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Abstract

Background: Human health is closely interconnected with its microbiome. Resilient microbiomes in, on, and around the
human body will be key for safe and successful long-term space travel. However, longitudinal dynamics of microbiomes
inside confined built environments are still poorly understood. Herein, we used the Hawaii Space Exploration Analog and
Simulation IV (HI-SEAS IV) mission, a 1 year-long isolation study, to investigate microbial transfer between crew and habitat, in
order to understand adverse developments which may occur in a future outpost on the Moon or Mars.

Results: Longitudinal 16S rRNA gene profiles, as well as quantitative observations, revealed significant differences
in microbial diversity, abundance, and composition between samples of the built environment and its crew. The
microbiome composition and diversity associated with abiotic surfaces was found to be rather stable, whereas
the microbial skin profiles of individual crew members were highly dynamic, resulting in an increased
microbiome diversity at the end of the isolation period. The skin microbiome dynamics were especially
pronounced by a regular transfer of the indicator species Methanobrevibacter between crew members within the
first 200 days. Quantitative information was used to track the propagation of antimicrobial resistance in the
habitat. Together with functional and phenotypic predictions, quantitative and qualitative data supported the
observation of a delayed longitudinal microbial homogenization between crew and habitat surfaces which was
mainly caused by a malfunctioning sanitary facility.

Conclusions: This study highlights main routes of microbial transfer, interaction of the crew, and origins of
microbial dynamics in an isolated environment. We identify key targets of microbial monitoring, and emphasize
the need for defined baselines of microbiome diversity and abundance on surfaces and crew skin. Targeted
manipulation to counteract adverse developments of the microbiome could be a highly important strategy to
ensure safety during future space endeavors.
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Background

This decade may see the beginning of a sustainable hu-
man presence on the Moon. The US government stated
their commitment to lead such an endeavor in the Space
Policy Directive-1 [1] and current goals include landing
a crew at the Moon’s south pole by 2024, before estab-
lishing a sustained presence there by 2028 [2]. Since
2015, the European Space Agency (ESA) has been
strongly advocating its “Moon Village” concept, a large
collaborative undertaking that would lead to a perman-
ent presence on the Moon [3]. In addition, the latest
Council at ministerial level anticipates a strong involve-
ment of ESA in the US-led Moon program [4]. Other
collaborators include the Japan Aerospace Exploration
Agency (JAXA) and the Canadian Space Agency (CSA).
While lunar exploration could greatly benefit different
areas of science and technology in itself [5, 6], the Moon
is expected to serve as a testing ground for crewed mis-
sions to Mars. Reaching the red planet is also the stated
goal of private spacecraft companies, notably SpaceX [7]
who aims for a landing as early as in the 2020s.

In such endeavors, microorganisms will inevitably co-
travel with the crew: they are thought to outnumber hu-
man cells in our bodies [8] and each individual releases
millions of them every hour [9]. A microbe-free crewed
mission is unrealistic, unethical, and undesirable, as our
microbiome is essential to our health [10]. Microbial
communities may however pose, if inadequately man-
aged, serious threats to future missions.

The most obvious threats to the crew’s health are
pathogens. This risk is exacerbated by crew members’
confinement and proximity, limited treatment options,
increased microbial transmission in microgravity [11],
restricted hygienic practices, potentially increased
virulence and decreased antibiotic susceptibility of
bacteria in space [11-14], and lowered immune re-
sponses of astronauts attributed to microgravity, radi-
ation, and stress [11, 12, 15-17]. Moreover, the lack
of environmental microorganisms competing with
human-borne pathogens for the same niche could
complicate the establishment of resilient microbiomes
in their habitat [18]. While no life-threatening infec-
tions have been reported during spaceflight so far, op-
portunistic pathogens, which are part of the normal
human-associated microbial diversity, were detected
on the International Space Station (ISS) [13, 19]. Such
pathogens might have caused tens of minor medical
incidents—among which are urinary tract, upper re-
spiratory tract and subcutaneous skin infections—be-
yond Earth [11, 16].

The threat increases when emergency returns become
impossible, notably on a Mars journey, which is ex-
pected to last at least 520 days [20]. Even in a relatively
mild disease scenario, the resulting decrease in
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productivity may be a significant loss given the high
value of astronaut working time.

Another threat comes from microorganisms’ interfer-
ence with equipment. First, some microorganisms, re-
ferred to as technophiles, can colonize industrial
materials and lead to hardware malfunction, degradation
of structural materials, and corrosion of metal parts [21].
Technophiles were found onboard the Mir station [22,
23] and onboard the ISS [13, 19, 24], leading to damage
of various systems [25, 26]. Second, microbial contami-
nants could interfere with biological life-support systems
[27]. These life-support systems could greatly contribute
to the feasibility of long-term missions on the Moon or
Mars [28-30]. However, microbial contaminants could
harm the system-relevant organisms through competi-
tion and/or toxicity or by making food products unsuit-
able for crew consumption.

Finally, microorganisms brought alongside the crew
could interfere with the search for life on Mars [31, 32].
One strategy to mitigate the risk of contamination could
be to increase our knowledge of, and to catalogue, the
microbial communities we are carrying [33, 34]: this
would help to discriminate between endogenous life and
our microbiome in case of an ambiguous discovery and
to assess the risk of contaminants to adapt to some local
(micro)environments. While Mars’s surface appears hos-
tile even to microbial life, it cannot be excluded that
some extremophiles may reach niches where they could
remain active [32].

In any case, microbial communities will be critical
components of future space endeavors, with a potentially
large influence on mission success [35]. Their import-
ance is reflected in space agencies’ efforts to characterize
them onboard the ISS [13, 19, 24, 36—40].

However, microbial monitoring on the ISS is con-
strained by logistical and funding challenges. An alterna-
tive is to study microbiome nature and dynamics in
similar, closed systems (such as submarines and polar
stations) or specific, ground-based analogues of long-
term crewed spaceflight [18, 41]. While those analogues
differ in some important aspects (e.g., gravity and radi-
ation) from spaceflight itself, they place a small, isolated
crew in combinations of the following: long-term con-
finement, high workloads, restricted waste disposal, lim-
ited hygiene, and/or low air or water quality. They offer
the possibility to comprehensively monitor related
medical and psychological issues.

In the past, several studies on the indoor and human
microbiome were conducted in settings simulating mis-
sions to future facilities on the Moon or Mars, for in-
stance: Mars500 (520 days) [41, 42], the Antarctic base
Concordia (1 year) [43], the inflatable lunar/Mars analo-
gous habitat (ILMAH) (30 days) [44], and the biological
life-support testbed “Lunar Palace 1”7 (LP1; 105 days)



Mahnert et al. Microbiome (2021) 9:27

[27]. For all these studies, individual parameters have to
be critically considered such as variations in methodolo-
gies, environmental conditions, activity, geographical lo-
cation, architectural design, baseline-diversity —of
microorganisms, contaminants from crew members, and
cargo such as food and scientific equipment.

Another opportunity arose in 2015-2016: as part of
the Hawaii Space Exploration Analog and Simulation IV
(HI-SEAS 1IV) mission, six people spent 1 year in isola-
tion in a dome (diameter: 11 m) located at 2.5 km of
altitude on the barren slopes of the Mauna Loa volcano,
primarily for NASA Behavioral Health and Performance
(BHP) research [45]. Over a period of 336 days, swab
and wipe samples from habitat surfaces and crew skin
were taken in order to assess the microbial community
fluctuation, as well as the interactions of surface and
skin microbiomes.

