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Abstract

Background: Viral infections are common complications following allogeneic hematopoietic stem cell transplantation
(allo-HSCT). Allo-HSCT recipients with steroid-refractory/dependent graft-versus-host disease (GvHD) are highly
immunosuppressed and are more vulnerable to infections with weakly pathogenic or commensal viruses. Here,
twenty-five adult allo-HSCT recipients from 2016 to 2019 with acute or chronic steroid-refractory/dependent GvHD
were enrolled in a prospective cohort at Geneva University Hospitals. We performed metagenomics next-generation
sequencing (MNGS) analysis using a validated pipeline and de novo analysis on pooled routine plasma samples
collected throughout the period of intensive steroid treatment or second-line GvHD therapy to identify weakly
pathogenic, commensal, and unexpected viruses.

Results: Median duration of intensive immunosuppression was 5.1 months (IQR 5.5). GvHD-related mortality rate was
369%. mNGS analysis detected viral nucleotide sequences in 24/25 patients. Sequences of 2 3 distinct viruses were
detected in 16/25 patients; Anelloviridae (24/25) and human pegivirus-1 (9/25) were the most prevalent. In 7 patients
with fatal outcomes, viral sequences not assessed by routine investigations were identified with mNGS and confirmed
by RT-PCR. These cases included Usutu virus (1), rubella virus (1 vaccine strain and 1 wild-type), novel human astrovirus
(HAstV) MLB2 (1), classic HAstV (1), human polyomavirus 6 and 7 (2), cutavirus (1), and bufavirus (1).
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pegivirus, Astrovirus, Polyomavirus, Protoparvovirus

Conclusions: Clinically unrecognized viral infections were identified in 28% of highly immunocompromised allo-HSCT
recipients with steroid-refractory/dependent GvHD in consecutive samples. These identified viruses have all been
previously described in humans, but have poorly understood clinical significance. Rubella virus identification raises the
possibility of re-emergence from past infections or vaccinations, or re-infection.
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Background

Viral primary infections and reactivations are common com-
plications after allogeneic hematopoietic stem cell transplant-
ation (allo-HSCT) and are associated with significant
morbidity and mortality [1, 2]. Current routine clinical sur-
veillance molecular assays detect specific nucleotide se-
quences targeting usual culprits including Epstein-Barr virus
(EBV), cytomegalovirus (CMV), BK polyomavirus (BKPyV),
and adenovirus [3]. Metagenomic next-generation sequenc-
ing’s (mNGS) unbiased approach broadens viral infection
diagnosis, theoretically detecting “all” viral nucleotide se-
quences or viral infections present [4-7], and is increasingly
used in clinical investigations [8]. Allo-HSCT recipients suf-
fering from steroid-refractory/dependent acute or chronic
graft-versus-host disease (GvHD) are highly immunosup-
pressed patients; GvHD immune dysregulation, mucosal
barrier alteration [9-13], and multiple prolonged immuno-
suppressive treatments create a permissive environment for
opportunistic viral infections [10, 11, 14]. These clinically
unrecognized viral infections can present with limited symp-
toms/atypical manifestations and lead to intermittent or pro-
longed viremia [3]. Given the nonspecific clinical features of
GvHD and some viral infections, viral infections may remain
clinically unrecognized due to limitations of clinical molecu-
lar assays.

We hypothesized that some viral infections, which
would normally remain undiagnosed with common clin-
ical assays, occur during intense immunosuppressive ther-
apy in steroid-refractory/dependent GvHD. This study
aimed to identify viruses that are not routinely searched
by RT-PCR routine assays in clinical practice, due to the
lack of knowledge. Therefore, we used mNGS on pooled
plasma samples of adult allo-HSCT patients with steroid-
refractory/dependent acute or chronic GvHD to look for
viruses that could be missed by biased technology.

Methods

Setting, study population, and design

This observational study was conducted at the Geneva
University Hospitals (HUG), Switzerland. The study
protocol was approved by the Geneva Cantonal Ethics
Commission (project #2019-00511). Inclusion criteria
were adult patients who received an allo-HSCT from 1
January 2016 to 31 December 2018 at the HUG, who

were enrolled in the local monocentric infectious disease
cohort of allo-HSCT patients, and who developed
steroid-refractory/dependent acute or chronic GvHD.
All included patients provided written consent before
enrollment. The only exclusion criteria was the lack of
informed written consent.

Plasma samples were prospectively collected during
clinical management after allo-HSCT and stored in the
Laboratory of Virology, HUG. We performed mNGS
analysis on pooled plasma samples of each patient, col-
lected throughout the period of intensive steroid treat-
ment or second-line GvHD therapy.

Definitions

Steroid-refractory/dependent acute and chronic GvHD
were defined according to the position statement of the
GvHD experts in Schoemans et al. [15].

