
Ma et al. Microbiome            (2020) 8:82 
https://doi.org/10.1186/s40168-020-00857-2

RESEARCH Open Access

Earth microbial co-occurrence network
reveals interconnection pattern across
microbiomes
Bin Ma1,2, Yiling Wang1, Shudi Ye1, Shan Liu1, Erinne Stirling1,2, Jack A. Gilbert3, Karoline Faust4,
Rob Knight5, Janet K. Jansson6, Cesar Cardona7, Lisa Röttjers4 and Jianming Xu1,2*

Abstract

Background: Microbial interactions shape the structure and function of microbial communities; microbial
co-occurrence networks in specific environments have been widely developed to explore these complex systems, but
their interconnection pattern across microbiomes in various environments at the global scale remains unexplored.
Here, we have inferred an Earth microbial co-occurrence network from a communal catalog with 23,595 samples and
12,646 exact sequence variants from 14 environments in the Earth Microbiome Project dataset.

Results: This non-random scale-free Earth microbial co-occurrence network consisted of 8 taxonomy distinct
modules linked with different environments, which featured environment specific microbial co-occurrence
relationships. Different topological features of subnetworks inferred from datasets trimmed into uniform size indicate
distinct co-occurrence patterns in the microbiomes of various environments. The high number of specialist edges
highlights that environmental specific co-occurrence relationships are essential features across microbiomes. The
microbiomes of various environments were clustered into two groups, which were mainly bridged by the
microbiomes of plant and animal surface. Acidobacteria Gp2 and Nisaea were identified as hubs in most of
subnetworks. Negative edges proportions ranged from 1.9% in the soil subnetwork to 48.9% the non-saline surface
subnetwork, suggesting various environments experience distinct intensities of competition or niche differentiation.
Conclusion: This investigation highlights the interconnection patterns across microbiomes in various environments
and emphasizes the importance of understanding co-occurrence feature of microbiomes from a network perspective.

Keywords: Co-occurrence patterns, Earth microbiomes, Genelist edges, Network hubs, Negative co-occurrence,
Specialist edges, Microbial network topology

Background
Most microorganisms do not live in isolation; they
thrive in communities with large numbers and develop
close interactions that generate increased benefits for
the group [1, 2]. Microorganisms can establish a range
of relationships including mutualism (such as antibiotic
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resistance conferral), commensalism (such as cross-
feeding on compounds produced by other members),
synergism (such as syntrophic cooperation), competition
(such as niche exclusion), parasitism (such as infecting
bacteria), predation (such as ciliates feeding on bacteria),
antagosim (such as biocontrol agents), and amensalism
(such as inducing a detrimental environment). These eco-
logical interactions are critical evolutionary pressures for
natural selection duringmicrobial evolution. This premise
is encapsulated by the Red Queen hypothesis, which
emphasizes the coevolution of species, wherein estab-
lished species evolve cooperatively through conditional
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dependencies [3]. Alternatively, the Black Queen hypoth-
esis, which states that leaky metabolite production in cer-
tain species will lead to a reduction in corresponding func-
tions in other species, provides an optional evolutionary
possibility for the development of metabolic dependen-
cies [4]. Adaptation in one species may increase selection
pressure on another species, giving rise to antagonistic
coevolution. Negative interactions (such as competition,
parasitism, and predation) drive evolution by selective
pressure [5], whereas positive interactions (such as mutu-
alism) drive evolution by enhancing biological fitness [6].
Microbial interactions can partially explain genetic diver-
sity in microbial populations. For example, certain func-
tional genes can be dropped in a microbial genome due
to random mutations and selective pressure if those func-
tions are satisfied by other community members, which
leads to low and medium gene frequencies, enabling eco-
logical frequency-dependent selective pressure to drive
microbial evolution [7]. Meanwhile, microbial inter-
actions could also be reshaped by gaining adaptive
genes to extend niche breadth, which alters interaction
patterns [8].
Due to the poor mechanistic understanding of micro-

bial community assembly, we found inconsistent predic-
tion performance of microbial community structure in a
wide range of fields [9–11]. Solving this unpredictabil-
ity requires a comprehensive understanding of all aspects
of microbiomes, including microbial interaction patterns
[2]. Microbial co-occurrence networks are widely applied
to explore connections in microbial communities. Nodes
and edges in microbial co-occurrence network usually
represent microbes and statistically significant associa-
tions between nodes, respectively. However, a systematic
evaluation of microbial network inference as a tool for
interaction prediction has highlighted this tool’s low accu-
racy and the biological implications of network properties
are unclear [12] . Nevertheless, modules in microbial
co-occurrence networks may be indicative of ecologi-
cal processes governing community structure, such as
niche filtering and habitat preference [13]. Additionally,
microbial co-occurrence network allows to predict hub
species and potential species interactions [12]. Global
microbial co-occurrence networks can provide a valuable
resource for unravelling microbial co-occurrence patterns
and their driving mechanisms. Chaffron et al. inferred a
global network of co-existing microbes across environ-
ments from 298,591 16S rRNA sequences from the Green-
genes database and found that phylogenetically close taxa
coexisted more frequently [14]. Recent advances of high-
throughput sequencing provide an opportunity for pre-
dicting microbial co-occurrence patterns from large-scale
microbial community studies. For example, Lima-Mendez
et al. inferred a global plankton co-occurrence network
from the dataset of Tara Oceans, including 313 samples