Our main hypotheses were that (i) the microbiome of
the HI-SEAS habitat would follow a longitudinal
homogenization between individual crew members, but
also the surrounding built environment; (ii) overall mi-
crobial diversity would be depleted; and (iii) the micro-
biome would resemble those of other long time
experiments in isolated and confined built environments
(ICE) on Earth and on the ISS.

Methods
Setting of the HI-SEAS IV mission
The 1-year Hawaii Space Exploration Analog and Simu-
lation IV (HI-SEAS IV) mission took place from August
28™, 2015 to August 28", 2016 [45] in the HI-SEAS
habitat, an 11 m in diameter spherical-shaped dome lo-
cated at 2.5 km of altitude on the barren slopes of the
Mauna Loa volcano (Supplementary Fig. S1). Operated
by the University of Hawaii, and funded by NASA, this
habitat served primarily for NASA Behavioral Health
and Performance (BHP) research. During HI-SEAS 1V,
six crew members (3 males and 3 females) selected for
their astronaut-like profile, four from the USA and two
from Europe (France and Germany), spent a year there
in conditions mimicking those of a Mars mission. Time
was mostly spent on research work (including outside
work, wearing mock spacesuits), test subject duties,
physical exercise, and household chores. The crew was
physically isolated from other human beings for the
whole mission duration and communications had a high
latency (20-min delay in both directions). The diet was
mostly composed of dehydrated food, canned food,
occasional fermented food (yoghurt, bread, and cream
cheese) made from rehydrated products, and rare vege-
tables grown on site.

Participants typically showered 1 to 3 times a week,
for an average duration of 1.5 to 2 minutes under run-
ning water (Heinicke et al. submitted); bodies were then
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washed with Equate’s Sensitive Skin Body Wash, and
hair with Garnier Fructis’ Pure Clean Clear 2inl. In-
between showers, participants occasionally used disin-
fecting wipes (mainly, Kirkland’s Extra Large Disinfect-
ing Wipes). Hands were routinely washed with Dr.
Bronner’s 18-in-1 Hemp Peppermint Pure-Castile liquid
soap, and disinfected with germ’s hand sanitizer.

A general cleaning of the habitat was performed every
Sunday. Most hard surfaces were then cleaned with Sim-
ple Green’s cleaner, the kitchen floor with Comet’s
bleach-based powder, and floors aside from the bath-
room and kitchen were only vacuumed. Dishwashing
was performed by hand. Clothes were washed with Kirk-
land’s UltraClean laundry detergent, either by hand or in
a washing machine.

Sources of voluntarily introduced microorganisms in-
cluded the following: Fermented products (sourdough
bread, tempeh, cream cheese, kombucha, and yoghurt)
were prepared using commercial microbial mixes. Toi-
lets were composting toilets, maintained with Sun-Mar’s
Microbe Mix and Sun-Mar’s compost swift. Cyanobac-
teria (Anabaena sp. PCC 7120 and Chroococcidiopsis sp.
CCMEE 029) were used for research purposes. Part of
the kitchen waste was processed in a bokashi compost-
ing system (purchased from Each One Teach One
Farms, Hawaii).

Sampling
Microbiome samples were taken every other week. Habi-
tat/furniture surface samples were taken with swabs at
four different locations. Skin surface (front torso) sam-
ples were taken with wipes from each crew member. In-
mission sampling occurred from September 4™, 2015 to
August 5™, 2016, and an extra series of skin wipe sam-
ples was performed after mission completion. The base-
line (day 0) was defined as the day of the first sampling
event.

The swab samples were taken from (Supplementary
Fig. S2):

— The front part of the (composting) toilet bowl (high
density plastic), in the upstairs bathroom

— The kitchen floor (painted, waterproof plywood), in
an area (between the fridge and another piece of
furniture) where dust tended to accumulate

— The desk (medium density fiberboard overlaid with
plastic laminate) in one of the bedrooms, and

— One desk (medium density fiberboard overlaid with
plastic laminate) in the main room

For each habitat/furniture surface sample, a swab
(552C regular swab; ethylene oxide sterilized, Copan,
Brescia, Italy) was moistened with autoclaved, deionized
water (ELGA’s Vision 125 Deionizer). An area of 5 x 5
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cm was sampled in three directions (horizontal, vertical,
and diagonal). The swab was turned between each
change in direction. The swab was then broken at the
predetermined breaking point and placed back into its
original container. Field controls were performed during
each sampling session by waving the swab in the air for
a few seconds instead of sampling a surface.

Prior to samplings of skin surfaces, sterile 50-ml tubes
were filled with one wipe (TX3211, SterileWipe LP, Tex-
wipe) and 10 ml of autoclaved, deionized water. Once
the wipes were homogeneously moistened, crew mem-
bers sampled their own skin following oral and written
instructions. Briefly, they put on gloves, cleaned them
with ethanol, took the wipe out of the tube, put it flat on
their hand, wiped their torso up and down and left and
right, folded the wipe over the target surface, wiped
again with one of the clean sides, wiped with the other
side, and put the wipe back into the original tube.
Twenty milliliters of water were then added to each tube
before storage. Field controls were performed during
each sampling session by waving the wipe in the air for
a few seconds instead of wiping skin.

Swab and wipe samples were stored at —20 °C after
sampling, shipped to Europe in dry ice after mission
completion and then stored at — 80 °C until analysis.

DNA extraction

A total of 63 wipes were thawed at 4 °C overnight before
transferring them to DNA-free bottles (baked at 250 °C
for 24 h) filled with polymerase chain reaction (PCR)-
grade water. The bottles were sonicated for 120 + 5 s
with a maximal power of 240 W and a frequency of 40
kHz, and vortexed at maximum speed for 1 min. The
biomass-containing water suspension was concentrated
to 200-500 pl using UV sterilized Amicon filters (Ami-
con Ultra 15 ml, 50 K, Merck Millipore).

DNA was then extracted from cells suspended and
concentrated from wipes, and from all surface swabs
plus 7 swab field controls (for a total of 111 swab
samples), using QIAGEN’s DNeasy PowerSoil Kit.

16S rRNA gene amplicons

Microbial profiles were based on amplicons targeting the
V4 region of the 16S rRNA gene. The common primer
pair F515-R806 [46] with tags for Illumina sequencing
was used to cover most bacterial and some archaeal taxa
(Supplementary Table S1). Twenty-five microliters of
the PCR reaction mix contained a final concentration of
200 mM each of forward and reverse primer (0.4 ul of
10 puM stock each), 0.1 pl TaKaRa ExTaq polymerase (5
U/ul, Clontech, Japan), 2 ul ExTaq buffer with MgCl,
(10x), 1.6 pul ANTP mix (2.5 mM), 2 ul of template
DNA, and 185 ul PCR grade water. PCR conditions
were as follows: initial denaturation at 94 °C for 3 min,
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followed by 35 cycles of denaturation at 94 °C for 45 s,
annealing at 50 °C for 60 s, elongation at 72 °C for 90 s,
and a final elongation step at 72 °C for 10 min. PCR
fragments were evaluated for product size and quantity
by agarose gel (3%) electrophoresis at 70 V for 30 min.
Libraries for Illumina MiSeq sequencing were prepared
by the Core Facility Molecular Biology at the Center for
Medical Research at the Medical University Graz,
Austria and covered biological samples, field blanks, ex-
traction blanks, as well as no-template controls of PCRs.
For the NGS library, DNA concentrations of the gener-
ated amplicons were normalized with a SequalPrep™
normalization plate (Invitrogen). After normalization of
PCR products, each sample was indexed with a unique
barcode sequence using 8 cycles of indexing PCR.
Indexed samples were then pooled and purified by gel
cuts. Finally, the library was sequenced on an Illumina
MiSeq instrument and the MiSeq Reagent Kit v3, 602
cycles (2 x 301 cycles).