Microbiological methods

mNGS and sequence analysis

Each pool (corresponding to 4 to 10 plasma samples from
each patient) was prepared to obtain a final volume of
220 pl. Pools were then centrifuged at 10,000xg for 10 min
to remove cells. Two-hundred microliters of cell-free
supernatant were treated with 20 pl of Turbo DNAse (2
U/ul) +24pl of 10x TURBO DNase Buffer (Ambion,
Rotkreuz, Switzerland), according to the manufacturer’s
instructions. Then, the whole volume was divided into
two tubes of 120 pl each. One tube was then used for each
of the two nucleic acid extraction procedures. Indeed,
virus genome extractions were done using two previously
published protocols in parallel [16], namely the RNA and
DNA protocols optimized for the detection of RNA and
DNA viral sequences, respectively.

For the RNA protocol, nucleic acids were extracted
with TRIzol (Invitrogen, Carlsbad, CA, USA). Ribosomal
RNA was removed (Ribo-Zero Gold depletion kit
(Ilumina, San Diego, USA) before libraries’ preparation
(TruSeq total RNA preparation protocol (Illumina)). Li-
braries’ concentrations and sizes were analyzed using the
Qubit (Life Technologies, Carlsbad, CA, USA) and the
2200 TapeStation instruments (Agilent, SantaClara, CA,
USA), respectively. Each library was loaded individually
in a single lane on the HiSeq 4000 platform (Illumina)
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using the 2 x 100-bp protocol with dual-indexing. The
mean total number of read pairs obtained per pool was
328,936,594.84 (range 252,670,103 to 385,257,539).

For the DNA protocol, nucleic acids were extracted
with the NucliSens easyMAG magnetic bead system
(bioMérieux, Geneva, Switzerland). As previously pub-
lished [16], double-stranded DNA synthesis was done
with the DNA polymerase I, Large Fragment (Klenow)
(New England BioLabs, Ipswich, MA, USA)). Libraries
were prepared using the Nextera XT (Illumina) protocol.
Libraries’ concentrations and sizes were analyzed using
the Qubit (Life Technologies) and the 2200 TapeStation
instruments (Agilent), respectively. Each library was
loaded individually in a single lane on the HiSeq 4000
platform (Illumina) using the 2 x 100-bp protocol with
dual-indexing. The mean total number of read pairs ob-
tained per pool was 301,393,033.48 (range 122,939,325
to 377,758,795).

To check for potential contaminating viral sequences
from environment or experimental reagents [17], four
negative controls (i.e., Negl-4) were submitted to the
whole mNGS procedure. To assess the mNGS process
efficiency, positive controls underwent the whole mNGS
procedure (canine distemper virus (CDV)-spiked sam-
ples and a baculovirus (GenScript, Piscataway, NJ, USA)
harboring 793 nucleotides of the CDV fusion gene were
used as positive controls for the RNA and DNA proto-
cols, respectively).

Paired reads were quality filtered using Trimmomatic
[18]. Reads mapped against the human genome and
transcriptome (hg38, gencode.V23) were removed using
SNAP [19]. Remaining reads were analyzed using two
methods in parallel as previously described [20]: (1) by a
pipeline that used virusscan 1.0 (https://github.com/sib-
swiss/virusscan) to map reads against the Virosaurus
database (version V90v_2018_11) (https://viralzone.
expasy.org/8676), which is designed to report vertebrate
viruses, and (2) by de novo assembly. Only viruses with
>300 nucleotides of coverage were reported. The raw
sequence data were deposited in the NCBI Sequence
Read Archive under BioProject accession number
PRJNA641787.

Sequences were considered clinically recognized vi-
ruses if they corresponded to a virus known to reactivate
in/be frequently found among allo-HSCT recipients [2,
4] or if the patient had a known chronic viral infection
and clinically unrecognized viruses if not.

Confirmatory real-time (reverse transcription-)polymerase
chain reaction (r(RT-)PCR) assays

Clinically unrecognized mNGS findings were confirmed
on unpooled plasma by specific semi-quantitative or
quantitative r(RT-)PCR assays as previously published;
additional specimens (including plasma, cerebrospinal
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fluid, bronchoalveolar lavage (BAL) fluids, nasopharyn-
geal swabs, native urines, stools suspension, tissue biop-
sies or bone marrow) were tested when available and
pertinent. Quantitative r(RT-)PCR assays were done for
Mamastrovirus 1 (classical) using the updated human
astrovirus (HAstV) combination [21], Mamastrovirus 6
(MLB2) using the MLB2 assay [22], Usutu virus [23],
and bufavirus using the BuV (NS1) assay [24]. Semi-
quantitative r(RT-)PCR assays were done for cutavirus
using the CuV (VP2) assay [24], human polyomavirus
(HPyV) 6 using the VP2 assay [25], HPyV-7 using the
VP2 assay [25], and rubella virus [26].