collected from 8 oceanic provinces. This network pro-
vides a resource for ocean microbial co-occurrence across
several size fractions and depths and demonstrates the
value of microbial co-occurrence networks for the formu-
lation of ecological hypotheses such as differences in the
role of top-down control across phytoplankton groups.
Moreover, this network also helps to determine the role
of global trends (generalist edges) and local signals (spe-
cialist edges) in driving entire plankton interactome [13].
The Earth Microbiome Project (EMP) is a public database
and a framework for crowdsourced sample collection
with standardized sequencing andmetadata curation [15].
This database provides microbial community resources
for cataloging global microbiota at an unprecedented
scale for investigating large scale ecological patterns and
exploring microbial community assembly theories. Here,
we have inferred a global microbial co-occurrence net-
work, describingmicrobial co-occurrence patterns using a
dataset of 23,595 samples encompassing 14 environments
from the EMP dataset. We used this network to explore
the wired pattern among microbial communities in 14
environments.

Results
Earth microbial co-occurrence network
Fourteen microbial co-occurrence networks represent-
ing different environments were constructed, compris-
ing 12,646 exact sequence variants (ESVs). To reduce
noise and false-positive predictions, network inclusion
was restricted to ESVs present in at least 10% of sam-
ples; we also used conservative statistical cut-off values
(see “Materials and methods” section). The 14 networks
were merged into a single Earth microbial co-occurrence
network by overlapping the vertices and edges; the final
network consists of 2928 vertices and 54,299 edges after
removing unconnected vertices (Fig. 1a). The scale-free
property (R2 = 0.19, P < 0.001) and independency
between abundance and degree (R2 = − 0.08, P =
0.07) suggest a non-random co-occurrence pattern in this
microbial network (Fig. S1). As ESVs were annotated to
their representative microbial taxa, we were able to iden-
tify 812 taxa-pairs that were present more than twice
in the global microbial co-occurrence network. We vali-
dated 432 co-occurrence edges, 15 intra-taxa edges, and
6 competition edges via literature mining (Data file S1).
Although this only accounts for 1.5% of edges in the global
microbial co-occurrence network, those 812 taxa pairs
account for 30% of the edges presented in more than 6
environments.
This global network exhibits a high degree of modu-

larity, but 87.9% of vertices were accounted for by only
8 of the 53 total modules (Fig. S2). Among these eight
modules, the first 5 are densely nested into a giant mod-
ule, while modules 6, 7, and 8 remain isolated from
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Fig. 1 Earth microbial co-occurrence network. a Layout and taxonomic profiles of eight domain modules in the Earth microbial co-occurrence
network. Modules (M1–M8) are displayed in different colors. b The distribution of vertices from 14 environments in the network where orange
indicates the vertices from corresponding environments

this greater module (Fig. S3). All 8 modules were com-
prised of different taxonomic profiles and were dominated
by Clostridia, Alphaproteobacteria, Deltaproteobacteria,
and Gammaproteobacteria (Fig. 1a). Vertices from micro-
biomes of soils, non-saline waters, animal distal guts, and
animal surfaces were present in all 8 modules (Fig. 1b;
Fig. S4a), and overrepresented in different modules
(Fig. S4b). However, vertices from microbiomes of ani-
mal corpus were mostly restricted to and overrepresented
than random frequency in M3 (3.1%), while vertices from
plant corpus comprised a major portion of and was over-
represented than random frequency in M3 (4.6%) and M4
(2.3%; Fig. S4a-b).

Phylogeny of co-occurrence network
With regard to phylogeny, a non-random edge distribution

across taxa was observed, with most co-occurrence rela-
tionships derived from Alphaproteobacteria, Clostridia,
and Deltaproteobacteria (Fig. 2a) classes. Most of the
combinations between dominant classes are overrep-
resented than random frequency (Fig. 2b). However,
only certain combinations between rare classes, such as
Flavobacteriia and Gemmatinonadetes, Bacteroidia and
Anaeroblineae, and Gemmatinonadetes and Bacteroidia,
are overrepresented than random frequency. For within
taxa co-occurrence, only co-occurrence within Deltapro-
teobacteria, Planctomycetia, Anaerolineae, and Acidobac-
teria Gp2 classes were overrepresented than random fre-
quency. Given that the subnetworks for different environ-
ments display different co-occurrence patterns, certain
co-occurrence relationships were only overrepresented
than random frequency in specific environments (Fig. 2c).
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Fig. 2Microbial co-occurrence patterns across dominant taxa. a The profiles of co-occurrence links among dominant taxa; note that connections
are colored by the most dominant taxon. b Overrepresentation of co-occurrence links among taxa. The dot indicates significant overrepresentation
(P < 0.05) between corresponding taxon pairs. c The significant overrepresentation of co-occurrence links among taxa in subnetworks for 14
environments

Topological properties
To avoid biases introduced by sample number and ESV
number, we inferred 12 subnetworks for each environ-
ment with datasets trimmed into uniform size (see the
“Materials and methods” section). The topological prop-
erties were highly variable between the 12 environmental
subnetworks (Fig. 3). Although the datasets for 12 envi-
ronments were trimmed into the same number, the edge
numbers of the subnetwork of animal distal gut (4574) was
13 times larger than the subnetwork of non-saline surface
(350). The diameter values ranged from 4 to 6 but were not
correlated with edge numbers. The clustering coefficient
values of subnetworks for animal proximal gut (0.22) and
saline sediment (0.22) were higher than of subnetworks
for other environments. The average separation (0.30) and
modularity (2.7) were the highest for the subnetwork of
non-saline surface. Average betweenness centrality values
of subnetworks of animal distal gut (212.6) and soil (206.0)
were greater than those of other environments.