Statistics and bioinformatics

After sequencing, resulting fastq files were processed with
Qiime2 versions 2018.6—-2020.8 [47]. Demultiplexed reads
were denoised with DADA2 [48] and an amplicon se-
quence variant (ASV) feature table was created after trun-
cating forward reads at position 200 and reverse reads at
position 150. Potential contaminants were identified and
removed with decontam [49] and its prevalence method
with default settings (method = “prevalence,” neg="is.neg,”
threshold = 0.5). Representative sequences were classified
by a Naive Bayes trained classifier [50] based on Silva 128
[51, 52] and a rooted phylogenetic tree for phylogenetic
diversity measures was created with Fasttree [53]. Core
metrics for alpha and beta diversity (including metrics for
richness, evenness, diversity, and distances) were calcu-
lated including phylogenetic measures like UniFrac [54] at
a depth of 3000 sequences per sample. Diversity analysis
covered displays and statistics like rarefaction curves, prin-
cipal coordinate analysis (PCoA), procrustes analysis,
biplots, Mantel tests [55], Kruskal-Wallis, bioenv [56],
Spearman rank correlations [57], Adonis (conducted in
Qiime 1.9.1), ANOSIM, or PERMANOVA tests. Meta-
analysis of longitudinal microbial diversity inside built en-
vironments was conducted in Qiita [58] and used datasets
of the following publicly available Qiita studies: 2192,
10423, 11740, and 12858. All selected studies (including
our study as well) targeted the V4 region of the 16S rRNA
gene and were processed with the very same Qiita stand-
ard workflows (trimmed to 150 bp, used Deblur for
denoising of the ASVs and Greengenes 13_8 for closed
reference taxonomy assignments). Longitudinal analysis
was based on the q2-longitudinal plugin available in
Qiime2 [59] and covered calculations of feature-volatility,
linear-mixed-effects =~ modeling,  pairwise-differences,
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pairwise-distances, Wilcoxon signed rank tests, and
Mann-Whitney U tests. Supervised classification and re-
gression of sample metadata was conducted with the q2-
sample-classifier plugin [60] with settings for optimized
feature-selection and parameter tuning for RandomForest
regression and classifications. For this analysis, the dataset
was randomly split and 20% of the dataset was removed
and kept as the test set. The training set was used to cre-
ate a learning model predicting class probabilities for each
sample by using K-fold cross validation. In the end model,
accuracy was calculated by comparing predicted values of
the training and test set. Differential abundance and com-
position of features was determined with balances in
gneiss [61], ancom [62], and feature rankings (feature dif-
ferentials and loadings) available from aldex2 [63], song-
bird [64], and deicode [65] were partly visualized in qurro
[66]. Microbial contributions of different sources and
sinks were predicted with SourceTracker2 (https://github.
com/biota/sourcetracker2 [67]) at a source and sink depth
of 3000 sequences per sample. Potential phenotypes and
functions were predicted with PiCrust2 (https://github.
com/gavinmdouglas/q2-picrust2 [68]) using the custom
tree pipeline and BugBase [69-71]. Further statistics and
visualizations were conducted in R [72] using the libraries
ggplot2 and streamgraph.

Data availability

All amplicon raw data is available at the European Nu-
cleotide Archive ENA (EMBL-EBI ERP118380). In
addition to raw data, processed data is available in Qiita
(study id 12858; https://qiita.ucsd.edu/ [58]).

gPCR (16S rRNA genes and resistance genes)

The overall microbial load was determined by qPCR of
the 16S rRNA gene. Two setups were used to quantify
bacteria and archaea separately (primer pair 331f-797r
for bacteria [73] and primer pair A806f-A958r for ar-
chaea, Supplementary Table S2). For each setup 10 pl of
the SYBR Green Supermix (Biorad) contained 5 ul of
SsoAdvanced Universal qPCR Kit MM 2x, 0.3 pl each of
forward and reverse primers (10 pM), 3.4 pl of PCR-
grade water, and 1 pl of template DNA. qPCR runs were
then carried out on a Bio-Rad CFX96 thermocycler with
the following conditions: initial denaturation at 94 °C for
3 min, followed by 35 cycles of denaturation at 94 °C for
45 s, annealing at 54 °C for bacteria, and 60 °C for ar-
chaea for 60 s, elongation at 72 °C for 90 s, and a final
elongation step at 72 °C for 10 min. Quantifications of
16 qPCR runs relied on serial dilutions of a cloned 16S
rRNA gene of Escherichia coli and Nitrososphaera vien-
nensis, respectively for bacteria and archaea, into Strata-
Clone vector pscA_AmpKan according to manufacturer
instructions. For reliable quantifications, a minimum re-
action efficiency of 0.8 and a correlation coefficient
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above 0.9 as well as clean melting curves were required.
Counts in negative and no-template controls were sub-
tracted from actual samples and extrapolated per mZ
Finally, qPCR counts were displayed as volatility plots
including linear regressions with time.

In addition to quantifications of the microbial load,
monitoring of antimicrobial resistances was based on the
following four selected resistance genes: blaOXA (class
A beta-lactamase [74];), intla (class 1 integrase [75]),
qacEA1 (biocide resistance gene, quaternary ammonium
compound-resistance [74, 76]), and tetM (tetracycline
resistance [74, 77]) (Supplementary Table S3). As indi-
vidual standards were not available, all quantifications
were based on relative proportions and serial dilutions
(1:10, 1:100, 1:1,000) of the genomic DNA of four cul-
tures (Acinetobacter sp., Escherichia coli, Enterococcus,
and Pseudomonas aeruginosa) with reported presence of
these resistances. qPCR runs were prepared with the
STARIlet pipetting robot (Hamilton, Germany) for the
Bio-Rad CFX384 instrument. PCR conditions were set to
initial denaturation at 95 °C for 10 min, followed by 40
cycles of denaturation at 95 °C for 15 s, annealing at 55
°C for 30 s, elongation at 72 °C for 30 s, and a final
elongation step at 72 °C for 30 s. All 14 qPCR runs were
normalized internally (according to qPCR counts of each
individual standard); counts from negative controls and
no-template controls were subtracted from actual sam-
ples and then extrapolated per m? Similarly, as done for
qPCR counts of the 16S rRNA gene, antimicrobial resis-
tances were also displayed as volatility plots with linear
regressions.

Microbial nomenclature

Throughout the manuscript, we refer to the nomencla-
ture assigned by the Silva 128 release. A special case is
the genus Propionibacterium. We are aware that skin-
associated representatives of this genus were renamed in
a recent release of the Silva database to the genus
Cutibacterium [78] that was not available when we per-
formed our analysis.

