
REVIEW Open Access
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Abstract

Immigration is a process that can influence the assembly of microbial communities in natural and engineered
environments. However, it remains challenging to quantitatively evaluate the contribution of this process to the
microbial diversity and function in the receiving ecosystems. Currently used methods, i.e., counting shared microbial
species, microbial source tracking, and neutral community model, rely on abundance profile to reveal the extent of
overlapping between the upstream and downstream communities. Thus, they cannot suggest the quantitative
contribution of immigrants to the downstream community function because activities of individual immigrants are
not considered after entering the receiving environment. This limitation can be overcome by using an approach
that couples a mass balance model with high-throughput DNA sequencing, i.e., ecogenomics-based mass balance.
It calculates the net growth rate of individual microbial immigrants and partitions the entire community into active
populations that contribute to the community function and inactive ones that carry minimal function. Linking
activities of immigrants to their abundance further provides quantification of the contribution from an upstream
environment to the downstream community. Considering only active populations can improve the accuracy of
identifying key environmental parameters dictating process performance using methods such as machine learning.
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Introduction
Microbial communities play essential roles in biogeo-
chemical cycles in natural and engineered ecosystems
[1]. To study how different microorganisms assemble
into a community and contribute to the function of an
ecosystem, various mechanisms including the niche and
neutral theories have been developed [2]. In the neutral
theory of biodiversity and biogeography, immigration is
one of the key stochastic processes that change the com-
munity assemblage together with death and birth [3].
This process, sometimes referred to as migration [4], is
originally used in macroecology to estimate the rate of
new bird species entering a remote island from the near-
est land mass, i.e., the chance of immigration, which
plays a pivotal role in the equilibrium of island fauna’s
diversity [5]. As the definition of immigration can vary
considerably [6], this review adopts the one stated by
Bell [4], and defines immigration as the process of a mi-
crobial individual being added to a local community

from the species pool of the metacommunity, which
consists of a set of local communities that are physically
linked by immigration and can exchange colonists of
multiple species [7]. A similar term often used is disper-
sal [8–10]. While dispersal and immigration may slightly
differ in specific context and one may even include the
other [6], there is still no consensus on the difference
[10–13]. Therefore, we do not attempt to discuss the dif-
ferences between immigration and dispersal here. We
further consider microorganisms that arrive at the local
communities all as immigrants, regardless of how they
arrive (e.g., facilitated by cell motility or flow of water or
air) and how they contribute to the local community
after arrival.
In natural microbial ecosystems, immigration from an

upstream community to a downstream community can
be exemplified by microbial immigration from Africa
dust to European aquatic environments [14], from
running waters to forest lakes [15], and from river water
to estuarine and offshore environments [16]. Microbial
immigration also widely occurs in engineered environ-
ments, and this movement often occurs in a more
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controlled and directed manner than in natural environ-
ments. In drinking water production systems (Fig. 1a),
microorganisms in the source water, e.g., groundwater
and surface water, can serve as inocula to seed the com-
munities along the treatment process [17]. Next,
microbes growing on the treatment units, e.g., surfaces
of reactor walls or filtration media, can be released to
subsequent processes [18] and then to the distribution
system depending on whether disinfection is practiced
[19] or not [20]. In the distribution network and indoor
plumbing, bidirectional immigration can occur between
the water phase and the biofilms on the inner pipe sur-
face [21], which can be further elevated through water
stagnation [22]. A wastewater treatment plant (WWTP)
is another good example of microbial immigration
(Fig. 1b), because different bioreactors are physically
connected, and the flux of biomass can be higher than
those in natural systems. In WWTPs, microbes present
in raw sewer [23] or nitrifying trickling filter [24] were
reported to have impact on the downstream activated
sludge communities. The activated sludge biomass can
also act as a source of immigration to the downstream
anaerobic digester microbiome [25]. The WWTP efflu-
ent can impact the receiving water body community
[26], elevating the abundance of human gut-related
microbes and antibiotic resistance genes [27].
While microbial immigration is frequently reported in

engineered water systems, it remains challenging to
quantitatively address “to what extent immigration con-
tributes to the assembly and function of the downstream

community?” In this article, we focus on methodology
quantifying microbial immigration by first reviewing
methods that are currently used and identifying their
limitations. Then, an approach that calculates the net
growth rates of individual microbial immigrants in the
downstream community is reviewed. It couples a mass
balance model with high-throughput DNA sequencing
to partition microbial assembly into active populations
that contribute to community function and inactive ones
that carry minimal microbial function. Its potential use
together with machine learning to identify key environ-
mental parameters affecting the microbial ecosystem’s
function is discussed.