Generalist and specialist edges
The proportion of generalist edges, which were present in
more than one subnetwork, ranged from 34.3 to 57.0% of
the edges in corresponding subnetworks (Fig. 4a). Gener-
alist edges accounted for less than 50% of edges in most
subnetworks, except in non-saline water, animal secretion,
and the surfaces of plants and animals. The environmental
localization of generalist edges was assessed using omis-
sion scores (OS, see the “Materials and methods” section).
Only 3.4% of generalist edges were identified as local
edges (Data file S2).
Specialist edges, which are present in a single subnet-

work, could link environment specific vertex pairs present
in environment specific subnetworks or link general ver-
tex pairs present in at least two subnetworks. The pro-
portion of specialist edges linking specific vertex pairs
accounted for 54.5% of edges in the animal proximal gut
subnetwork and 52.4% of edges in the rhizosphere sub-
network, but only accounted for 15.6% of the edges in the
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Fig. 3 Network topology of subnetworks inferred from trimmed microbiome abundance datasets of 12 environments. The microbiome abundance
datasets were trimmed into 400 top-abundant ESVs and random selected 360 samples

animal secretion subnetwork. The proportion of special-
ist edges linking generalist vertex pairs ranged from 9.6
to 29.8% of edge numbers in corresponding subnetworks;
most were greater than 20% except in the animal proximal
gut (9.6%), rhizosphere (13.3%) and saline water (19.1%)
subnetworks. The proportions of generalist edges were
negatively correlated with the proportions of specialist
edges linking specific vertex pairs (ρ = −0.87, P < 0.001),
but were not correlated with the proportion of specialist
edges linking generalist vertex pairs (ρ = 0.11, P < 0.72)
(Fig. S5). Moreover, the proportions of those three edge
types were not related to edge numbers in subnetworks
(P > 0.10) (Fig. S6).
The profiles of the 50 most abundant associated ver-

tices were different for the three edge groups (Fig. 4b).
For example, Sphingobacterium was enriched in vertices
associated with generalist edges, in which the most
abundant edges were Sphingobacterium-Spartobacteria,
Sphingobacterium-Legionella, and Sphingobacterium-
Solirubrobacter (Data file S2). Microgenomates was
enriched in vertices associated with specialist edges
linking generalist vertices, in which the most abundant
co-occurrence relationships were between Microgeno-
mates and Armatimonates. The taxa profiles of vertices
associated with those three edge groups varied with
environments (Fig. S7-S9).

Based on edge overlap among the subnetworks inferred
from trimmed microbial community data, the 12 envi-
ronments were clustered into two groups (Fig. 4c). One
group consisted of the subnetworks of soil, non-saline
water, animal surface, and animal distal gut (group I);
the other cluster consisted of the subnetworks for rhi-
zosphere, plant surface, secretion and proximal gut of
animal, saline water and sediment, and non-saline sed-
iment and surface (group II). Those two groups were
mainly linked through the surface microbiomes of plants
and animals.

Network hubs
To correct for biases of sample or taxa number, we iden-
tified the ten hubs with the highest degree from each
subnetwork inferred from 12 trimmed datasets with the
same sample and taxa number. A total of 120 hubs
belonged to 60 ESVs (Fig. 5a), which were mainly from
phyla Clostridia, Deltaproteobacteria, Alphaproteobacte-
ria, Actinobacteria, and Gammaproteobacteria (Fig. 5b).
Based on hub presentation, 12 subnetworks were clus-
tered into two groups, which were consist with the two
groups clustered based on edge overlap as described
above. Acidobacteria Gp2 and Nisaea were identified as
hubs in most of subnetworks. Latescibacteria was iden-
tified as hubs in all the subnetworks of soil, non-saline
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Fig. 4 Generalist and specialist edges in subnetworks inferred from trimmed microbiome abundance datasets of 12 environments. a Proportions of
generalist edges, specialist edges linking specialist vertex pairs, and specialist edges linking generalist vertex pairs in 12 subnetworks. b Taxa profiles
of vertices associating with generalist edges, specialist edges linking specialist vertex pairs, and specialist edges linking generalist vertex pairs. c
Interconnection relationships among 12 environments based on similarity of co-occurrence relationships inferred from a Jaccard distance matrix

water, animal surface, and animal distal gut (group I).
Treponema, Micrococcus, and Methanobrevibacter were
identified as hubs in four of the subnetworks for rhi-
zosphere, plant surface, secretion and proximal gut of
animal, saline water and sediment, and non-saline sed-
iment and surface (group II). Thirty-seven hubs were
identified as specialist hubs, which were identified as
hubs in only one subnetwork (Fig. 5a), such as in
the subnetworks for soil (5), saline sediment (5), and
rhizosphere (5).

