:208–16. https://doi.org/10.1016/j.virol.2017.10.017.

6. Niedobitek G, Pitteroff S, Herbst H, Shepherd P, Finn T, Anagnostopoulos I,
et al. Detection of human papillomavirus type 16 DNA in carcinomas of the
palatine tonsil. J Clin Pathol. 1990;43(11):918–21. https://doi.org/10.1136/
jcp.43.11.918.

7. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, et al.
Evidence for a causal association between human papillomavirus and a
subset of head and neck cancers. J Natl Cancer Inst. 2000;92(9):709–20.
https://doi.org/10.1093/jnci/92.9.709.

8. Walboomers JMM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV,
et al. Human papillomavirus is a necessary cause of invasive cervical cancer
worldwide. J Pathol. 1999;189(1):12–9. https://doi.org/10.1002/(SICI)1096-
9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F.

9. Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A,
et al. Structure and transcription of human papillomavirus sequences in
cervical carcinoma cells. Nature. 1985;314(6006):111–4. https://doi.org/10.103
8/314111a0.

10. Perz JF, Armstrong GL, Farrington LA, Hutin YJF, Bell BP. The contributions
of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary
liver cancer worldwide. J Hepatol. 2006;45(4):529–38. https://doi.org/10.101
6/j.jhep.2006.05.013.

11. Shafritz DA, Shouval D, Sherman HI, Hadziyannis SJ, Kew MC. Integration of
hepatitis B virus DNA into the genome of liver cells in chronic liver disease
and hepatocellular carcinoma. N Engl J Med. 1981;305(18):1067–73. https://
doi.org/10.1056/NEJM198110293051807.

12. zur Hausen H. The search for infectious causes of human cancers: where
and why. Virology. 2009;392:1–10.

13. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S,
Yamakido M, et al. Helicobacter pylori infection and the development
of gastric cancer. N Engl J Med. 2001;345(11):784–9. https://doi.org/10.1
056/NEJMoa001999.

14. Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M. Helicobacter pylori
infection induces gastric cancer in mongolian gerbils. Gastroenterology.
1998;115(3):642–8. https://doi.org/10.1016/S0016-5085(98)70143-X.

15. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss
J, et al. Fusobacterium nucleatum infection is prevalent in human
colorectal carcinoma. Genome Res. 2012;22(2):299–306. https://doi.org/1
0.1101/gr.126516.111.

16. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al.
Genomic analysis identifies association of Fusobacterium with colorectal
carcinoma. Genome Res. 2012;22(2):292–8. https://doi.org/10.1101/gr.12
6573.111.

17. Repass J, Reproducibility Project: Cancer Biology, Iorns E, Denis A, Williams
SR, Perfito N, et al. Replication Study: Fusobacterium nucleatum infection is
prevalent in human colorectal carcinoma. Elife. 2018;7. https://doi.org/10.
7554/eLife.25801.

18. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell.
2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

19. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of
next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–
51. https://doi.org/10.1038/nrg.2016.49.

20. Riley DR, Sieber KB, Robinson KM, White JR, Ganesan A, Nourbakhsh S, et al.
Bacteria-human somatic cell lateral gene transfer is enriched in cancer
samples. PLoS Comput Biol. 2013;9(6):e1003107. https://doi.org/10.1371/
journal.pcbi.1003107.

21. Khoury JD, Tannir NM, Williams MD, Chen Y, Yao H, Zhang J, et al.
Landscape of DNA virus associations across human malignant cancers:
analysis of 3,775 cases using RNA-Seq. J Virol. 2013;87(16):8916–26. https://
doi.org/10.1128/JVI.00340-13.

22. International Cancer Genome Consortium, T. I. C. G. et al. International
network of cancer genome projects. Nature 464, 993–998 (2010).

23. Gibbs RA, et al. A global reference for human genetic variation. Nature.
2015;526:68–74.

24. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 2014;15(3):R46. https://
doi.org/10.1186/gb-2014-15-3-r46.

25. McIntyre ABR, Ounit R, Afshinnekoo E, Prill RJ, Hénaff E, Alexander N, et al.
Comprehensive benchmarking and ensemble approaches for metagenomic
classifiers. Genome Biol. 2017;18(1):182. https://doi.org/10.1186/s13059-017-1299-7.

26. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, et al.
Critical Assessment of Metagenome Interpretation - a benchmark of
metagenomics software. Nat Methods. 2017;14(11):1063–71. https://doi.
org/10.1038/nmeth.4458.