Methods commonly used to evaluate immigration
impact
Figure 2 illustrates three methods commonly used to evalu-
ate immigration impact in microbial ecosystems. The first
approach simply counts shared species between the up-
stream and downstream communities, as visualized by a
Venn diagram (Fig. 2a). For example, McLellan et al. re-
ported that untreated sewage communities shared more
species with surface water communities than with human
fecal sources, indicating surface water such as rainwater
and storm water can modulate sewage microbial commu-
nity composition [28]. Lee et al. compared microbial com-
munities between influent wastewater and the downstream
activated sludge in four full-scale WWTPs and reported
that shared species accounted for 12.2%, 7.5%, 15.2%, and
7.6% of total sequences in activated sludge, respectively

Fig. 1 Illustration of potential microbial immigration in a drinking water production and distribution system, and b wastewater treatment plants
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[23]. As the authors stated, these numbers only implied
“contribution from influent wastewater communities to
some extent”, while the exact contribution to the function
of each activated sludge system cannot be quantified. This
uncertainty is due to the fact that the microbial activity of
immigrants cannot be determined. Shared species can be
generalists that function in both upstream and downstream
environments or be detectable but remain dormant in acti-
vated sludge due to their high abundance in the influent
and low adaptability (i.e., low activity) to the new environ-
mental conditions.
The second approach is microbial source tracking that

estimates the proportion of taxa in the downstream or
sink community coming from multiple upstream or
source environments [29] (Fig. 2b). The basic rationale is
that more abundant taxa in the source have higher prob-
abilities to be observed in the sink, which represents the
contribution of each source. This method has been ap-
plied to study a sink environment that receives immigra-
tion from multiple sources, such as residential kitchen
microbiome subject to source microbiota of the human
palm skin, produces, and faucet water [30] and public
restroom microbiome subject to source microbiota of the
soil, water, human urine, gut, mouth, and skin [31]. How-
ever, the method assumes that all the observed microbial
populations in the sink community come from source en-
vironments and ignores the fact that some active microor-
ganisms can undergo rapid reproduction after entering
the sink. When the abundance of immigrants increases,
the source tracking method cannot fully explain this frac-
tion of community composition from known sources. This
limitation leads to the observation that sometimes the ma-
jority of the sink community is labeled as unknown,
whereas only a small proportion can be explained by
known sources. The observation of unknown sources is
especially common in systems with high microbial activ-
ities, such as wastewater treatment processes [32–34].
The third approach uses the neutral model (Fig. 2c)

developed by Sloan and coworkers [35]. By determining
the abundance-frequency distribution of individual

microbial species, a species-independent immigration
probability m is calculated, which is uniform for every
community member. A small m value suggests that the
community as a whole is comprised of a low proportion
of immigrants from the source. This model has been fre-
quently used to evaluate the relative importance of neu-
tral mechanism and directly assess the immigration rate
at community level by calculating the m value. Using
this model, Ayarza and Erijman revealed that neutral
process was important in the assembly of activated
sludge community [36]. In a drinking water distribution
system, the model was used to demonstrate that the role
of immigration from city water supply to tap water was
higher at the proximal end than at the distal end of in-
door plumbing [22]. Likewise, studies have compared
the m values to reveal higher immigration impact in
planktonic communities than in sedimentary communi-
ties in Yangtze River [37], and in deep-water communi-
ties than in surface water communities [38]. Despite the
success of the model in explaining the general trend of
abundance-frequency distribution, there are always spe-
cies significantly deviating from the S-shape fitting
curve. This is likely caused by assuming a constant im-
migration rate for all community members. It ignores
the fact that immigrants with active microbial growth in
the new environments can become more abundant than
the prediction.
All the three methods described above merely enumer-

ate the number of immigrants and cannot fully reveal
the impact of microbial immigration on community
functions. As microorganisms can carry considerably di-
verse activities after entering a new environment, in con-
trast to inert and homogeneous particles, it is important
to address “how many microbial immigrants are able to
actively contribute to ecological functions.”