Results

Overview of the microbiome of the built environment
and its occupants

Samples were taken from four representative locations
(toilet bowl, kitchen floor, desk in one of the bedrooms,
desk in the main room) within the confined built envir-
onment and from the skin (front torso) of six isolated
crew members. Sampling was performed at 27 time
points spanning 1 year. Besides amplicon sequencing, all
samples plus laboratory controls (n = 186 in total) were
subjected to quantitative PCR (qPCR) on the 16S rRNA
gene to assess the overall bacterial load, and on four rep-
resentative resistance genes (blaOXA, intla, qacEAI
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tetM) to assess the progression of microbial resistances
on skin and surfaces over time.

Along with the samples, 16 types of metadata of envir-
onment and crew members were recorded (selected nu-
merical metadata is listed in Supplementary Table S4).
The crew was composed of three male and three female
members (crewID A-F), with an average age of 30 + 4 and
an average body size of 176 + 9 cm. During the isolation
and confinement, hygiene practices were restricted. On
average, crew members showered preferentially on Satur-
days, every 5.4 + 1.8 days (60.67 + 15.7 times) for about 1
min and 42 + 47 s. However, individual showering prac-
tices differed. For instance, some crew members showered
for shorter durations, but more frequently and others
showered for longer durations, but only a few times dur-
ing the isolation period. The diet was mostly composed of
dehydrated food, but the crew was allowed to bring bene-
ficial microbes into the habitat, e.g., starters for sourdough
bread, tempeh, cream cheese, kombucha, and yoghurt.
Toilets were composting toilets. Cyanobacteria (Anabaena
sp. PCC 7120 and Chroococcidiopsis sp. CCMEE 029)
were used for research purposes. Part of the kitchen waste
was processed in a bokashi composting system.

No direct or real-time contact to other humans except
to crew members was allowed, and the extravehicular
activities included donning of a mock spacesuit that pre-
vented exposure to open air and direct sunlight (de-
scribed in [79]). Nine resupply events happened during
the isolation period (on days 15, 43, 79, 107, 148, 185,
223, 258, 303, 335). A total of 132 samples were proc-
essed before and 43 samples after a resupply event.
Temperature was stable over time (mean temperature 18
t 1 °C). CO, levels were always in the recommended
range for indoor environments (400-1000 ppm) with an
average of 662 + 62 ppm.

Denoising of demultiplexed amplicon data with DADA2
resulted in 10,016 unique features (ASVs). In an initial
step, we analyzed the processed controls (sampling blanks,
process controls, no-template controls), which showed
significantly lower microbial Shannon diversity than in ac-
tual samples (pairwise Kruskal-Wallis P = 1.8 x 107%
Shannon H’ ~5.7 vs. 7.0; rarefaction depth of 7850 se-
quences). Moreover, microbial composition differed sig-
nificantly between samples and controls, according to
weighted UniFrac metrics (PERMANOVA, ANOSIM R =
0.42, Adonis R? = 0.06, for all three tests P = 0.001). To
clean the dataset, contaminants were identified from proc-
essed controls with decontam [49] and subsequently re-
moved from the dataset. All subsequent analyses were
performed with the cleaned dataset, which contained 3,
077,780 sequences (median frequency was 17,533 se-
quences per sample). According to rarefaction curves, se-
quencing depth was of sufficient quality, as the Shannon
diversity metric (H) plateaued at ~ 2500 sequences.
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Since we were interested in the characteristics of the
microbiome profile of the different sample groups, the
dataset was divided into different surface types (crew
[skin], built environment) and sample locations (e.g., in-
dividual crew members and locations within the facility).

The overall microbial diversity and composition of biotic
(skin) and abiotic surfaces differs significantly

In the first step, we compared the alpha diversities
(based on Shannon index) of all sample types. Samples
from the crew’s skin showed significantly lower diversity
than samples from surfaces of the built environment
(pairwise Kruskal-Wallis P = 7.3 x 107*%; mean Shannon
H ~6.2 vs. 7.5) (Fig. 1a). Significant differences were
also detected in the diversity index of five crew members
(pairwise Kruskal-Wallis of crew member A and B: ¢
value 1.6 x 107 A and D: ¢ value 1.3 x 107 A and F:
7.5 x 107% C and F: 2.7 x 1077 Fig. 1c¢).

Notably, the microbial diversity on the crew’s skin varied
more (mean Shannon H ~5.0 in samples from crew
member F to ~ 6.7 for crew member A) than that on abi-
otic surfaces (mean Shannon H' ~ 7.2 in samples of the
kitchen floor to ~ 7.6 in bedroom samples; Fig. 1b, c).

With respect to alpha diversity, the built environment
surfaces showed only significant differences between
bedroom and kitchen floor samples (pairwise Kruskal-
Wallis g value 4.5 x 107% Fig. 1b), while richness was
variable (Supplementary Fig. S3). Alpha diversity was
also significantly different according to type of surface
material (plywood vs. polymer; pairwise Kruskal-Wallis ¢
value 4.5 x 107% Supplementary Fig. S4).

Beyond alpha diversity, the microbiome profile of sam-
ples from built environment surfaces was significantly
different from that of crew skin samples (weighted Uni-
Frac distances, PERMANOVA ¢ value = 3 x 10~%; ANO-
SIM R = 0.3, P = 3.3 x 10°%; Adonis R* = 0.15, P = 1 x
107) and samples clustered separately in PCoA plot
analysis (Fig. 1g, h). Further significant differences were
found between all four locations of the HI-SEAS habitat
(ranging from ¢ values of 1.8 x 107 to 3.3 x 1073,
PERMANOVA pairwise testing; ANOSIM R = 0.14 to
0.85, highest for kitchen floor vs. toilet bowl; Adonis R
= 0.33). However, the microbial composition was not
significantly different between individual crew members
despite highly explained variability along PCoA axis 1,
indicating dynamic changes of microbial composition on
skin samples over time (see below).

Supported by extensive metadata analysis, the factors time
(P = 0.04, Spearman rank correlation of Shannon diversity
with time) and sampling location (P = 9.4 x 107, Kruskal-
Wallis test of all groups, see above for more details) were
identified to have a significant impact on microbial diversity
and the microbial profile, whereas the microclimate of the
habitat revealed no significant influence.
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Metadata predictions based on Random Forest classi-
fiers and regressors showed high overall accuracy esti-
mates of 95% for the sampling environment (skin samples
vs. built environment samples), and the day of sampling
(R =077, P =23 x 107%). Thus, our subsequent analyses
focused on the impacts of time and sampling location.

Each surface was characterized by a specific set of
microbial signatures, which can be predicted with high
accuracy

As selected surfaces of the built environment (desk in a
bedroom, kitchen floor, desk in the main room, toilet
bowl) and the crew’s skin showed a significantly different
composition (see below), we were interested in a detailed
analysis of the characteristic features.

Overall, the skin samples were characterized by high
abundance of Staphylococcus, Propionibacterium, Entero-
bacteriaceae, Enhydrobacter, and Methanobrevibacter
signatures (LEfSe analysis, Fig. 1d), whereas the built
surfaces were characterized by the presence of Chryseo-
bacterium, Lactobacillus, Gardnerella, Prevotella, and
Acinetobacter.

Indicative microbial signatures were identified for the
toilet bowl (Staphylococcus, Anaerococcus), the main
room desk (Acinetobacter, Streptococcus), the kitchen
floor (Brevundimonas, Achromobacter), and the bed-
room desk surface (Enhydrobacter, Micrococcus; Fig. 1e).