Negative co-occurrence links
The proportion of negative edges ranged from 1.9 to 48.9%
in the 12 subnetworks inferred from trimmed datasets
(Fig. 6). Most of subnetworks consisted of more than 10%
negative edges, except in subnetworks for soil (1.9%) and
non-saline water (7.5%). The proportion of negative edges
ranged from 10.1 to 20.1% in the subnetworks for animal
associated microbiomes (animal surface, secretion, and

distal and proximal gut) and ranged from 27.1 to 30.8%
in the subnetworks for plant-associatedmicrobiomes (rhi-
zosphere and plant surface). The proportion of negative
edges ranged from 32.8 to 39.7% in the subnetworks for
sediments and reached 48.9% in the subnetwork for non-
saline surface. Vertices linked with negative edges were
dominated by phyla Alphaproteobacteria, Actinobacteria,
Clostridia, Deltaproteobacteria, and Gammaproteobacte-
ria, but the taxa profiles of negative edge-linked vertices
varied with environments (Fig. 6). A substantial propor-
tion of negative edges were linked with Acidobacteria
in the subnetworks of soil, saline sediment, and animal
proximal gut, with Spirochaetia in the subnetworks of
saline and non-saline water, and with Sphingobacteria in
the subnetworks of surface of plant, animal, and non-
saline environments. However, most negative edges were
environmental specialists at genus level, except for the
negative co-occurrence relationships between Spartobac-
teria and Acidobacteria Gp10, between Legionella and
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Fig. 5 Taxonomic profiles of hub insubnetworks inferred from trimmed microbiome abundance datasets of 12 environments. a The class
proportion of 120 hubs in 12 subnetworks. b The genus profiles of 10 hubs in each subnetwork. The subnetworks for the 12 environments were
clustered based on the taxonomic profiles of hubs in the subnetworks

Plantactinospora, and between Acidobacteria Gp6 and
Acidobacteria Gp10 (Data file S3).

Discussion
We generated this global microbial co-occurrence net-
work by taking advantage of the Earth Microbiome
Project (EMP) datasets. The global microbial co-
occurrence network is scale-free as has been found in
other real-world networks such as the world wide web
[16], social relationships [17], scientific citations [18], and
interactomes of genes [19] and proteins [20]. This scale-
free feature implies that a few highly connected hub
species coexist with a large number of species that have
a small number of links [21] and also implies an ultra-
small world network [22], which acknowledges the critical
impact of microbial interaction relationships on microbial
community assembly processes. Due to the nature of small
world networks, impacts affecting one taxon can poten-
tially be delivered to any other member in a microbial
community via a few intermediate vertices.
The modularity of this microbial co-occurrence net-

work varied with the environment. Previous studies have
shown the existence of environmentally driven modules,
such as water depth [23] or soil properties [24]. Moreover,
given that modules in microbial co-occurrence networks
may represent different niches [2], the present patterns of
environments in modules may also indicate a similarity
of microbial co-occurrence patterns in different environ-
ments. For example, similar module distributions were
found for saline water and saline sediment, plant surface

and rhizosphere, and the corpus of plants and animals in
the current global microbial co-occurrence network.
Different profiles of topological features along the sub-

networks of various environments suggest unique micro-
bial co-occurrence patterns in different environments.
Large-edge numbers in the animal distal gut subnetwork
suggests a high density of interactions in that environ-
ment. Higher clustering coefficients in the subnetworks
of animal proximal gut and saline sediment might be
indicative of cross-feeding relationships, which suggests
a richness of degradation pathways, niche filtering, or
environmental heterogeneity in such environments. High
average separation and modularity in the non-saline sur-
face subnetwork suggests complex ecological processes
or environment gradients in non-saline surface. Between-
ness centrality measures the centrality of a vertex in a
network based on shortest paths. In other words, a ver-
tex with a higher betweenness centrality score would serve
as a bridge from one part of a graph to another. The
high betweenness centrality indicates that more microbes
bridged connections betweenmodules in the subnetworks
of animal distal gut and soil.
Given that more than half of the edges were identi-

fied as specialist edges in most of the subnetworks, the
contribution of specialist edges to co-occurrence patterns
was higher than generalist edges. The primary propor-
tion of specialist edges indicates that different environ-
ments harbored various specific microbial co-occurrence
relationships. Besides specialist edges linking specialist
vertices, each environment has its own specialist edges
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Fig. 6 Negative edges in subnetworks inferred from trimmed microbiome abundance datasets of 12 environments. The pie chart in center shows
percentage and numbers of negative edges in the 12 subnetworks. The pie charts around the figure’s edge show taxonomic profiles of negative
edge associating vertices in the 12 subnetworks

linking taxa pairs that presented in other environments
as well. Based on our results, we speculate that microbial
co-ocurrences could be an important aspect of describ-
ing microbial communities from different environments.
Accordingly, microbial co-occurrence patterns provide a
new perspective for understanding microbial community
assemblages besides taxon composition in microbiomes.
Although the previous finding observed major composi-
tional distinction among the microbiomes in soil, non-
saline water, animal surface, and animal distal gut, edge
overlap among subnetworks indicates a similarity of the
microbial co-occurrence patterns among these environ-
ments. This cluster of two groups was in line with the
subnetwork groups clustered by hub presence as well. The
position of plant and animal surface microbiomes might
indicate the role of these microbiomes in bridging other
microbiomes. However, it is still impossible to validate
the existence of inferred edges in different environments

at community scale due to the high proportion of uncul-
tured taxa in environmental microbiomes [25] and biases
of primers, DNA extraction, and PCR reaction.
Different taxon profiles between generalist edges and

specialist edges linking generalist vertices suggest that
generalist taxa could display different co-occurrence pat-
terns along different environments. We found that the
most abundant generalist edges were all linked with Sph-
ingobacterium, which are ubiquitous in soil [26], water
[27], and animal [28] or plant-associating microbiomes
[29]. However, ubiquitous existence cannot guarantee
formation of generalist edges since substantial special-
ist edges linked generalist vertex pairs. For example,
Microgenomates and Armatimonadetes are co-present in
11 environments, but only formed edges in the animal
distal gut subnetwork.
The importance of hub species is intuitive because