Nucleic acids from plasma, cerebrospinal fluid, BAL
fluids, nasopharyngeal swabs, urine, stools resuspended
in PBS, and bone marrow were extracted individually
from 190 uL. of each specimen, spiked with 10 uL of
standardized CDV as internal control [27], using the
NucliSENS easyMAG (bioMérieux, Geneva, Switzerland)
nucleic acid kit, according to the manufacturer’s instruc-
tions, and eluted in 25uL. DNA and RNA were ex-
tracted from tissue biopsies using the QIAamp DNA
FFPE Tissue Kit (Qiagen, Hombrechtikon, Switzerland)
and High Pure FFPET RNA isolation kit (Roche Applied
Sciences, Indianapolis, IN, USA), respectively, following
the manufacturer’s instructions. For RNA viruses, the
rRT-PCR assays were performed using the one-step
QuantiTect Probe RT-PCR Kit (Qiagen, Hombrechtikon,
Switzerland) in a StepOne Plus instrument (Applied Bio-
systems, Rotkreuz, Switzerland). For DNA viruses, the
rPCR assays were performed using the TagMan Univer-
sal PCR Master Mix (Applied Biosystems) in a StepOne
Plus instrument (Applied Biosystems) for cutavirus and
bufavirus or in a QuantStudio 5 instrument (Applied
Biosystems) for HPyV6 and 7.

For quantitative r(RT)-PCR assays, standard curves
and lower limit of quantifications (LOQ) were assessed
using 10-fold serial dilutions of specific RNA oligonucle-
otides (Mamastrovirus 1 (classical) and 6 (MLB2): LOQ
= 1.25E4 and 1.25E3 RNA copies/ml of plasma, respect-
ively), RNA transcript (Usutu virus: LOQ = 1.32E2 RNA
copies/ml of plasma), DNA oligonucleotides (bufavirus:
LOQ = 1.32E3 DNA copies/ml of plasma), or plasmids
(HPyV6 and 7: LOQ = 2.63E2 DNA copies/ml of plasma
each) containing the target sequences.

Statistical analysis

Categorical variables were described by counts and per-
centages. Continuous variables were expressed as mean
and standard deviation or median and interquartile range.

Results

Patient characteristics

We identified 25 adult allo-HSCT recipients with acute
or chronic steroid-refractory/dependent GvHD. Table 1


https://github.com/sib-swiss/virusscan
https://github.com/sib-swiss/virusscan
https://viralzone.expasy.org/8676
https://viralzone.expasy.org/8676

Zanella et al. Microbiome

Table 1 Patients’ characteristics (25 allo-HSCT patients)

Total
n=25

Demographics

Sex (male), n (%) 16 (64.0)

Age, median (IQR) 580 (25.0)
Allo-HSCT considered in the analysis, n (%)

First 23 (92.0)

Second 2 (80)
Transplant source, n (%)

Bone marrow 5 (20)

Peripheral blood cells 20 (80)
Underlying disease, n (%)

Acute myeloid leukemia 10 (40.0)

Lymphoid malignancy 6 (24.0)

MDS/MDPS 3(120)

Acute lymphoid leukemia 2 (8.0)

Other® 4 (16.0)
Risk score, n (%)

Low 00

Intermediate 18 (72.0)

High 7 (280)
Donor sex, M, n (%) 7 (28.0)
Donor age, median (IQR) 36 (16.5)
Donor match, n (%)

Donor-related 10 (40.0)
CMV donor/recipient constellation, n (%)

+/+ 12 (48.0)

—/+ 1 (4.0

+/— 7 (280)

—/= 5(20.0)
CMV prophylaxis, n (%) 1 (4.0)
Conditioning, n (%)

Myeloablative conditioning 5 (20.0)
GVHD prophylaxis, n (%)

Calcineurin inhibitor 24 (96.0)

Mycophenolate mofetil 17 (68.0)

Methotrexate 7 (28.0)
GVvHD organ, n (%)

Digestive tract 17 (68.0)

Skin 15 (60.0)

Mouth 4 (16.0)

Liver 7 (28.0)

Lung 5 (20.0)

Eyes 2(80)

Musculoskeletal 1 (4.0)
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Table 1 Patients’ characteristics (25 allo-HSCT patients)

(Continued)
Total
n=25
GvHD grade or severity, n (%)
Grade
2 9 (36.0)
3 3(12.0)
4 6 (24.0)
Moderate 6 (24.0)
Severe 7 (28.0)
GVHD treatment, n (%)
Corticosteroids 24 (96.0)
Ruxolitinib 22 (88.0)
Calcineurin inhibitor 21 (84.0)
Mycophenolate mofetil 12 (48.0)
Photopheresis 12 (48.0)
Budenoside 5(20.0)
Sirolimus 3(12.0)
Tocilizumab 2 (80)
Other” 6 (24.0)
Death, n (%) 15 (60.0)
Median delay from allo-HSCT, months (IQR) 11.2 (15.8)