As observed for habitat surfaces, individual crew mem-
bers revealed typical microbiome profiles with Propioni-
bacterium being indicative for crew member D,
Peptoniphilus for crew member C, Staphylococcus for
crew member B, and Kocuria for crew member A
(Fig. 1f). Remarkably, accuracy of metadata prediction
based on RandomForest classifications was possible for
certain individuals (e.g., crew member D with 100%) or
distinct surfaces of the built environment (e.g., kitchen
floor and the toilet bowl both 100% accuracy) (Supple-
mentary Figure S5).

Microbial diversity on skin increased during the isolation
over time

Overall, the longitudinal microbial diversity in sam-
ples from skin showed a steady increase over time
(mean Shannon H’' 4.9 to 6.4), whereas the increase
in microbial diversity on built environment surfaces
was lower (mean Shannon H' 6.4 to 7.3). The micro-
bial diversity from built environment surfaces was
subject to greater fluctuations throughout the time
period (Fig. 2a). This observation, however, could be
due to a higher number of analyzed built environ-
ment samples. Increasing microbial diversity on skin
was also confirmed by linear mixed effect models
which tested whether Shannon diversity changed over
time in response to the sampling locations
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(Supplementary Fig. S6). An increase in microbial di-
versity on skin was observed for most crew members
(C, D, E, and F; mean Shannon H' 5.1 to 6.5; highest
increase for individual C from 5 to 7.8). However,
almost no change was visible for individual A, and a
slight decrease was observed for individual B (mean
Shannon H' 5.5. to 4.8; Fig. 2b).

The microbial diversity on different locations inside
the HI-SEAS habitat changed as well (Fig. 2b). The lar-
gest fluctuations were detected for samples of the main
room, and a slight increase in microbial diversity was
visible for all locations apart from the toilet bowl. In the
latter case, microbial diversity decreased by 1 log (mean
Shannon H' 7.9 to 6.8), possibly due to more rigorous
cleaning procedures.

Other metrics describing the alpha diversity of all sam-
ples, such as richness (92 to 213.67) and phylogenetic di-
versity estimates (7.6 to 14.7), followed a similar pattern,
while Pielou’s evenness remained constant over the en-
tire isolation period (0.8 to 0.84; Supplementary Fig. S7
and Supplementary Fig. S8).

Temporary dynamics of microbial diversity were inves-
tigated by pairwise difference comparisons of samples
from individual time points. Significant differences were
only evident between day 210 and day 252 for skin sam-
ples (Kruskal-Wallis test for multiple groups, P = 0.02)
and between skin and built environment surface samples
(Mann-Whitney U test, g value = 0.03).

Furthermore, correlating patterns of microbial diver-
sity were analyzed by Spearman rank correlations. After
false discovery rate (FDR) correction, significant positive
correlations of microbial diversity were only evident between
crew members C and E (g value = 0.057% rho = 0.9).

Observations of microbial composition followed a
similar pattern as described for microbial diversity.
Hence, composition of skin samples (weighted UniFrac
distances) changed to larger magnitudes than those from
built environment surfaces along PCoA axisl (Fig. 2d).
Largest shifts on crew’s skin were visible between day 0
and day 210 (with a maximum at day 84 of -0.3)
(Fig. 2d), especially for crew member B. In contrast,
almost no changes along PCoA axis 1 were visible for
crew member D and E (Fig. 2e).

Pairwise distance comparisons of microbial compos-
ition (weighted UniFrac distances) at individual time
points showed significant differences between day 84
and day 126 (Kruskal-Wallis test for multiple groups, P
= 0.03), and between skin and built environment surface
samples (Mann-Whitney U test, g value = 0.04).

Comparison with other built environment studies indicates
an atypical increase in skin diversity under isolation

For a suitable evaluation of our observations, we
performed a meta-analysis of longitudinal microbial
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diversity patterns inside different built environments.
This analysis (see “Material and methods” section for
more details) covered more than 3400 samples and
ten different sample types (front torso skin, confined
habitat surfaces, office dust, room surfaces, desk sur-
faces, door stoppers, floors, windows, fecal samples,
and skin samples from the inner elbow) from four
longitudinal studies inside the built environment and
were all processed in the same way to allow
for proper comparisons. Public studies from Qiita

were selected based on three criteria: first they had
to be longitudinal, second they had to be conducted
in a built environment setting, and third they had to
cover samples from human sources beside built en-
vironment surfaces. According to these criteria, we
included a longitudinal analysis of microbial interac-
tions between humans and the indoor environment
[80], a longitudinal assessment of the influence of
lifestyle homogenization on the microbiome of
United States Air Force Cadets [81], and a study
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which identified geography and location as the primary
drivers of office microbiome composition [82]. Our meta-
analysis confirmed that microbial diversity progressions in
the HI-SEAS habitat were exceptional. While all other
sample types showed a decrease in microbial diversity,
only samples from the human gut of US air force cadets
(mean Shannon H' 5.1 to 5.5) and skin samples of
the HI-SEAS crew (mean Shannon H' 4.9 to 5.4) showed
a steady increase over time (Fig. 2c).

Microbial dynamics during isolation was driven by
specific taxa

For a higher resolution of microbial composition in skin
and built environment samples over time, the isolation
period was grouped into four phases (phase 1: days 0-
84, phase 2: 84-210, phase 3: 210-294, and phase 4:
294-336). To get insights into microbiome evolution
after isolation, skin samples from the post-mission
control (day 400) were also studied.

According to differential abundance analysis of all
samples using balances in gneiss (Fig. 3a), higher propor-
tions were visible for Staphylococcus, Propionibacterium,
and Methanobrevibacter (phase 1). Between day 84 and
day 210 (phase 2), only Stenotrophomonas and unclassi-
fied Enterobacteriaceae showed higher proportions at
the latter time point. Later on, unclassified Dermacocca-
ceae, Propionibacterium, Kocuria, and unclassified Rhi-
zobiaceae showed increasing proportions, while
Streptococcus and Fusobacterium showed decreasing
proportions (phase 3). During phase 4, Methylobacter-
ium populi, Streptococcus, Brevundimonas, Pseudo-
monas, Lactococcus, Sphingomonas, and Cloacibacterium
revealed lower proportions than unclassified Enterobac-
teriaceae and Staphylococcus.

After the isolation period, increasing proportions of
Acinetobacter, Propionibacterium, Rhizobium, and Methy-
lobacterium populi were prevalent on the skin of the crew,
while signatures of Pseudomonas, Corynebacterium, or
unclassified Intrasporangiaceae decreased (Supplementary
Fig. S9).

Dynamics of representative skin, GIT/UGT, and
environment-associated microbial taxa

In a next step, we selected 15 microbial genera and families
which were indicative of either skin (Acinetobacter, Staphylo-
coccus [aureus), Brevundimonas, Kocuria, Propionibacterium,
Streptococcus, Kytococcus, Dermacoccacae), gastrointestinal/
urogenital tract (Gardnerella, Lactococcus, Methanobrevibac-
ter, Faecalibacterium, Enterobacteriaceae), or environment
and water (Pseudomonas, Enhydrobacter), to assess the dy-
namics of those microbial signatures. Our feature selections
were supported by higher rankings in differential abundance
tests based on gneiss, aldex2, and songbird, and feature load-
ings based on deicode. Grouping these representative
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features into the categories skin, GIT/UGT (gastrointestinal/
urogenital tract), and environmental was based on empirical
data from literature [10].