27. Caygill CP, Hill MJ, Braddick M, Sharp JC. Cancer mortality in chronic
typhoid and paratyphoid carriers. Lancet (London, England). 1994;343:83–4.

28. Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu LE, Hofland I, et al.
Salmonella manipulation of host signaling pathways provokes cellular
transformation associated with gallbladder carcinoma. Cell Host Microbe.
2015;17(6):763–74. https://doi.org/10.1016/j.chom.2015.05.002.

29. Geller LT, et al. Potential role of intratumor bacteria in mediating tumor
resistance to the chemotherapeutic drug gemcitabine. Science (80- ). 2017;
357:1156–60.

30. Feng Y, Ramnarine VR, Bell R, Volik S, Davicioni E, Hayes VM, et al.
Metagenomic and metatranscriptomic analysis of human prostate
microbiota from patients with prostate cancer. BMC Genomics. 2019;20(1):
146. https://doi.org/10.1186/s12864-019-5457-z.

31. Kripalani-Joshi S, Law HY. Identification of integrated Epstein-Barr virus in
nasopharyngeal carcinoma using pulse field gel electrophoresis. Int J
Cancer. 1994;56(2):187–92. https://doi.org/10.1002/ijc.2910560207.

32. Morton C, et al. Mapping of the human Blym-1 transforming gene activated
in Burkitt lymphomas to chromosome 1. Science (80- ). 1984;223:173–5.

33. Robinson KM, Crabtree J, Mattick JSA, Anderson KE, Dunning Hotopp
JC. Distinguishing potential bacteria-tumor associations from
contamination in a secondary data analysis of public cancer genome
sequence data. Microbiome. 2017;5(1):9. https://doi.org/10.1186/s40168-
016-0224-8.

34. Thompson KJ, Ingle JN, Tang X, Chia N, Jeraldo PR, Walther-Antonio MR,
et al. A comprehensive analysis of breast cancer microbiota and host gene
expression. PLoS One. 2017;12(11):e0188873. https://doi.org/10.1371/journal.
pone.0188873.

35. Mazzoni E, Benassi MS, Corallini A, Barbanti-Brodano G, Taronna A, Picci P,
Guerra G, D'Agostino A, Trevisiol L, Nocini PF, Casali MV, Barbanti-Brodano
G, Martini F, Tognon M. Significant association between human
osteosarcoma and simian virus 40. Cancer. 2015;121(5):708–15. https://doi.
org/10.1002/cncr.29137. Epub 2014 Nov 6. PMID: 25377935.

36. Ramanan P, Deziel PJ, Wengenack NL. Gordonia bacteremia. J Clin
Microbiol. 2013;51(10):3443–7. https://doi.org/10.1128/JCM.01449-13.

37. Ding X, Yu Y, Chen M, Wang C, Kang Y, Li H, et al. Bacteremia due to
Gordonia polyisoprenivorans: case report and review of literature. BMC
Infect Dis. 2017;17(1):419. https://doi.org/10.1186/s12879-017-2523-5.

38. Gupta M, Prasad D, Khara HS, Alcid D. A rubber-degrading organism
growing from a human body. Int J Infect Dis. 2010;14(1):e75–6. https://doi.
org/10.1016/j.ijid.2009.03.006.

39. Zenz T, Eichhorst B, Busch R, Denzel T, Häbe S, Winkler D, et al. TP53
mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010;
28(29):4473–9. https://doi.org/10.1200/JCO.2009.27.8762.

40. Austen B, Powell JE, Alvi A, Edwards I, Hooper L, Starczynski J, et al.
Mutations in the ATM gene lead to impaired overall and treatment-free
survival that is independent of IGVH mutation status in patients with B-CLL.
Blood. 2005;106(9):3175–82. https://doi.org/10.1182/blood-2004-11-4516.

41. Balthazar EJ, Megibow AJ, Hulnick DH. Cytomegalovirus esophagitis and
gastritis in AIDS. AJR Am J Roentgenol. 1985;144(6):1201–4. https://doi.org/1
0.2214/ajr.144.6.1201.

42. Lepiller Q, Tripathy MK, Di Martino V, Kantelip B, Herbein G. Increased HCMV
seroprevalence in patients with hepatocellular carcinoma. Virol J. 2011;8(1):
485. https://doi.org/10.1186/1743-422X-8-485.