One patient could have multiple GvHD prophylaxis and treatment, multiple
organs with GvHD and multiple grades of severity. CMV prophylaxis: one
patient (patient Ge24) received letermovir during the period of intensive
steroid treatment or second-line GvHD therapy. GvHD grade refers to acute
GVHD, GVvHD severity refers to chronic GvHD. In two patients, there was no
information on grade/severity. Only organs with grade GvHD > 2 or severity >
moderate are reported

Abbreviations: IQR interquartile range, allo-HSCT allogeneic hematopoietic stem
cell transplantation, MDS/MDPS myelodysplasic syndrome/myelodysplasic
proliferative syndrome, ATG anti-thymocyte globulin

?Other includes: multiple myeloma (n = 2), chronic myeloid leukemia (n = 1)
and mixed acute leukemia (n = 1)

POther includes: azithromycine, montelukast, prolastin, vedolisumab, nilotinib,
basilixumab, ibrutinib, and/or methotrexate

shows the patient’s characteristics. The median duration
of intensive immunosuppression was 5.1 months (IQR
5.5), and 22/25 patients received ruxolitinib. At the time
of writing, fifteen patients have died, with 9 considered
as GvHD-related.

Viral sequences identified with mNGS and confirmatory
analyses
The mNGS analysis revealed viral nucleotide sequences
in all patients except Gel8 (24/25). In 16/25 patients,
>3 distinct viral species were detected (Fig. 1). Figure 2
depicts the prevalence of each identified virus, and Table
S1 provides detailed mNGS characteristics.

Anelloviridae (torque teno virus (TTV), torque teno
minivirus (TTMV) and torque teno midivirus (TTMD
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Fig. 1 Grid plot of viral sequences identified with mNGS in pooled plasma samples (25 allo-HSCT patients). Each line corresponds to viral sequences assigned
to one virus; the bottom line corresponds to MNGS negative (Neg1-4) and positive (Pos1/2 DNA/RNA) control samples. Each column corresponds to one pool
of plasma sample (one patient). Colors represent the approximate number of reads matching virus genome detected in each pool of plasma samples. *Since
they were detected in one negative control, human papillomavirus sequences were considered as likely contaminant. # cross-contamination. Abbreviations:
HAstV human astrovirus, TTV torque teno virus, TTMV torque teno minivirus, TTMDV torque teno midivirus, HSV-1 herpes simplex 1 virus, £8Y Epstein-Barr virus,
CMV cytomegalovirus, CTRL control

V)) and human pegivirus-1 (HPgV-1) were the most
prevalent with sequences detected in 24/25 and 9/25
patients, respectively.

Other detected DNA viruses included BK polyomavi-
rus (BKPyV) (7/25), CMV (5/25), and JC polyomavirus
(JCPyV) (4/25), and also herpes simplex virus 1 (HSV-1),
EBV, hepatitis B virus (HBV), bufavirus, cutavirus, and
HPyV-6/7, each detected once (1/25). Except HPgV-1,
the detected RNA viruses were less prevalent than DNA
viruses and were HAstV (Mamastrovirus 1 and 6) and
rubella virus, both detected twice (2/25), and also hepa-
titis E (HEV) and Usutu viruses, both detected once (1/
25). The de novo analysis did not reveal other relevant

sequences. Interestingly, sequences for TTV (11/24),
CMYV (3/5), EBV (1/1), and HBV (1/1) were detected in
both DNA and RNA libraries, suggesting active viral
replication (Figure S1).

Clinically recognized viral sequences

Although not routinely searched in clinical practice,
Anelloviridae and HPgV-1 sequences were identified in
96% and 36% of patients and were classified among clin-
ically recognized viral sequences as they are known to be
highly prevalent among immunocompromised patients.
In 14/25 patients, mNGS analysis identified sequences of
latent DNA viruses known to reactivate in transplant
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recipients (EBV, CMV, HSV-1, BKPyV, JCPyV, HBV). At
the RNA level, HEV was identified once.

The r(RT-)PCR assays performed during routine inves-
tigations confirmed the mNGS analysis (Table S2): pa-
tient Ge05 had a chronic HEV infection, and patient
Gel4 had chronic HBV and cutaneous HSV-1 infections,
and HSV-1 viremia. BKPyV and JCPyV were not system-
atically screened and were only revealed by mNGS ana-
lysis. However, BKPyV was screened in patient Ge06
and detected at low viral loads (VL) (1.41E2 and 1.44E3
copies/ml) in two plasma samples collected a few days
apart from those included for mNGS analysis. In 12/25
patients, CMV and EBV were detected only by rPCR at
low VL; no other expected virus was detected by routine
molecular assays.