Representing the skin microbial taxa, Acinetobacter, des-
pite being recognized as a typical skin microbial taxon,
showed higher relative abundances on built environment
surfaces (especially in the main room and bedroom). Crew
member E showed over proportional prevalence at the be-
ginning and together with crew member A also at the end
of the isolation period (Fig. 3b and Supplementary Fig. S10).

Staphylococcus [aureus] was mainly present on human
skin (crew members D, E, and F), but has also been
detected on surfaces inside the habitat. (Fig. 3b and
Supplementary Fig. S11). Brevundimonas was clearly
associated with the kitchen surfaces (Supplementary Fig.
S12) and showed higher proportions on the toilet bowl
(between day 70 and day 84), the main room (between
day 238 and day 252), and on the skin of crew member F
between day 238 and day 252 and again between day 294
and day 336. Relative proportions of Kocuria were clearly
correlated with time by linear regression models and
showed the highest value for importance (0.3)
(Supplementary Fig. S13). While crew members A and E
showed a higher prevalence of Kocuria right from the be-
ginning, built environment surfaces as well as crew mem-
bers B and C showed higher proportions only later on. In
contrast, Propionibacterium did not manifest itself on
built environment surfaces and could only be recovered
from other skin samples over time (Supplementary Fig.
S14). On the other hand, signatures of Streptococcus could
not be linked to a defined human source and established
itself on bed and main room surfaces (Supplementary Fig.
S15). Kytococcus was associated with crew members A
and D at the beginning (Supplementary Fig. S16). Later
on, only single events of high proportions were visible on
the skin of crew member B or sampled bedroom surfaces.
Dermacoccaceae were regularly retrieved from skin and
built environment surfaces with highest proportions in
samples from the bedroom and from crew member D at
the end of the confinement period (Supplementary Fig.
S17). After Kocuria, Dermacoccaceae showed the highest
importance (0.1) in linear regression models.

As a representative of the GIT/UGT, Gardnerella showed
a consistent presence despite varying proportions on the
surface of the toilet bowl (Supplementary Fig. S18). Like-
wise, signatures of Lactococcus revealed a single peak on
the kitchen floor after day 50, but could not be detected on
the skin of any crew member (Supplementary Fig. S19). In
contrast to Faecalibacterium (Supplementary Fig. S20),
Methanobrevibacter were not consistently recovered from
the toilet bowl, but were clearly associated with some of the
crew members (Supplementary Fig. S21). As biplot analyses
identified Euryarchaeota (in particular Methanobrevibacter
sp.) as the main reason for compositional changes around
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(See figure on previous page.)

Fig. 3 Microbial dynamics in distinct phases and for representative features. a Proportion plots of differential feature abundances using balances in
gneiss on genus level grouped into four distinct phases. The proportion plot shows taxa of the crew and the built environment, which could be
responsible to explain the differences between the earlier and the later sampling event in each phase (green and orange bars). Differential numerator
taxa are grouped to the top (background color in light blue) and differential denominator taxa are grouped to the bottom (background color in dark
blue). b Volatility analysis based on linear regression models with time of Acinetobacter, Staphylococcus, and Methanobrevibacter sp.
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day 84, this genus was analyzed further. In general, signa-
tures of Methanobrevibacter were highly associated with
the human crew within the first 210 days (Fig. 3b and Sup-
plementary Fig. S22). However, these signatures were not
common on built environment surfaces and were only ob-
served on the toilet bowl and the kitchen floor on day 115
and on day 224. This pattern was different from that of

other archaeal lineages (Euryarchaeota, Thaumarchaeota,
and Woesarchaeota), which showed scattered peaks on
built environment surfaces but not in skin samples. Entero-
bacteriaceae showed only single events of prevalence on the
toilet bowl and were mainly associated with skin samples of
crew members D, E, and F between day 100 and day 250
(Supplementary Fig. S23).
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Despite representing an environment-associated taxon,
Enhydrobacter was present on all crew members to vary-
ing proportions and was regularly detected in samples
from the toilet bowl (Supplementary Fig. S24). Signa-
tures of Pseudomonas were observed in skin samples
from crew members B and D, followed by a detectable
increase on the kitchen floor and further on the skin of
crew members E and F (Supplementary Fig. S25).

Shared occupancy influences the microbiome composition
and function of the crew skin and abiotic surfaces

Source tracking of microbial signatures with Source-
tracker2 identified human skin as the main source of mi-
crobial dispersal. Noteworthy, the intensity of microbiome
exchange was heterogeneous among the possible pairs of
crew members. In more detail, crew member F showed
the highest interactive profile (13.4%) of all crew members.
This was also supported by redundancy analysis (RDA)

revealing pairwise microbial exchange for two pairs of
crew members as significant parameters on respective skin
microbiome profiles (P = 0.002 RDA). Sampled locations
of the built environment played only a minor role in over-
all microbial dispersals. Maximal microbial contributions
on the crew reached only proportions of 1.2% in case of
the main room. Interestingly, crew gender showed differ-
ent microbial associations for bedroom and the kitchen
floor samples. Nevertheless, microbial interaction profiles
were highly person-specific as well as dynamic over time.
Overall, trends were difficult to delineate (Fig. 4).

Further on, we were interested in whether microbial
profiles and interactions between crew members and
surfaces inside the HI-SEAS habitat had an impact on
potential phenotypes predicted with Picrust 2 and BugBase.
According to these predictions, most phenotypes showed
higher proportions (e.g., potential mobile elements, poten-
tial pathogens, potential stress tolerance, and especially
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facultative anaerobes) or recurring peaks (Gram-positive
and Gram-negative phenotypes and aerobes) on samples
from the crew’s skin. However, the potential to form bio-
films showed a constant maximum in samples retrieved
from the kitchen floor (global median 0.18, maximum 0.27,
cumulative average decrease/increase —0.25/0.24) and an-
aerobes were increasing on the toilet bowl (minimum 0.06,
maximum 0.21) while decreasing on human skin (0.02 to
0.01). Interestingly, potential pathogens showed an anti-
cyclic pattern of samples from the built environment versus
samples from the crew (Fig. 5).

Fluctuation of microbial quantity correlates with the
presence of certain antimicrobial resistance genes and
microbial phenotypes

Quantitative PCR was used to assess bacterial and ar-
chaeal abundance, and its dynamics inside the HI-SEAS
habitat and the skin of its isolated crew members. As
observed for microbial profiles, bacterial abundance
changed to a larger extent for samples from the crew’s
skin than from built environment surfaces. In general,
two main phases of differing bacterial load could be de-
termined. In the beginning (days 0-42) and between
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days 126 and 210, bacterial abundance on human skin
was much lower than on selected locations of the built
environment (respective mean difference for the two
phases: 12.5 and 22.5%). The largest dynamics were ob-
served around day 28 and day 182 (change in relative
proportions by 43%; Fig. 6a). On the other hand, ar-
chaeal abundance peaked around day 84 (82%) but var-
ied to much lesser extents, especially in the mid-term of
the isolation period (Supplementary Fig. S26).

In addition, four markers for antimicrobial resistance
(blaOXA—class A beta-lactamase, intla—class 1 inte-
grase, qacEA1—biocide resistance gene, quaternary am-
monium compound, and tetM—tetracycline resistance)
were selected to analyze dynamics of microbial resis-
tances in a quantitative way. TetM was most predictive
for the factor time (importance = 0.2) and was con-
stantly more abundant in skin samples between day 140
and day 294. Interestingly, beta-lactamases showed the
opposite pattern, with lowest proportions between day
140 to day 294. Intla gene abundance was highly dy-
namic over the whole time frame (highest global vari-
ance of 0.06) and showed peaks on built environment
locations (toilet bowl and kitchen floor) on day 140, but
also on human skin (especially crew members C and D)
on day 308. Highest and lowest abundances of gacEAI
regularly alternated between samples of the built envir-
onment and from human skin. Nevertheless, all four tar-
geted resistance genes showed high dynamics and
potential transfer between skin and the built environ-
ment (Fig. 6b).