Borchmann Microbiome            (2021) 9:94 Page 21 of 22

https://doi.org/10.1038/nrc3610
https://doi.org/10.1002/path.5047
https://doi.org/10.1038/ncomms3513
https://doi.org/10.1038/ncomms3513
https://doi.org/10.1016/j.virol.2017.10.017
https://doi.org/10.1136/jcp.43.11.918
https://doi.org/10.1136/jcp.43.11.918
https://doi.org/10.1093/jnci/92.9.709
https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
https://doi.org/10.1038/314111a0
https://doi.org/10.1038/314111a0
https://doi.org/10.1016/j.jhep.2006.05.013
https://doi.org/10.1016/j.jhep.2006.05.013
https://doi.org/10.1056/NEJM198110293051807
https://doi.org/10.1056/NEJM198110293051807
https://doi.org/10.1056/NEJMoa001999
https://doi.org/10.1056/NEJMoa001999
https://doi.org/10.1016/S0016-5085(98)70143-X
https://doi.org/10.1101/gr.126516.111
https://doi.org/10.1101/gr.126516.111
https://doi.org/10.1101/gr.126573.111
https://doi.org/10.1101/gr.126573.111
https://doi.org/10.7554/eLife.25801
https://doi.org/10.7554/eLife.25801
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1371/journal.pcbi.1003107
https://doi.org/10.1371/journal.pcbi.1003107
https://doi.org/10.1128/JVI.00340-13
https://doi.org/10.1128/JVI.00340-13
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/s13059-017-1299-7
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1016/j.chom.2015.05.002
https://doi.org/10.1186/s12864-019-5457-z
https://doi.org/10.1002/ijc.2910560207
https://doi.org/10.1186/s40168-016-0224-8
https://doi.org/10.1186/s40168-016-0224-8
https://doi.org/10.1371/journal.pone.0188873
https://doi.org/10.1371/journal.pone.0188873
https://doi.org/10.1002/cncr.29137
https://doi.org/10.1002/cncr.29137
https://doi.org/10.1128/JCM.01449-13
https://doi.org/10.1186/s12879-017-2523-5
https://doi.org/10.1016/j.ijid.2009.03.006
https://doi.org/10.1016/j.ijid.2009.03.006
https://doi.org/10.1200/JCO.2009.27.8762
https://doi.org/10.1182/blood-2004-11-4516
https://doi.org/10.2214/ajr.144.6.1201
https://doi.org/10.2214/ajr.144.6.1201
https://doi.org/10.1186/1743-422X-8-485


43. Leonardsson H, Hreinsson JP, Löve A, Björnsson ES. Hepatitis due to
Epstein–Barr virus and cytomegalovirus: clinical features and outcomes.
Scand J Gastroenterol. 2017;52(8):893–7. https://doi.org/10.1080/00365521.2
017.1319972.

44. Bruix J, Llovet JM. Hepatitis B virus and hepatocellular carcinoma. J Hepatol.
2003;39:59–63. https://doi.org/10.1016/S0168-8278(03)00140-5.

45. Lai C-C, Cheng A, Liu WL, Tan CK, Huang YT, Chung KP, et al. Infections
caused by unusual Methylobacterium species. J Clin Microbiol. 2011;49(9):
3329–31. https://doi.org/10.1128/JCM.01241-11.

46. Langevin S, Vincelette J, Bekal S, Gaudreau C. First case of invasive human
infection caused by Cupriavidus metallidurans. J Clin Microbiol. 2011;49(2):
744–5. https://doi.org/10.1128/JCM.01947-10.

47. Ugge H, Udumyan R, Carlsson J, Andrén O, Montgomery S, Davidsson S,
et al. Acne in late adolescence and risk of prostate cancer. Int J Cancer.
2018;142(8):1580–5. https://doi.org/10.1002/ijc.31192.

48. Davidsson S, Mölling P, Rider JR, Unemo M, Karlsson MG, Carlsson J, et al.
Frequency and typing of Propionibacterium acnes in prostate tissue
obtained from men with and without prostate cancer. Infect Agent Cancer.
2016;11(1):26. https://doi.org/10.1186/s13027-016-0074-9.

49. Cohen RJ, Shannon BA, McNeal JE, Shannon T, Garrett KL.
Propionibacterium acnes associated with inflammation in radical
prostatectomy specimens: a possible link to cancer evolution? J Urol. 2005;
173(6):1969–74. https://doi.org/10.1097/01.ju.0000158161.15277.78.

50. Mahlen SD. Serratia infections: from military experiments to current practice.
Clin Microbiol Rev. 2011;24(4):755–91. https://doi.org/10.1128/CMR.00017-11.

51. Fessler J, Matson V, Gajewski TF. Exploring the emerging role of the
microbiome in cancer immunotherapy. J Immunother Cancer. 2019;7(1):108.
https://doi.org/10.1186/s40425-019-0574-4.