Clinically unrecognized viral sequences
We found clinically unrecognized sequences belonging
to either rare and/or recently identified viruses (HAstV
MLB2, Usutu virus, bufavirus, cutavirus, HPyV-6, and
HPyV-7) or those not routinely assessed alongside
GvHD (classic HAstV and rubella virus) in 7/25 patients,
whose characteristics are detailed in Table 2.

mNGS identifications of these clinically unrecognized
viral sequences were confirmed by r(RT-)PCR in unpooled
plasma samples. Whenever available during/after the
period of sample selection, additional specimens and/or

tissue biopsies were screened over a median period of 7.1
weeks (IQR 25.3). These findings are shown in Table 3.

Brief clinical description of patients harboring clinically
unrecognized viral sequences

Ge02: HPyV-7

A 61-year-old male, transplanted for lymphoma, devel-
oped digestive and skin GvHD; intensive immunosup-
pression for GvHD lasted from 12 to 16 months after
transplantation (4-month sample period), when the pa-
tient died from a post-transplant EBV-related lymphoma
disease. Beginning 9 months before death, we found
HPyV-7 in all screened plasma samples. In addition,
HPyV-7 was also found in a BAL and a bone marrow
sample collected 8 months after transplantation (2.8 log10
DNA copies/ml and CT value 28, respectively).

Ge05: Usutu virus

A 23-year-old male, transplanted for lymphoma, devel-
oped digestive skin and lung GvHD; intensive immuno-
suppression for GvHD lasted from 1 to 24 months after
transplantation (22-month sample period), when the pa-
tient died from a disseminated fungal infection and
GvHD. We found Usutu virus in 2 plasma samples col-
lected 7 days apart, a few days after a blood transfusion,
and 1.5 months before death.
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Table 2 Clinical characteristics of 7 patients with clinically unrecognized viral sequences
Patient’s Age, Underlying GvHD organ GvHD treatments® Outcome
code gender disease
Ge02 61, M Lymphoma Digestive, skin CSA, tacrolimus, corticosteroids, sirolimus, budenoside, Death (GvHD-
photopheresis related)
Ge05 23, M Lymphoma Digestive, skin, CSA, MMF, tacrolimus, corticosteroids Death
lung
Ge07 60, M ALL Digestive Tacrolimus, corticosteroids, photopheresis Death
Ge09 65, M AML Liver, digestive®  CSA, corticosteroids, tocilizumab Death
Gel2 44, M MM Digestive, liver CSA, corticosteroids, basiliximab, MMF Death
Gel4d 31, M AML Digestive, liver Corticosteroids Death
Ge22 68, M MDPS Digestive, skin CSA, tacrolimus, corticosteroids, vedolisumab, prolastin Death

Age at the time of transplantation

Abbreviations: GvHD graft-versus-host disease, M male, ALL acute lymphoid leukemia, AML acute myeloid leukemia, MM multiple myeloma, MDPS myelodysplasic

proliferative syndrome, CSA cyclosporine A, MMF mycophenolate mofetil
2All patients had ruxolitinib as part of the GvHD treatment
PDigestive GvHD was not confirmed by biopsies

Ge07: cutavirus

A 60-year-old male, transplanted for acute lymphoblastic
leukemia, developed digestive GvHD; intensive immuno-
suppression for GvHD lasted from 6 to 8 months after
transplantation (2-month sample period), when the pa-
tient died from a disseminated fungal infection and
GvHD. We found cutavirus in a skin biopsy performed
3 weeks before transplantation (CT of 35) and at low
plasma VL for 3 months before death. Autopsy results
confirmed digestive GvHD and a disseminated mold
infection.

Ge09: bufavirus

A 65-year-old male, transplanted for acute myeloid
leukemia (AML), developed liver GvHD; intensive im-
munosuppression for GvHD lasted from 5 to 7 months
after transplantation (2 month sample period), when the
patient died from GvHD. We detected bufavirus RNA in

several plasma samples taken over 2 months before
death. In addition, bufavirus was also found in stool
samples collected the day of and 1.5 months after trans-
plantation, at CT values of 38.2 and 34.7, respectively,
and in a duodenal biopsy performed 5months after
transplantation (CT value 27.3), which revealed chronic
duodenitis.

Ge12: HAstV MLB2

A 44-year-old male, transplanted for multiple myeloma,
developed a digestive and liver GvHD; intensive im-
munosuppression for GvHD lasted from 15days to 2
months after transplantation (2-month sample period),
when the patient died from the GvHD. We detected
HAstV MLB2 RNA in two plasma samples collected 14
days apart and shortly before death, in a colonic biopsy
performed few days before death (CT value 27.9), and in
several intestine, colonic, and bone marrow autopsy

Table 3 mNGS and r(RT-)PCR results of 7 patients with clinically unrecognized viral sequences