Eighty-nine taxa on species level could be positively
correlated by Spearman rank correlations with 16S
rRNA gene abundance (for instance Chryseobacterium q
value = 1.5 x 1078, R = 0.57; Pseudomonas fragi q value
= 1.6 x 10°% R = 0.56; Megasphaera q value = 7.5 x
1073, R = 0.54), while only a few taxa showed significant
negative correlations (Ralstonia q value = 1.8 x 107 R =
-0.39; Tepidimonas q value = 0.01, R = — 0.26). On the
contrary, potential significant correlations of taxa with
selected antimicrobial resistance genes could not be veri-
fied by multi-hypothesis testing using FDR correction of
significant p values.

Finally, predicted phenotypes were correlated both
with each other and with obtained quantitative informa-
tion (16S rRNA gene copies and selected resistance
genes). While all quantitative data could be significantly
positively correlated with each other (especially class A
beta-lactamases with biocide resistance of quaternary
ammonium compounds; ¢ value = 1.5 x 1073, rho =
0.66, and biocide resistance of quaternary ammonium
compounds with tetracycline resistance;q value = 2.9 x
1077, rho = 0.5), comparisons of the qualitative informa-
tion showed both positive and negative correlations. Sig-
nificant positive correlations were evident between
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aerobes and potential biofilm formers (g value = 8.9 x
107", rho = 0.60), as well as potential pathogens and
stress tolerance (g value = 4.7 x 102, rho = 0.63). On
the contrary, significant negative correlations were
observed between aerobes and facultative anaerobes (g

value = 1.0 x 1074 rho = - 0.67), as well as between po-
tential biofilm formers and Gram-positives (g value =
1.1 x 1077, rho = - 0.51). However, significant correla-

tions between quantitative and qualitative measures were
scarce. Only the overall bacterial load (16S rRNA gene
copy numbers) showed significant positive correlations
with anaerobes (g value = 0.002, rho = 0.32) and signifi-
cant negative correlations with aerobes (g value = 0.01,
rho = - 0.26).

Discussion

Human well-being is inseparably linked with its micro-
biome. Thus, the dynamics of the microbiome in and
around a human being is subject of research for the
preparation of human long-term spaceflight and settle-
ment in remote locations such as a future Martian out-
post [7]. For such studies, Earth-based models are
indispensable including a monitoring of the longitudinal
microbial dynamics of an isolated crew with its confined
environment beside social analysis of team cohesion and
performance. Numerous suitable model environments
were investigated in the past (besides the one studied
herein), but greatly differed in terms of setup and study
design. For instance, the Concordia research station in
Antarctica comprised separate buildings, accommodated
16-32 occupants during the sampling period, and was
microbially monitored for 365 days [43]. The US inflated
lunar/Mars analog habitat (ILMAH) provided 300 m?
space for three occupants and was investigated for 30
days [44]. Another example is the Mars500 habitat lo-
cated in Moscow, Russia, which included four modules
with a total volume of 550 m® and housed six partici-
pants for 520 days [41].

All isolated and confined built environment (ICE)
models represented a unique testbed for assessing the
microbial interaction of an isolated crew inside a con-
fined built environment. In contrast to other studies in
the microbiome of built environments (MoBE) field, its
reduced set of potential environmental variables that
could drive the microbiome in a longitudinal context al-
lows distinct assumptions about where microbial signa-
tures originated, as well as when, where and why they
were transferred through time and space [83].

Unexpectedly, our study revealed a highly dynamic skin
microbiome of the HI-SEAS crew despite its isolated and
confined setup. In contrast to the study by Sharma and
co-workers [81] in which longitudinal homogenization of
microbial composition was visible ab initio, we observed a
retarded longitudinal homogenization between skin and
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built environment samples only after 210 days. Neverthe-
less, traces of the skin microbiome were clearly visible on
the studied surfaces and as described before occupancy
was identified as the major microbial source [9, 84—86].
Compared to microbial interaction profiles from human
skin, building surfaces seem to play a more passive and
subordinated role for spreading and dispersal in this habi-
tat and confirmed again that humans dominate microbial
communities on indoor surfaces [87, 88]. Accordingly, the
kitchen floor surface stood out with its low microbial
diversity. This observation could be associated with the
low interaction frequency of this specific location (floor
surface) in contrast to the regularly touched desk or toilet
surfaces in the habitat.

In contrast to other isolation experiments like the
Mars500 study [41] in which a significant decrease in
microbial diversity was observed, the microbial diversity
on the HI-SEAS surfaces remained rather constant and
even increased in samples from crew skin. Confirmed by
our meta-analysis based on four selected longitudinal
studies from built environment settings, increasing mi-
crobial diversity on human skin and built environment
samples was not reported in offices or homes [80, 82].
However, this observation could be the result of a hu-
man occupancy in confined and in more isolated built
environments as this pattern was also observed in sam-
ples from crew members at the ISS (International Space
Station) for samples of the forearm and gut [89] or in
fecal samples during the cohabitation of US Air Force
cadets [81]. Crew members C, D, E, and F started with a
relatively low range of microbial diversity on their skin
compared to representative studies of the skin micro-
biome [90, 91]. This rather low microbial diversity might
result from extensive personal hygiene cleaning proce-
dures before entering the HI-SEAS habitat with a limited
allowance of daily hygiene procedures.

The sources of microorganisms are not completely
clear; the steady increase on the crew’s skin could result
from interactions with the higher microbial diversity
present in their habitat (refer to Fig. 2a, b), regular re-
supply events, sanitary complications, and elaborate
cleaning of the composting toilet (for details see below)
or dispersal of microbial food supplements used to fer-
ment food. In addition to these potential microbial
sources, the altered hygiene regime during isolation has
probably contributed to an increase or stabilization of
skin microbiome composition. The most stable skin
microbiome was observed for a crew member, who ap-
plied extremely short showers (average duration of 40 s;
Supplementary Table S4), compared to the other crew
members (overall average showering time of 102 s),
which revealed a more fluctuating microbial profile.
Another impact of hygiene regimens on the skin micro-
biome was indicated by the higher abundance of
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quaternary ammonium compound resistance genes on
the skin of individual crew members. This observation
reflected the application of disinfecting cleaning wipes
(which contained such compounds) on the crew’s skin
in-between the showering events.