Quantifying immigration impact with the
consideration of microbial activity
To quantitatively evaluate the immigration impact, both
the abundance and activity of individual immigrants should

Fig. 2 Current methods to quantify immigration impact. a Counting shared species with Venn diagram, b microbial source tracking, and c Sloan’s
neutral model
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be considered. Compared to determining abundance, asses-
sing the activities or growth of individual immigrants in a
given microbial ecosystem is challenging. In pure cultures,
microbial activity can be assessed by measuring substrate
consumption, metabolite production, or cell density change
during a period of incubation. However, only a small frac-
tion of microbes in nature can be cultivated and microbial
activities determined in pure culture can differ drastically in
a complex community under environmental conditions
[39]. Sequencing 16S ribosomal RNA (rRNA) genes and
other biomarkers is often used to identify microorganisms
present in the environment but cannot effectively distin-
guish active populations from inactive or dormant species.
Likewise, metagenomics reveals functional potentials of
community members but cannot discern expressed and
non-expressed pathways [40]. Directly sequencing rRNA
can identify active microbes, but the consistency of this ap-
proach can be affected by the differences between rRNA
content and microbial activity [41]. Sequencing messenger
RNA (mRNA), i.e., metatranscriptomics, provides accurate
identification of highly expressed genes and active popula-
tions from environmental samples [42], but this approach
is challenged by the scarcity of well-annotated high-quality
reference genomes [43]. Nucleotide sequencing can be
coupled with methods such as microautoradiography [44],
stable isotope probing [45], or nano secondary ion mass
spectrometry [46] that label specific substrates to link sub-
strates uptake activity with microbial identity. It is also pos-
sible to label and visualize specific active populations using
fluorescence in situ hybridization designed to target rRNA
[47]. These methods however cannot target all community
members due to the cost and time associated with labeling
individual substrates or organisms. In addition, metaproteo-
mics and metabolomics can characterize the entire collec-
tion of proteins or metabolites of a given sample, and
provide direct measurement of microbial activity, but also
face challenges on preparing high-quality samples from
complex environments and on linking proteins/metabolites
with microbial identity [40]. Overall, it is still expensive and
time-consuming using these ecological tools to quantify the
in situ activities of most microbial populations in a complex
ecosystem.

Quantifying immigration impact at individual
population level using ecogenomics-based mass
balance approach
Recent studies [48–51] have presented a high-throughput
and quantitative way to assess the immigration impact on
an open engineered water system by combining a mass
balance concept with ecogenomics tools, i.e., the
ecogenomics-based mass balance. Using a biological re-
actor treating wastewater as an example (Fig. 3a), it re-
ceives influent biomass discharged from the upstream
system with a flow rate Qin and unit cell number nin. The

relative abundance of any given microorganism x in the
influent stream (px, in) can be determined by 16S rRNA
gene sequencing. Thus, the absolute number of x in the
influent can be described as Qin • nin • px, in if Qin and nin
are properly measured. Similarly, the number of x in the
effluent can be described similarly as Qeff • neff • px, eff,
and multiple influent/effluent streams are allowed. The
growth of x in the reactor is expressed with a first order
reaction (μx • Vre • nre • px, re), i.e., the product of a net
growth rate constant μx and the absolute number of x in
the reactor Vre • nre • px, re. When the reactor is operated
at a steady state and the number of x in the reactor does
not change through time, the sum of x in the influent, ef-
fluent, and its growth is zero, which allows the calculation
of μx. This growth rate constant is specific for each com-
munity member, which can be positive (i.e., net growth
and active ecological function) or negative (i.e., net decay
and minimal ecological function). When the growth rates
of all community members are plotted against their abun-
dance, one can easily tell whether the abundant popula-
tions in the upstream environment (major immigrants)
are active or not in the downstream community. In the
example illustrated in Fig. 3b, those located at the upper
part of the figure tend to have negative growth rates, sug-
gesting immigrants from the upstream exhibit low activity,
although they still retain high abundance as indicated by
the large bubble size. In contrast, active populations, those
with positive growth rate, in the reactor are not derived
from the upstream process. Overall, although immigrants
represent a large proportion of observed abundance in this
case, their contribution to the community function is
likely low considering their negative growth rates.
Saunders et al. first developed this method and studied