Viral species detected

Viral species confirmed with r(RT)-PCR assays

with mNGS
Patient’'s  Virus Plasma, n Time period Estimated viral load (mean log10 copies/ml  Other positive
code (pos/total) (days) plasma or CT values) biological specimen
Ge02 HPyV7 14/14 279 4.75 BM, BAL
Ge05 Usutu virus 2/5 7 4.66 -
Ge07 Cutavirus 6/10 98 379 Skin
Ge09 Bufavirus 6/12 81 373 Stools, duodenum
Gel2 Novel human astrovirus — 2/6 14 324 Intestine, colon, BM
MLB2
Gel4 Rubella virus 3/5 39 37.9 -
Classic human astrovirus ~ 5/11 25 5.56 -
HPyV6 11/1 74 3.76 -
Ge22 Rubella virus 2/8 3 36.7 -

Pos/total corresponds to the number of positive samples on the total of screened samples. Time period corresponds to the time period during which samplings
were found positive. CT values above 40 were considered negative. CT values are indicated in italics
Abbreviations: BM bone marrow, BAL bronchoalveolar lavage, CT cycle threshold
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samples (mean CT values 25.8, 27.6, 28, respectively).
Autopsy results confirmed liver and digestive GvHD and
revealed chronic pulmonary GvHD.

Ge14: rubella virus, classic HAstV, HPyV-6

A 31-year-old male of Chinese origin, transplanted for
AML, developed digestive and liver GvHD; intensive im-
munosuppression for GvHD lasted 9-11 months after
transplantation (3-month sample period), when the pa-
tient died from an acute intestinal perforation in the
context of recurrent digestive GvHD. In several plasma
samples starting 1 month before death, we found classic
HAstV RNA and low VLs of a wild-type Chinese rubella
strain. HPyV-6 DNA was also persistently found in
plasma samples starting 2 months before death. The
patient was seropositive for rubella before transplantation.

Ge22: rubella virus

A 68-year-old Portuguese male, transplanted for myelo-
dysplastic syndrome, developed digestive and skin
GvHD; intensive immunosuppression for GvHD lasted
from 4 to 6 months after transplantation (6-week sample
period), when the patient died from GvHD. Two plasma
samples were positive for rubella-vaccine RNA at low
VLs. The patient was seropositive before transplantation.

Discussion
We analyzed viral sequences by mNGS in pooled plasma
samples of 25 adult allo-HSCT patients with severe
steroid-refractory/dependent GvHD. Viral nucleotide
sequences were found in 96% of patients, and 64% of
patients had >3 distinct viral species. Besides com-
mensal (Anelloviridae and HPgV-1) and latent (EBV,
CMV, HSV-1, BKPyV, JCPyV) viruses known to be
highly prevalent/reactivate in allo-HSCT recipients, 28%
of patients had clinically unrecognized viral sequences
that are rarely/never reported in allo-HSCT patients,
with unknown pathogenicity (bufavirus, cutavirus,
HPyV-6/7, novel HAstV-MLB2, classic HAstV, rubella
virus, and Usutu virus). Chronic HBV and HEV infec-
tions were also confirmed by mNGS in two patients.
Anelloviridae (TTV, TTMV, and TTMDYV) were the
most prevalent in this study, concordant with the high
TTYV viremia rate identified among allo-HSCT recipients
[28-31]. The high TTV, TTMV, and TTMDV co-
detection rate has been previously described [30].
Chronic anelloviruses infection/re-infection is common,
but disease associations remain undetermined [32].
Among allo-HSCT recipients, two studies failed to dem-
onstrate any association between TTV viremia and
immune-related complication or other viral reactivations
[28, 33], while a third reported higher TTV viremia in
patients receiving corticosteroids for GvHD ([29]. A
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recent study found higher TTV VL at 100 days post-
transplantation predicts worse overall survival, and a
higher risk of acute GvHD and infections [34]. Finally, a
mNGS study revealed increased detection rates and
number of Anelloviridae sequences in stool samples of
allo-HSCT recipients several weeks after developing di-
gestive GVHD [5], suggesting a consequence of GvHD-
associated inflammation and/or immunosuppressive
therapy. Altogether, these data suggest that TTV viremia
could be a potential immunosuppression-marker, requir-
ing further investigation.

HPgV-1 (a Flaviviridae [35]) viremia occurs in 1-4%
of blood donors in developed countries [36] and up to
30% of allo-HSCT recipients but has not been associated
with clinical consequences [3, 4]. Given the interaction
of HPgV-1 with the immune system [37], the effect of
persistent HPgV-1 viremia requires deeper investigation.

We found four species of HPyV (JCPyV, BKPyV,
HPyV-6/7), with JCPyV viremia occurring in 16% of
allo-HSCT recipients, agreeing with studies where con-
comitant use of multiple immunosuppressive treatments
was associated with increased persistent viremia risk—al-
though progressive multifocal leucoencephalopathy was
rare [38]. In another study, JCPyV DNA detection rate
in plasma decreased from 4/22 to 1/22 patients at 3 and
12-18 months after transplantation, respectively, while
viremia was not linked to any clinical manifestation [39].
Our study’s BKPyV prevalence (28%) was lower than the
54% of another study [40]. Notably, our patients did not
develop hemorrhagic cystitis.