52. Motzer RJ, Escudier B, McDermott D, George S, Hammers HJ, Srinivas S,
et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl
J Med. 2015;373(19):1803–13. https://doi.org/10.1056/NEJMoa1510665.

53. Sung W-K, et al. Genome-wide survey of recurrent HBV integration in
hepatocellular carcinoma. Nat Genet Vol. 2012;44:765–9.

54. Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome
development along the colorectal adenoma-carcinoma sequence. Nat
Commun. 2015;6(1). https://doi.org/10.1038/ncomms7528.

55. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence
of the gut microbiome on cancer, immunity, and cancer immunotherapy.
Cancer Cell. 2018;33(4):570–80. https://doi.org/10.1016/j.ccell.2018.03.015.

56. Luo C, Knight R, Siljander H, Knip M, Xavier RJ, Gevers D. ConStrains
identifies microbial strains in metagenomic datasets. Nat Biotechnol. 2015;
33(10):1045–52. https://doi.org/10.1038/nbt.3319.

57. Bharti R, Grimm DG. Current challenges and best-practice protocols for
microbiome analysis. Brief Bioinform. 2019:1–16.

58. Welcome | ICGC Data Portal. Available at: https://dcc.icgc.org/. (Accessed:
6th June 2019)

59. Index von /vol1/ftp/. Available at: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/.
(Accessed: 6th June 2019)

60. European Nucleotide Archive < EMBL-EBI. Available at: https://www.ebi.ac.
uk/ena. (Accessed: 6th June 2019)

61. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, et al. The
Galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2018 update. Nucleic Acids Res. 2018;46(W1):W537–44. https://doi.
org/10.1093/nar/gky379.

62. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):
2078–9. https://doi.org/10.1093/bioinformatics/btp352.

63. Picard Tools - By Broad Institute. Available at: http://broadinstitute.github.io/
picard/. (Accessed: 6th June 2019)

64. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26(6):841–2. https://doi.org/10.1093/
bioinformatics/btq033.

65. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/
bioinformatics/btu170.

66. Blankenberg D, Gordon A, von Kuster G, Coraor N, Taylor J, Nekrutenko A,
et al. Manipulation of FASTQ data with Galaxy. Bioinformatics. 2010;26(14):
1783–5. https://doi.org/10.1093/bioinformatics/btq281.

67. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open
source tool for metagenomics. PeerJ. 2016;4:e2584. https://doi.org/10.7717/
peerj.2584.

68. The R Foundation for Statistical Computing R version 3.3.2. (https://www.r-
project.org/).

69. Escapa IF, et al. New insights into human nostril microbiome from the
expanded Human Oral Microbiome Database (eHOMD): a Resource for the
Microbiome of the Human Aerodigestive Tract. mSystems. 2018;3:e00187–18.

70. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu WH, et al. The
human oral microbiome. J Bacteriol. 2010;192(19):5002–17. https://doi.org/1
0.1128/JB.00542-10.

71. HOMD: Human Oral Microbiome Database. Available at: http://www.homd.
org/index.php?name = HOMD. (Accessed: 6th June 2019)

72. de Goffau MC, Lager S, Salter SJ, Wagner J, Kronbichler A, Charnock-Jones
DS, et al. Recognizing the reagent microbiome. Nat Microbiol. 2018;3(8):
851–3. https://doi.org/10.1038/s41564-018-0202-y.

73. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al.
Reagent and laboratory contamination can critically impact sequence-based
microbiome analyses. BMC Biol. 2014;12(1):87. https://doi.org/10.1186/s1291
5-014-0087-z.

74. Jervis-Bardy J, Leong LEX, Marri S, Smith RJ, Choo JM, Smith-Vaughan HC,
et al. Deriving accurate microbiota profiles from human samples with low
bacterial content through post-sequencing processing of Illumina MiSeq
data. Microbiome. 2015;3(1):19. https://doi.org/10.1186/s40168-015-0083-8.

75. Leon LJ, et al. Enrichment of clinically relevant organisms in spontaneous
preterm-delivered placentas and reagent contamination across all clinical
groups in a large pregnancy cohort in the United Kingdom. Appl Environ
Microbiol. 2018;84:e00483–18.

76. Laurence M, Hatzis C, Brash DE. Common contaminants in next-generation
sequencing that hinder discovery of low-abundance microbes. PLoS One.
2014;9(5):e97876. https://doi.org/10.1371/journal.pone.0097876.

77. Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ. Inherent bacterial
DNA contamination of extraction and sequencing reagents may affect
interpretation of microbiota in low bacterial biomass samples. Gut Pathog.
2016;8(1):24. https://doi.org/10.1186/s13099-016-0103-7.

78. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.
BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421.
https://doi.org/10.1186/1471-2105-10-421.

79. Wally N, Schneider M, Thannesberger J, Kastner MT, Bakonyi T, Indik S, et al.
Plasmid DNA contaminant in molecular reagents. Sci Rep. 2019;9(1):1652.
https://doi.org/10.1038/s41598-019-38733-1.

80. Embedding projector - visualization of high-dimensional data. Available at:
https://projector.tensorflow.org/. (Accessed: 6th June 2019)

81. Morpheus. Available at: https://software.broadinstitute.org/morpheus/.
(Accessed: 6th June 2019)

82. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1
093/bioinformatics/btp324.

83. Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC
Cancer Gene Census: describing genetic dysfunction across all human
cancers. Nat Rev Cancer. 2018;18(11):696–705. https://doi.org/10.1038/s41
568-018-0060-1.

84. Warden CD, Yuan Y-C, Wu X. Optimal calculation of RNA-Seq fold-change
values. Int J Comput Bioinform In Silico Model. 2013;2:285–92.

85. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: tool for the unification of biology. Gene Ontology Consortium
Nat Genet. 2000;25(1):25–9. https://doi.org/10.1038/75556.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Borchmann Microbiome            (2021) 9:94 Page 22 of 22

https://doi.org/10.1080/00365521.2017.1319972
https://doi.org/10.1080/00365521.2017.1319972
https://doi.org/10.1016/S0168-8278(03)00140-5
https://doi.org/10.1128/JCM.01241-11
https://doi.org/10.1128/JCM.01947-10
https://doi.org/10.1002/ijc.31192
https://doi.org/10.1186/s13027-016-0074-9
https://doi.org/10.1097/01.ju.0000158161.15277.78
https://doi.org/10.1128/CMR.00017-11
https://doi.org/10.1186/s40425-019-0574-4
https://doi.org/10.1056/NEJMoa1510665
https://doi.org/10.1038/ncomms7528
https://doi.org/10.1016/j.ccell.2018.03.015
https://doi.org/10.1038/nbt.3319
https://dcc.icgc.org/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1093/bioinformatics/btp352
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btq281
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1128/JB.00542-10
https://doi.org/10.1128/JB.00542-10
http://www.homd.org/index.php?name
http://www.homd.org/index.php?name
https://doi.org/10.1038/s41564-018-0202-y
https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.1186/s40168-015-0083-8
https://doi.org/10.1371/journal.pone.0097876
https://doi.org/10.1186/s13099-016-0103-7
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1038/s41598-019-38733-1
https://projector.tensorflow.org/
https://software.broadinstitute.org/morpheus/
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1038/s41568-018-0060-1
https://doi.org/10.1038/s41568-018-0060-1
https://doi.org/10.1038/75556

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Results
	Samples
	Validation of pipeline
	A map of cancer-linked bacterial and viral taxa
	Filtering strategy
	Pan-cancer analysis
	Cancer-specific analysis
	Bone cancer
	Chronic lymphocytic leukemia
	Esophageal cancer
	Liver cancer
	Pancreatic adenocarcinoma
	Prostate cancer
	Renal cancer
	Other cancers

	Unbiased linkage analysis between bacterial and viral taxa and patient or cancer phenotypes
	Somatic lateral gene transfer
	Differential gene expression analysis

	Discussion
	Conclusions
	Methods
	Data sources and data availability
	Computing environment
	Pipeline for taxonomic classification
	Filtering strategy
	Clustering of pipeline hits
	Assessment of taxonomic differences between cell culture-derived and blood-derived DNA samples from the 1000 genome project
	Assessment of effect of subsampling of read pairs on relative taxon distribution
	Concordance between WGS and RNA-seq
	Assessment of somatic lateral gene transfer
	Assessment of links of taxon-defined patient clusters to patient or cancer phenotypes
	Unbiased linkage analysis between single bacterial and viral taxa and patient or cancer phenotypes
	Survival analysis
	Links between bacterial or viral taxa and patient gender
	Links between bacterial or viral taxa and patient age
	Links between bacterial or viral taxa and number of somatic mutations in cancer genes
	Links between bacterial or viral taxa and specific somatic mutations

	Assessment of differential gene expression

	Supplementary Information
	Acknowledgements
	Author’s contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