The most striking observation was the delayed longitu-
dinal homogenization and very dynamic developments
of the skin microbiome in the first half of the isolation
period (days 0-210). These unstable profiles correlated
with complications of the composting toilet, which re-
quired a manual cleaning and emptying rotationally by
all the crew members. Dispersal of gut/urogenital-associ-
ated microorganisms from the composting toilet might
have even been supported by the use of a fan to reduce
the odor. An obvious indicator species of these compli-
cations was Methanobrevibacter. As verified by biplots,
specific filtering of the dataset and significant correla-
tions of quantitative data (bacterial and archaeal abun-
dance) with an anaerobic predicted phenotype, this
archaeon of the human gut explained most of the dy-
namics in this timeframe and delayed the expected lon-
gitudinal homogenization process of its microbiome.
Methanobrevibacter represents the most common ar-
chaeal genus of the human gut and has an important
role at the end of the intestinal food chain where it facil-
itates the fermentation process of bacteria by removing
hydrogen from the system (an overview is given in [92].
Obviously, the increased prediction of anaerobic pheno-
types correlated very well with the increased signatures
of Methanobrevibacter in the same timeframe. Later on,
the signatures of Methanobrevibacter increased relatively
on samples of the toilet bowl while decreasing on human
skin as soon as the toilet issue was fixed. Most of the
other predicted phenotypes showed higher relative pro-
portions and dynamics on skin samples, which might be
due to the reported temporal and personalized variability
on human skin samples [90, 93]. In addition, the anti-
cyclic pattern of potential pathogens might picture regu-
lar transfer events between skin and desk surfaces in the
habitat, which were described before [81].

Besides the remarkable traces of gut-associated ar-
chaea, other selected bacterial indicator species were
helpful to interpret microbial dynamics in the HI-SEAS
habitat. Hence, most skin-associated bacteria like
Staphylococcus aureus, Brevundimonas, Kocuria, Propi-
onibacterium, Streptococcus, Kytococcus, and Dermacoc-
cacae could be easily traced in the habitat, were most
frequently exchanged with the desk surface in the bed-
room, and were transferred more likely between crew
members who also had close physical interaction with
each other. Their presence on different built environ-
ment locations was often transient and higher propor-
tions were usually detected in samples from the crew.
This observation was also confirmed by source tracking
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analysis, which showed higher microbial transfer be-
tween crew members A and D, B and C, or E and F, or
low microbial transfer between crew members A and F,
or C and E. This microbial transfer pattern corresponds
to the reported interaction preference of male with
female crew members during the isolation period. These
results underline the important impact of the personal
microbial cloud [94], the importance of direct physical
interaction [80, 95, 96], as well as cohabitation of crew
members [97] and the low microbial input from selected
built environment locations [88] to the overall micro-
biome of the HI-SEAS habitat.

Propionibacterium could act as an example for the low
input of the built environment microbiome, since this
bacterium was only recovered from skin samples and
was never observed on surfaces of the HI-SEAS habitat.
This might be due to its strict anaerobic lifestyle, that
seems to prefer the oxygen depleted pores of human
skin and much less those relatively smooth oxygen rich
building surfaces and materials.

However, an opposite profile was observed for signa-
tures of Acinetobacter. Although described as a skin-
associated microbe [98], Acinetobacter established itself
much better in various locations of the main room and
bedroom. As this bacterium is also frequently detected
on surfaces of public and private buildings, as well as
hospitals or cleanrooms [99-102], it is tempting to
speculate whether Acinetobacter could be perceived as
an indicator species for confined built environments and
to a lesser extent only as a skin-associated bacterium.

Peaks of signatures from Lactococcus on the kitchen
floor might be due to its usage in fermenting yoghurt,
cream cheese (Lactococcus lactis subsp. lactis and cre-
moris), tempeh, or kombucha. The idea of using microbial
cultures as part of the food supply, or entire artificial eco-
systems for life support [28, 103], is of particular import-
ance in isolated and confined built environments (ICE)
and might be key to colonizing another celestial body in
the solar system. Nevertheless, the exact composition of
commercially available products must be well-
characterized to mitigate potential risks for the crew.

Although a number of metadata about health and
medication of the crew were obtained, the information
was not precise enough for correlations with the micro-
biome. Crew members provided medication data, but
only two reported treatments could be associated with
increases in tetracycline resistance and bacterial abun-
dances, potential pathogens or stress tolerance. Hence,
in contrast to the study by Abeles and co-workers [104]
who could follow specific treatment courses in the
microbiome, our dataset was not comprehensive enough
to make such assumptions. On the contrary, recordings
of the microclimate produced numerous values, but was
rather constant and did not represent a major driving
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factor of the microbiome (only up to 9%) as investigated
by bioenv analysis.

The presented study has limitations and serves only
partially as a basis for meaningful recommendations for
future attempts to sustain a safe microbial environment
in a human outpost on the Moon or Mars. First of all,
no baseline (i.e., before the start of the isolation experi-
ment) of the indoor and skin microbiome was defined.
In addition, information on all microbial sources were
limited and only one body site was selected for monitor-
ing potential microbial transfer with the environment.
Additional human samples would have been supportive
to draw conclusions about an individual’s health status
(e.g., fecal samples) or draw detailed conclusions of fre-
quently touched surfaces inside the habitat (e.g., hand
samples). In general, the entire infrastructure and setting
mimicked only partially a real extraterrestrial, crewed
mission. This impacts for instance the availability of
water for personal hygiene, or selected sanitary products.

Nevertheless, the study benefits from its defined con-
fined setup with limited amount of confounding envir-
onmental variables, a defined set of occupants, the
deduced prediction and tracking potential of microbial
transfer in a remarkable level of detail, the correlation of
qualitative and quantitative microbial and resistance
data, and our pre-informed knowledge of microbial hot-
spots on desks, in bedrooms, or the toilet bowl on ICE
locations from the Mars500 project [41].

Conclusions

From a microbiological point of view, our methods were
not suitable to determine an elevated risk of infection or
transfer of antimicrobial resistant pathogens to crew
members. However, due to recent information from the
ISS [24], we consider this risk as extraordinarily low.
Nevertheless, although the risk was deemed to be low, the
need for monitoring microbial dynamics inside isolated
and confined habitats became obvious, in order to under-
stand the impact of special events like the contamination
caused by the composting toilet. Moreover, baselines of
the microbiome inside the habitat, its crew, and post
sampling events would greatly improve evaluations of
the impact of confinement on the crew and habitat
surfaces. Most comparable studies, either ground-
based like Mars500 [41, 105] or in space aboard the
ISS [24, 89, 106], showed a similar picture of longitu-
dinal homogenization, composition, and diversity of
microbiomes.

However, in many cases, these studies suffered from a
lack of appropriate controls, or baselines, which are a
central point of management of metadata or inter-
pretations. For future experiments, it is key to determine
a standard operating procedure regarding sampling
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intervals, methods suitable for microbial monitoring, dis-
tinct knowledge on pre- or probiotics used for food pro-
duction, stabilization of the gut microbiome or even
personalized collections for autologous fecal microbial
transplants in case of worrisome developments leading
to a microbial dysbiosis. Hence, future ICE missions in
preparation for crewed mission to the Moon or Mars in
the upcoming decades should emphasize on actual tests
on a microbial warning system that could be based on
automatic sampling technologies and predictive models
comparing expected and true microbial compositions in
the habitat and its crew. Furthermore, manipulations of
the microbiome would be essential to stress the micro-
biome by different levels of desired (reduce potential
pathogens and technophilic microorganisms) and un-
intentional perturbations through defined cleaners and
antibiotics, and following restorations of a beneficial
community on the surfaces of the habitat, as well as dif-
ferent body sites including the crew’s gut microbiome.
One key question for future-related studies is how
diverse a microbiome needs to be and which actual com-
position it needs to have on surfaces, and on and in the
human body, to be self-sustaining over longer time-
frames, or how it can be stabilized and restored after
critical perturbations. The answers to these questions
are a crucial prerequisite for the planning of future
human long-term missions in space or on other celestial
bodies in our solar system.
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