Contamination or other bioinformatics errors were ex-
cluded for each of the clinically unrecognized viral se-
quences, by confirming the mNGS-identified viral
sequences using r(RT-)PCR on blood and non-blood
samples at different time-points. These assays found
cutavirus (60%) and bufavirus (50%), two Protoparvo-
viruses, in plasma samples at low VL. Interestingly, avail-
able skin and digestive biopsy tissues, previously
described as putative primary infection sites [24, 41, 42],
were positive by PCR at or shortly before transplant-
ation, indicating viral latency and reactivation under
immunosuppressive conditions. Bufavirus was first dis-
covered in stool samples of children in 2012, and the
stool prevalence is about 0.3—4.1%, although high sero-
prevalence was identified in some countries [41, 42].
Bufavirus was recovered in stools of subjects with digest-
ive symptoms, but not in asymptomatic controls [41].
Whether bufavirus influences syndromes attributed to
digestive GVHD remains unknown. Cutavirus was dis-
covered in 2016 in stools of diarrheic children in Brazil
with a prevalence of about 1-1.6%, and curiously, some
associations were made with cutaneous T cell lymphoma
[24, 41]. To our knowledge, cutavirus and bufavirus
viremia have not been described before.
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Usutu virus (a Flaviviridae) is an arbovirus, endemic
in Africa and several European countries, that frequently
co-circulates with West Nile virus [43—-45]. The virus
enzootic cycle involves birds (main reservoir) and
ornithophilic mosquitos (vectors); humans are incidental
and dead-end hosts [43]. Less than 50 documented cases
of acute Usutu virus infections have been reported in
humans, most of them corresponding to the identifica-
tion of Usutu virus genome in donated blood samples
[45]. Human Usutu virus infection can be asymptomatic
or associated with various clinical manifestations, includ-
ing fever, rash, and neurological manifestations; the virus
genome was detected in some cases in CSF or blood
samples [43, 45, 46]. The virus can infect neurons, astro-
cytes, microglia cells, and induced pluripotent stem cell
(IPSc)-derived human neuronal stem cells, with a reduc-
tion in cell proliferation, induction of antiviral response,
and apoptosis [47]. In our study, Usutu virus was transi-
ently identified shortly after a blood transfusion, but
retrospective blood bag testing was impossible. Although
blood transmission has not been described, screening
over > 130,000 blood donations revealed 38 positive do-
nors [48, 49]. Although overt clinical consequences are
absent in our patient, this flavivirus is known to cause
occasional complications [45] and cannot be disregarded.
If transmission occurred by transfusion, it is possible that
only remnant RNA was transmitted, not infectious virus.

Astroviruses are well-recognized enteric viruses infect-
ing mainly children, elderly, and immunocompromised
patients [50]. HAstV MLB2 was identified a decade ago
[51], and since then, it has been demonstrated that it is
circulating in every continent [50]. In addition, it is asso-
ciated with systemic and central nervous system infec-
tions [7, 52] and has been identified in stool samples of
asymptomatic children [53]. In our mNGS study, classic
HAstV was found in plasma samples of a patient with
digestive GvHD shortly before death, and HAstV MLB2
was found at low VL in plasma samples of a patient with
diarrhea due to digestive GvHD. In the latter, autopsy
confirmed the presence of HAstV MLB2 RNA in several
intestinal and colonic samples at significant VLs. The
presence of astrovirus MLB2 in the digestive tract of the
patient is thus evident, and HAstV viremia plausibly
came from an intestinal spillover in the context of the
GvHD and intestinal perforation.

HPyV-6 and 7 were discovered in 2010 [54] and have
been identified in a wide range of clinical samples of
healthy subjects, transplant recipients, and symptomatic
immunocompetent patients [55-59]. They have been de-
tected mostly in skin specimens of non-transplanted in-
dividuals and transplanted recipients with or without
dermatological diseases, but the association with clinical
manifestation is not established [55, 57, 59-61]. The re-
ported seroprevalence rates of HPyV6 and HPyV7 in
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immunocompetent and immunocompromised adults
varies from 69 to 84% and 35 to 72%, respectively [3].
The transmission route, tropism, pathogenic mecha-
nisms, and potential association with human diseases are
still not established. HPyV-6 DNA prevalence in healthy
blood donors is 0.1% and 0.6% in kidney transplant re-
cipients [3], while HPyV-7 has been detected in lung
transplant recipients [3], yet no obvious clinical manifes-
tations are associated with them. We report persistent
HPyV-6/7 viremia in plasma samples of 2/25 allo-HSCT
recipients over several months. Further investigations
are needed to determine their pathogenicity.