they are potentially associated with a high number of
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other species. The high degree of Acidobacteria Gp2 and
Nisaea in most of the environments may be explained
by their high prevalence and possibly by their generalist
lifestyles [30]. Given that Acidobacteria Gp and Nisaea
acquired edges with various taxonomic profiles in differ-
ent environments, those genera may have the potential
to synchronize ecological processes over broad ecosys-
tems. Latescibacteria, present in specialist hubs in group
I environment subnetworks, is from an uncultured can-
didate phylum. Its genomic segments recovered from
metagenome analyses demonstrate that it is prevalent in
a wide range of habitats, but that various Latescibac-
teria strains prefer specific habitats and have different
ecological functions [31]. Latescibacteria could play an
important role in the production of cellulosomes in anaer-
obic habitats, such as in animal guts and sediments, and
in polysaccharide degradation in soils [31]. These eco-
logical functions might make Latescibacteria a specialist
hub in the subnetworks of group I environments. Tre-
ponema, the hub in the subnetwork of animal distal gut, is
a characteristic symbiont in human gut microbiomes [32].
Micrococcus, the hub in the subnetworks of plant sur-
face and non-saline surface, plays critical roles in biofilm
formation [33]. Methanobrevibacter, the hub in subnet-
works of animal distal gut, positively correlated with
20 hydrogen-producing Clostridales in human gut [34].
Moreover, a high proportion of specialist hubs suggests
that hubs could represent co-occurrence characteristics in
various environments. We note that it is difficult to infer
hub nodes correctly [2] and that it is not yet clear whether
hub node status also implies a special role in the ecosys-
tem in the sense of a keystone, though initial experiments
suggest this is the case [35].
Negative edges may originate from a wide range of

co-exclusion mechanisms, including direct competition,
toxin production, environmental modification, and dif-
ferential niche adaptation [36]. Different proportions of
negative edges suggest various intensities of competition
or niche differentiation in different environments. Low
proportions of negative edges in soil subnetworks sug-
gest a prevalence of collaboration or niche sharing in
soil, in which heterogeneous microenvironments could
reduce direct competition. A large proportion of negative
edges in the soil subnetworks linked with Acidobacte-
ria, which are ubiquitous in soil environments but are
under-represented in culture studies [37]. The ecological
capabilities of Acidobacteria predicted by a metagenomic
approach alludes to a competitive life style in soils [37].
High proportions of negative edges in sediments and
surface data suggest that competition or subniche differ-
entiation were more prevalent in sediment and surface
environments. Compared with the soil, fewer ecological
niches exist in sediment and surface environments due
to their relatively homogenous microenvironments. The

proportion of negative edges in the subnetworks of plant-
associated microbiomes was higher than in the subnet-
works of animal associated microbiomes, suggesting that
competition or niche differentiation was more prevalent
in plant-associated microbiomes.

Conclusions
In summary, the present study provides an overview of
global microbial co-occurrence patterns. With this study,
we have shown the interconnection pattern across envi-
ronments in the Earth microbial co-occurrence network.
Moreover, we suggest that microbial co-occurrence pat-
tern is a critical aspect of microbial community charac-
teristic that can be used in conjunction with microbial
taxon compositional profiles. Given the increasing recog-
nition of the value of communal microbial biodiversity
monitoring and the current global advance in sequencing
techniques, future sequencing efforts will likely increase
the accuracy of the global microbial co-occurrence net-
work presented in this study. Given that most micro-
bial co-occurrence relationships lacked experimental val-
idation, a greater effort is needed to mine uncultured
microbial species for validating predicted microbial co-
occurrence relationships with co-culture experiments. In
addition, the EMP datasets currently focus on bacterial
and archaeal communities, but other life forms on Earth
(for example plants, animals, and fungi) are also essen-
tial in the microbial interactome due to their influences
on microbial environments. Future studies filling the
gaps for microbial eukaryotes within the EMP framework
will untangle global microbial co-occurrence patterns
comprehensively.

Materials andmethods
Abundance table from the EMP
The microbial abundance table used in the present study
was the 90-bp Deblur BIOM table from the EMP database
[15]. This table was based on the sequence data from
the EMP databased after filtering errors and trimming to
90 bp (the length of the shortest sequencing run) using
Deblur in Qiime2 [38]. The EMP employed a unified
standard workflow for soil collection, metadata curation,
DNA extraction, sequencing, and sequence preprocess-
ing, to avoid known issues in combining multiple ampli-
cons across diverse environments on Earth. The abun-
dance table was filtered to keep tag sequences with at
least 25 reads total over all samples. We then extracted
14 count matrices for 14 environmental categories at
level 3 of the EMP ontology (Table S1) from the 90-
bp Deblur BIOM table [15]. We filtered the ESVs with
relative abundance less than 0.001% and presenting in
less than 10% of samples in corresponding count matri-
ces of environments. All the analyses were done using
R 3.6.0 [39].
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Network inference
Microbial taxon-taxon co-occurrence networks were con-
structed as described by Lima-Mendez et al. [13] by
selecting Spearman correlation and Bray-Curtis dissimi-
laritymeasures. Briefly, to compute P values, we generated
permutation and bootstrap distributions (1000 iterations
each) by shuffling taxon abundances and resampling from
samples with replacements, respectively. The P value was
then obtained as the probability of the null value under
a Gaussian curve fitted to the mean and standard devia-
tion of the bootstrap distribution. Permutations computed
for the Spearman correlation included a renormalization
step to mitigate compositionality bias. Measure-specific
P values were merged using Brown’s method [40] and
multiple-testing-corrected with the Benjamini-Hochberg
method [41]. Finally, edges with an adjusted P value above
0.05 and a score below the thresholds determined with
random matrix theory method [42] or not supported by
both measures after assessment of significance were dis-
carded. For computational efficiency, we computed 14
taxon-taxon networks separately for 14 environmental
categories at level 3 of EMP ontology. Network deconvolu-
tion was employed for detecting indirect co-occurrences
in those networks (α =1, β=0.9) [43]. The 14 taxon-taxon
networks were then merged into a global network.