three WWTPs [48]. Thirty-five percent of the observed
species in activated sludge reactors were also detected in
the influent wastewater, suggesting a strong immigration
impact. However, the mass balance revealed that majority
of the shared species had negative net growth rate, sug-
gesting they did not actively contribute to the metabolisms
in activated sludge. There were a few immigrants with
positive growth rate in activated sludge, indicating that
they were indeed active in situ. Overall, the authors con-
cluded a modest impact of immigration on the activated
sludge community, considering there were both inactive
and active immigrants with moderate abundance.
Mei et al. applied the ecogenomics-based mass balance

approach to anaerobic digesters that receive massive bio-
mass from upstream activated sludge [49]. Based on the
result that populations with negative net growth rate
accounted for 25% of total sequences in digesters, a
strong immigration impact with the feed aerobic wasted
sludge was concluded. Phylogenetic analysis confirmed
that inactive populations were associated with aerobes
or facultative anaerobes, whereas active populations were

Mei and Liu Microbiome           (2019) 7:144 Page 4 of 8



associated with obligate anaerobes. This study also
reported the bias associated with the use of 16S rRNA-
based relative abundance as an activity indicator in envi-
ronments under high immigration impact. It is possible
that some immigrants, which are the major populations
in the previous environment, can still contain high copy
number of rRNA after moving to a downstream environ-
ment. Thus, rRNA-based calculation can overestimate
the relative abundance and contribution of these popula-
tions in the downstream community [49]. Such rationale
was further used to multiple full-scale digesters around
the world [52, 53], and the findings revealed that immi-
gration from feed sludge to the digester communities
was a ubiquitous phenomenon and the extent of contri-
bution was also influenced by the operation conditions
and pretreatments related to the anaerobic digestion.
The ecogenomics-based mass balance approach was

also applied to an industrial WWTP to demonstrate its
effectiveness in teasing apart the interaction between
neutral and niche-based mechanisms [50]. In the studied
WWTP, immigrants from an upstream anaerobic reactor
were inactive (net growth rate ≤ 0) and represented a
negligible fraction (1% of the total sequences) in the
downstream activated sludge community, implying a
weak immigration impact. But these immigrants were
found to affect the prediction of key environmental pa-
rameters from community composition using a
machine-learning tool [54]. To do so, a supervised learn-
ing regressor was first trained on a set of samples with
known physiochemical parameters such as temperature,
pH, and nutrient concentrations and then used to

predict the target values of the remaining samples.
Parameters with higher prediction accuracy played more
important roles in shaping the microbial community.
After removing inactive immigrants from the down-
stream community, the prediction accuracy greatly
improved. This result suggests that more cautious inter-
pretation should be made to identify the key environ-
mental parameters based on community composition.
Commonly used methods, including k-means clustering
[55], principal components analysis [56], principal co-
ordinate analysis [57], non-metric multidimensional scal-
ing [58], and redundancy analysis [59], solely rely on
DNA-based microbial abundance, but pay little attention
to the existence of inactive immigrants. The efforts of
correlating observed species abundance with environ-
mental conditions would be notably biased in an open
ecosystem where inactive populations are introduced by
immigration.
Wastewater systems are often designed with complex

process configuration where high biomass flux from one
process to the next can take place. Sampling and con-
trolling in these systems at different temporal and spatial
scales are easier than natural environments. Therefore,
these environments present an excellent opportunity to
apply the ecogenomics-based mass balance approach to
quantify the contribution of microbial immigration to
community composition and function. Furthermore, this
method can be applied to non-wastewater systems where
microbial immigration is commonly present but the
contribution is rarely quantified. The differentiation of
inactive populations is specifically valuable in those