Rubella virus was our most unexpected finding, yet the
rubella reads for both patients mapped to different re-
gions along the genome (rubella virus genome coverage
of 3.69% and 5.47% for patients Gel4 and Ge22, respect-
ively) and mNGS results were confirmed by specific
rRT-PCR in several samples over a period of 39 and 3
days for patients Gel4 and Ge22, respectively.

Although rubella can persist in in vitro and animal
models [62-64], it is not known to persist after vaccin-
ation or natural infection in humans, except in vacci-
nated immuno-deficient children [65-68]. Chronic
rubella infection has also been hypothesized as causing
Fuch’s heterochromic iridocyclitis, although the patho-
physiology remains unknown [69, 70]. We found rubella
sequences with low VLs in two patients, each with a dis-
tinct strain: a vaccine strain and a Chinese strain that
was found in a patient who previously lived in China.
Macrophages and keratinocytes are potential sites for ru-
bella persistence [66], but retrospectively screened skin
samples from one patient gave negative results. Both pa-
tients were seropositive before transplantation. Patients
with GvHD frequently become seronegative for measles
and rubella within 2 years after allo-HSCT [71]. Identifi-
cation of the usual vaccine strain and a Chinese strain in
a native Chinese, strongly argues for reactivation, in line
with antibody loss after transplantation. Yet, we noted a
decreased rubella IgG titer in one of both patients at the
time of viremia, compared to the pre-transplant titers.
Gonzalez et al. reported the case of a child who devel-
oped fulminant hepatitis after stem cell transplantation
despite prior vaccination [72]. The hypothesis raised by
the authors of a primary infection from a recently vacci-
nated contact implies that circulating vaccine strains in
the population could be an issue for immunocomprom-
ised patients with waning antibodies. Whether rubella
persistence could trigger GvHD after transplantation
and where the viral reservoir would be are open
questions.

A recent trial identified ruxolitinib as a second-line
treatment for steroid-refractory GvHD, which has a poor
prognosis and no approved clearly beneficial treatment
[14, 73]: in the study, about 1/3 patients experienced a
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grade 3 infection, highlighting the importance of moni-
toring patients for infections. Our study reveals that
some viral infections were overlooked by standard pro-
cedures, which may indicate that the 30% of infection
risk associated with ruxolitinib could be underestimated,
and raises the question of including mNGS analysis in
the management of high-risk patients.

Among the 7 patients with clinically unrecognized
viral sequences, most sequences were identified a few
weeks before and, persisted until, patients’ deaths. Al-
though neither the pathogenic nature of the viruses nor
the clear associations with patient outcomes are proven,
the identification of these viral sequences in patients’
blood during severe GvHD is relevant and reflects the al-
tered immune response; monitoring these infections
could help adjust immunosuppressive therapies. Among
these patients, with nearly daily blood sample collection,
such strategies could routinely be actionable by pooling
plasma samples (overcoming transient viremia prob-
lems), with the aim of excluding disseminated infections
before increasing immunosuppression, and unmasking a
viral infection mimicking the GvHD syndrome.

The identification of HAstV and bufavirus in digestive
tracts of patients with digestive GvHD may merely
reflect the patient’s gut virome, but identification of
enteric viruses in blood samples could indicate a dissem-
inated infection that is triggered by GvHD inflammation
or immunosuppressive treatment, which may require
treatment adaptation.

These viral infections cannot be considered innocent
bystanders. Most of the identified viruses can be shed
asymptomatically, but certainly lead to organ disease
under conditions where they become opportunistic path-
ogens, potentially causing unrecognized clinical features;
they can also lead to a clinical exacerbation. The particu-
lar immunologic state of our population may influence
this delicate balance between an indolent virus and its
clinical impact.

A major limitation of this study is the small mono-
centric cohort. Additionally, including only allo-HSCT
recipients with steroid-refractory/dependent GvHD pre-
cluded generalization of the results to all allo-HSCT re-
cipients. Furthermore, we lacked control patients
without GvHD. Despite the numerous viral infections re-
vealed by mNGS, whether these are specific to patients
with GvHD or to those treated with ruxolitinib, and if
there is an association with clinical manifestations and/
or an impact on the immune state of these patients, re-
mains to be determined by appropriate studies. Notably,
according to the comparison with routine diagnostic re-
sults and confirmatory r(RT-)PCR, our mNGS pipeline
is accurate, although with a lower sensitivity compared
to specific quantitative real-time PCR assays used in
most routine laboratories.
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Conclusions

Blood analysis of patients with steroid-refractory/dependent
GvHD revealed clinically unrecognized viral sequences in
28% of patients, including rubella virus, novel protoparvo-
viruses, HPyV-6/7, Usutu virus, and HAstV-MLB2. These vi-
ruses have been described in humans, but rarely reported as
causes of disease in allo-HSCT patients, or have unknown
pathogenicity. Rubella virus identifications imply possible re-
emergence from past infection or vaccination. Further inves-
tigations are needed to understand the clinical significance of
these infections.
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