Trimmedmicrobial community dataset
In order to avoid the taxon or sample number biases,
we trimmed each community dataset of various environ-
ments into the same taxon number and the same sample
number. We kept 400 top-abundant ESVs and randomly
selected 360 samples in the trimmed microbial commu-
nity matrices. Due to smaller size than trimmed matrices,
the microbiomes in plant and animal corpus were not
involved in inferring subnetworks with trimmed dataset.

Influence of environment on co-occurrence pattern
The impact of environmental categories on the Spear-
man correlation of each edge in the network was assessed
through dividing the absolute omission score (OS) (Spear-
man correlation without the environmental categories)
by the absolute original Spearman score. To account for
group size, the OS was computed repeatedly for random,
same-sized sample sets. Nonparametric P values were cal-
culated as the number of times random OSs were smaller
than the sample group OS, divided by the number of ran-
dom OS (1000 for each taxon pair). Edges were classified
as region-specific when the ratio of OS and absolute orig-
inal score was below 1, and the multiple-testing-corrected
P values (Benjamini-Hochberg) were below 0.05.

Overrepresentation analysis
Statistics were done using stats package in R 3.6.0
[39]. Taxon-taxon counts at high taxonomic ranks were

assessed for overrepresentation significance using the
hypergeometric distribution implemented by stats ::
phyper. Mutual exclusion versus co-presence analysis was
performed using the binomial distribution implemented
by stats :: pbinom, with background probability esti-
mated by the frequency of edges in the network. In all
tests, P values were adjusted for multiple testing according
to Benjamini, Hochberg, and Yekutieli (BY); adjustments
were made using the stats :: p.adjust.

Literature-based evaluation of predicted co-occurrence
relationships
We counted known species pairs of co-occurrence rela-
tionships and filtered the co-occurrence pairs presenting
less than three times in the network. Then, we built a list
of 812 pairs of species co-occurrence relationships with
significant overrepresentation (P < 0.05). We screened
the literature retrieved from Web of Science by querying
two species names of a specific co-occurrence relation-
ship and confirm the relationships reported in literature.
The protocol to screen the literature was the following:
(i) we screened returned literature for direct observed
relationship, such as competition or mutualism; (ii) if
no direct relationships, we screened returned literature
for co-occurrence in the same samples; (iii) if no co-
occurrence, we checked if the two species belonged to
the same taxon; (iv) otherwise, the edges was labeled as
unpublished relationships.

Topological features
Topological features were estimated with igraph package
(v1.4.1) [44] in R 3.6.0 [39]. Edge number was determined
using the ecount function, and diameter was determined
using the diameter function. Clustering coefficient was
estimated with the transitivity function and average sep-
aration was estimated with the mean_distance function.
Mean betweenness centrality was calculated using the
centr_betw function. Modularity was estimated with the
modularity function based on the fast greedy clustering
algorithm.

Generalist and specialist edges
Edges present in only one subnetwork were specialist
edges, which were further clustered into two groups: a
specialist edge linking a specialist vertex pair or the same
linking a generalist vertex pair. A specialist edge link-
ing specialist vertex pair represents the contribution of
environmental-specific taxa in specialist edges, while a
specialist edge linking generalist vertex pair represents the
potential contribution of the environment in enriching
specific microbial interactions. The 50 top-abundant ESVs
for each edge type were counted for taxon profile com-
parison. An environment similarity network was inferred
with a Jaccard distance matrix based on edge overlap
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among subnetworks inferred with the trimmed dataset.
The spearman correlation between different edge types
and between edge number and edge types was calculated
using the cor.test function.

Hub identification
We identified ten hubs at the top-degree from each sub-
network inferred from the 12 trimmed datasets. The
taxon profiles of hubs in different subnetworks were iden-
tified at genus level with the 90-bp Deblur BIOM table
[15].

Negative edges
We counted the number and percentage of negative
edges in the subnetworks inferred from the 12 trimmed
datasets. The taxon profiles of negative edges in the sub-
networks of various environments were estimated with
the class groups of both vertices.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s40168-020-00857-2.

Data file S1: Data file S1. Dataset of literature validation records.

Data file S2: Data file S2. Dataset of edge frequency.

Data file S3: Data file S3. Dataset of negative edges.

Supplementary materials:
Fig. S1. The degree distribution of Earth microbial co-occurrence network.
Fig. S2. The relative abundance of vertices in 8 modules of the Earth
microbial co-occurrence network. Fig. S3. The co-occurrence across 8
modules of the Earth microbial co-occurrence network. Fig. S4. The
distribution of vertices from subnetworks for 14 environmental types
among 8 dominant modules. Fig. S5. Relationships between proportions of
generalist edge, specialist edge linking generalist vertex pair, and specialist
edge linking specialist vertex pair. Fig. S6. Relationship between edge
number and generalist edge, specialist edge linking generalist vertex pair,
and specialist edge linking specialist vertex pair. Fig. S7. Taxon profiles of
generalist edge linked vertices in subnetworks of 12 environments inferred
from trimmed datasets. Fig. S8. Taxon profiles of specialist edge linking
generalist vertex pair linked vertices in subnetworks of 12 environments
inferred from trimmed datasets. Fig. S9. Taxon profiles of specialist edge
linking specialist vertex pair linked vertices in subnetworks of 12
environments inferred from trimmed datasets.