Fig. 3 a Mass balance for a bioreactor with biomass input, output, and local growth. Notations in the model are described in the paragraph
above. b An example of the net growth rate calculation result. X-axis denotes the net growth rate. The abundances of a community member in
the upstream and downstream community are represented by the Y-axis and the size of the bubbles, respectively
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environments where the growth rates of microorganisms
can be more heterogeneous than in highly selective
wastewater systems. For example, biofilm growth in the
drinking water distribution pipe has been recognized as
an important process that affects drinking water quality
[21, 22]. The mass balance model can be used to
characterize the growth and immigration of different or-
ganisms in the biofilm, especially those posing risks to
human health. To do so, a section of pipe can be consid-
ered as the control volume, with fresh city water and tap
water as the influent and effluent, respectively. Organ-
isms that can scavenge substrates in the pipe will exhibit
higher growth rates and can be released into the tap
water. Different conditions and parameters related to the
mass balance can be tested to assess their impacts on
immigration. Some of them include the disinfection
methods of the city water supply, the sizes and materials
of the pipe, the temperature of the environment, and the
period of the water stagnation. These results can provide
guidance to improve drinking water quality and prevent
waterborne disease outbreak from the aspect of micro-
bial ecology. While the measurements of mass flux and
cell count related to biofilm can be challenging, they can
be solved for example by harvesting the biofilm after a
period of development and by enumerating cell number
with flow cytometry as demonstrated in a recent study
[51]. Optical coherence tomography is another effective
and non-destructive way to determine the biofilm mass
and possibly mass change (e.g., in term of volume) on
the pipe inner surface [60]. In other systems where di-
verse ecological functions are carried out, functional
genes, such as mcrA for methanogenesis and amoA for
nitrification, can be used to monitor a subset of popula-
tions with specific function(s) instead of 16S rRNA gene.
Besides marker genes, metagenomics and metatranscrip-
tomics can be used to estimate the abundance and activ-
ity, respectively, of individual immigrants with higher
resolution. In addition, the immigration of viruses [61]
and eukaryotes [62] from an upstream process to a
downstream process can be monitored and quantified,
in addition to prokaryotic populations.
The ecogenomics-based mass balance approach is

effective in differentiating active and inactive populations
resulted from immigration than the three methods dis-
cussed earlier that do not consider immigrants’ activities
(Table 1). It evaluates immigration impacts by consider-
ing the abundance and activities of all immigrants. The
net growth rate is calculated in a high-throughput man-
ner and is specific for individual immigrants, unlike an
index derived for a whole community from other three
methods. The method can be further applied to complex
ecosystems by including multiple influent and effluent
streams in the calculation. Still, the mass balance ap-
proach should be used carefully with good experimental

design. It assumes that the system is in a steady state
and requires multiple measurements of cell number and
biomass flux within a properly defined control volume.
When 16S rRNA gene is used as the biomarker, biases
associated with DNA extraction, PCR amplification,
rRNA copy number, and amplicon sequencing are still
present [63]. The calculated net growth rate is only a
proxy of the in situ activity and cannot perfectly reflect
the behaviors of individual community members. It re-
mains challenging to apply the approach to systems with
attached microbial growth such as granular sludge biore-
actors, due to the difficulty in estimating total biomass
and biomass flux, as well as the heterogeneity in micro-
bial compositions within the consortia. Thus, more
research efforts are needed in this direction.

Conclusion
Microbial immigration is a ubiquitous and important
process occurring in engineered water systems, and it allows
microbes present in an upstream system to influence the
microbial assembly and function in a downstream receiving
system after entering. To understand the impact of micro-
bial immigration, qualitative and quantitative methods are
necessary and have been developed. Commonly used
methods are recognized to have limitations in quantifying
the immigration impacts. The ecogenomics-based mass bal-
ance approach provides a solution by quantitatively deter-
mining the activity profile of all microbial populations in a
community. This approach can effectively identify inactive
populations, especially those resulted from immigration, and
pinpoint microorganisms that are actually carrying out the

Table 1 Comparison of the commonly used methods that
quantify immigration impact and the ecogenomics-based mass
balance

Method Venn
diagram

Source
tracking

Neutral
model

Ecogenomics-
based mass
balance

Abundance of
total immigrants

✓ ✓ ✓ ✓

Abundance of
individual immigrants

X X X ✓

Activity of individual
immigrants

X X X ✓

Multiple upstream
environments

✓ ✓ X ✓

Multiple downstream
environments

✓ X X ✓

Cell number
estimation

X X X ✓

Flux measurement X X X ✓

Steady-state
assumption

X X X ✓

Repeated sampling X ✓ ✓ ✓
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process of interest. Furthermore, when coupled with
methods such as machine learning, it can better identify key
environmental parameters affecting system performance,
which can guide the monitoring and designing of biological
processes. It is foreseen that such an approach can be widely
applied to various engineered and possibly natural environ-
ments, where the contribution of microbial immigration re-
mains to be further characterized.
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