Acknowledgements
Not applicable.

Authors’ contributions
BM, JG, KF, and JX designed the study. BM, ES, LR, CC, and JX wrote the
manuscript. YW, SY, SL, and ES performed the literature validation, JA, RK, and
JK parse the EMP dataset. BM, KF, and LR performed the network analysis. BM
performed the figure visualization. The authors read and approved the final
manuscript.

Funding
This research was financially supported by the National Natural Science
Foundation of China (41721001, 41991334), the Zhejiang Provincial Natural
Science Foundation of China (LD19D060001), the 111 Project (B17039), and
the Fundamental Research Funds for the Central Universities. Partial support
was provided through the Microbiomes in Transition (MinT) Initiative under
the Laboratory Directed Research and Development Program at PNNL (PNNL
is a multiprogram national laboratory operated for DOE by Battelle Memorial
Institute under contract DE-AC06-76RL01830).

Availability of data andmaterial
The EMP dataset are available at ftp://ftp.microbio.me/emp/release1. The R
script used in this study and network files are available at http://www.github.
com/microbma/earthnetwork/.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute of Soil and Water Resources and Environmental Science, College of
Environmental and Resource Sciences, Zhejiang University, Hangzhou,
310058, China. 2Zhejiang Provincial Key Laboratory of Agricultural Resources
and Environment, Hangzhou, 310058, China. 3Department of Pediatrics and
Scripps Institution of Oceanography, University of California San Diego, La
Jolla, CA USA. 4Department of Microbiology and Immunology, Rega Institute,
KU Leuven, Campus Gasthuisberg, Leuven, Belgium. 5Departments of
Pediatrics, Computer Science and Engineering, and BioEngineering, University
of California San Diego, La Jolla, CA USA. 6Biological Sciences Division, Earth
and Biological Sciences Directorate, Pacific Northwest National Laboratory,
Richland, WA 99352, USA. 7Graduate Program in Biophysical Sciences, The
University of Chicago, Chicago IL, 60637, USA.

Received: 5 February 2020 Accepted: 7 May 2020

References
1. Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev

Microbiol. 2012;10:538–50.
2. Röttjers L, Faust K. From hairballs to hypotheses-biological insights from

microbial networks. FEMS Microbiol Rev. 2018;42:761–80.
3. Stenseth NC, Smith JM. Coevolution in ecosystems: Red Queen evolution

or stasis? Evolution. 1984;38:870–80.
4. Morris JJ, Lenski RE, Zinser ER. The Black Queen hypothesis: evolution of

dependencies through adaptive gene loss. mBio. 2012;3:e00036–12.
5. Decaestecker E, Gaba S, Raeymaekers JA, Stoks R, Van Kerckhoven L,

Ebert D, et al. Host-parasite ‘Red Queen’ dynamics archived in pond
sediment. Nature. 2007;450:870.

6. Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. The evolution of
host-symbiont dependence. Nat Commun. 2017;8:15973.

7. Cordero OX, Polz MF. Explaining microbial genomic diversity in light of
evolutionary ecology. Nat Rev Microbiol. 2014;12:263–73.

8. Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M.
Ecological consequences of genetic diversity. Ecol Lett. 2008;11:609–23.

9. Paramsothy S, KammMA, Kaakoush NO, Walsh AJ, van den Bogaerde J,
Samuel D, et al. Multidonor intensive faecal microbiota transplantation for
active ulcerative colitis: a randomised placebo-controlled trial. Lancet.
2017;389:1218–28.

10. O’Callaghan M. Microbial inoculation of seed for improved crop
performance: issues and opportunities. Appl Microbiol Biotechnol.
2016;100:5729–46.

11. Li SS, Zhu A, Benes V, Costea PI, Hercog R, Hildebrand F, et al. Durable
coexistence of donor and recipient strains after fecal microbiota
transplantation. Science. 2016;352:586–9.

12. Berry D, Widder S. Deciphering microbial interactions and detecting
keystone specieswith co-occurrence networks. Front Microbiol. 2014;5:219.

13. Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al.
Determinants of community structure in the global plankton
interactome. Science. 2015;348:1262073.

14. Chaffron S, Rehrauer H, Pernthaler J, von Mering C. A global network of
coexisting microbes from environmental and whole-genome sequence
data. Genome Res. 2010;20:947–59.

15. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al.
A communal catalogue reveals Earth’s multiscale microbial diversity.
Nature. 2017;551:457–63.

16. Albert R, Jeong H, Barabási A-L. Internet Diameter of the world-wide
web. Nature. 1999;401:130.

https://doi.org/10.1186/s40168-020-00857-2
https://ftp://ftp.microbio.me/emp/release1
http://www.github.com/microbma/earthnetwork/
http://www.github.com/microbma/earthnetwork/


Ma et al. Microbiome            (2020) 8:82 Page 12 of 12

17. Liljeros F, Edling CR, Amaral LAN, Stanley HE, Aberg Y. The web of
human sexual contacts. Nature. 2001;411:907.

18. Wang D, Barabási AL. Quantifying long-term scientific impact. Science.
2013;342:127–32.

19. Ma B, Zhao K, Lv X, Su W, Dai Z, Gilbert JA, et al. Genetic correlation
network prediction of forest soil microbial functional organization. ISME J.
2018;12:2492–505.

20. Eisenberg E, Levanon EY. Preferential attachment in the protein network
evolution. Phys Rev Lett. 2003;91:138701.

21. Barabási AL. Scale-free networks: a decade and beyond. Science.
2009;325:412–3.

22. Amaral LAN, Scala A, Barthelemy M, Stanley HE. Classes of small-world
networks. Proc Natl Acad Sci USA. 2000;97:11149–52.

23. Cram JA, Xia LC, Needham DM Sachdeva R, Sun F, Fuhrman JA.
Cross-depth analysis of marine bacterial networks suggests downward
propagation of temporal changes. ISME J. 2015;9:2573.

24. Jiang Y, Sun B, Li H, Liu M, Chen L, Zhou S. Aggregate-related changes
in network patterns of nematodes and ammonia oxidizers in an acidic
soil. Soil Biol Biochem. 2015;88:101–9.

25. Lok C. Mining the microbial dark matter. Nat News. 2015;522:270.
26. Zhou X-K, Li Q-Q, Mo M-H, Zhang Y-G, Dong L-M, Xiao M, et al.

Sphingobacterium tabacisoli sp. nov., isolated from a tobacco field soil
sample. Int J Syst Evol Microbiol. 2017;67:4808–13.

27. Albert RA, Waas NE, Pavlons SC, Pearson JL, Ketelboeter L,
Rosselló-Móra R, et al. Sphingobacterium psychroaquaticum sp. nov., a
psychrophilic bacterium isolated from Lake Michigan water. Int J Syst Evol
Microbiol. 2013;63:952–8.

28. Zhou J, Huang H, Meng K, Shi P, Wang Y, Luo H, et al. Molecular and
biochemical characterization of a novel xylanase from the symbiotic
Sphingobacterium sp. TN19. Appl Microbiol Biotechnol. 2009;85:323–33.

29. Kömpfer P, Busse H-J, Kleinhagauer T, McInroy JA, Glaeser SP.
Sphingobacterium zeae sp. nov., an endophyte of maize. Int J Syst Evol
Microbiol. 2016;66:2643–9.

30. Freilich R, Arhar T, Abrams JL, Gestwicki JE. Protein-protein interactions
in the molecular chaperone network. Acc Chem Res. 2018;51:940–9.

31. Farag IF, Youssef NH, Elshahed MS. Global distribution patterns and
pangenomic diversity of the candidate phylum “Latescibacteria” (WS3)
Löffler FE, editor. Appl Environ Microbiol. 2017;83:e00521.

32. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC,
Ursell LK, et al. Subsistence strategies in traditional societies distinguish
gut microbiomes. Nat Commun. 2015;6:6505.

33. Blakeman JT, Morales-García AL, Mukherjee J, Gori K, Hayward AS, Lant
NJ, et al. Extracellular DNA provides structural integrity to a micrococcus
luteus biofilm. Langmuir ACS J Surf Colloids. 2019;35:6468–75.

34. Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, Narra A, et al.
Pan-genome of the dominant human gut-associated archaeon,
Methanobrevibacter smithii, studied in twins. Proc Natl Acad Sci USA.
2011;108:4599-606.

35. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T, Weigel D, et al. Microbial
hub taxa link host and abiotic factors to plant microbiome variation.
Waldor MK, editor. PLOS Biol. 2016;14:e1002352.

36. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al.
Microbial co-occurrence relationships in the human microbiome. PLoS
Comput Biol. 2012;8:e1002606.

37. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. The
ecology of Acidobacteria: moving beyond genes and genomes. Front
Microbiol. 2016;7:744.

38. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Xu ZZ, et
al. Deblur rapidly resolves single-nucleotide community sequence
patterns. mSystems. 2017;2:e00191–16.

39. R Core Team. R: a language and environment for statistical computing. R
Foundation for Statistical Computing. Vienna, Austria. https://www.R-
project.org/.

40. Poole W, Gibbs DL, Shmulevich I, Bernard B, Knijnenburg TA.
Combining dependent P-values with an empirical adaptation of Brown’s
method. Bioinformatics. 2016;32:i430–6.

41. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple
testing under dependency. Ann Stat. 2001;29:1165–88.

42. Luo F, Zhong J, Yang Y, Scheuermann RH, Zhou J. Application of
randommatrix theory to biological networks. Phys Lett A. 2006;357:420–3.

43. Feizi S, Marbach D, Médard M, Kellis M. Network deconvolution as a
general method to distinguish direct dependencies in networks. Nat
Biotechnol. 2013;31:726–33.

44. Csardi G, Nepusz T. The igraph software package for complex network
research. InterJournal Complex Syst. 2006;1695:1–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://www.R-project.org/
https://www.R-project.org/

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Results
	Earth microbial co-occurrence network
	Phylogeny of co-occurrence network 
	Topological properties
	Generalist and specialist edges
	Network hubs
	Negative co-occurrence links

	Discussion
	Conclusions
	Materials and methods
	Abundance table from the EMP
	Network inference
	Trimmed microbial community dataset
	Influence of environment on co-occurrence pattern
	Overrepresentation analysis
	Literature-based evaluation of predicted co-occurrence relationships
	Topological features
	Generalist and specialist edges
	Hub identification
	Negative edges

	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s40168-020-00857-2.
	Data file S1
	Data file S2
	Data file S3
	Supplementary materials

	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and material
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

