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Abstract

Background: Early disruption of the microbial community may influence life-long health. Environmental toxicants
can contaminate breast milk and the developing infant gut microbiome is directly exposed. We investigated whether
environmental toxicants in breastmilk affect the composition and function of the infant gut microbiome at 1 month. We
measured environmental toxicants in breastmilk, fecal short-chain fatty acids (SCFAs), and gut microbial composition from
16S rRNA gene amplicon sequencing using samples from 267 mother-child pairs in the Norwegian Microbiota Cohort
(NoMIC). We tested 28 chemical exposures: polychlorinated biphenyls (PCBs), polybrominated flame retardants (PBDEs),
per- and polyfluoroalkyl substances (PFASs), and organochlorine pesticides. We assessed chemical exposure and alpha
diversity/SCFAs using elastic net regression modeling and generalized linear models, adjusting for confounders, and
variation in beta diversity (UniFrac), taxa abundance (ANCOM), and predicted metagenomes (PiCRUSt) in low, medium,
and high exposed groups.

Results: PBDE-28 and the surfactant perfluorooctanesulfonic acid (PFOS) were associated with less microbiome diversity.
Some sub-OTUs of Lactobacillus, an important genus in early life, were lower in abundance in samples from infants with
relative “high” (> 80th percentile) vs. “low” (< 20th percentile) toxicant exposure in this cohort. Moreover, breast milk
toxicants were associated with microbiome functionality, explaining up to 34% of variance in acetic and propionic SCFAs,
essential signaling molecules. Per one standard deviation of exposure, PBDE-28 was associated with less propionic acid (−
24% [95% CI − 35% to − 14%] relative to the mean), and PCB-209 with less acetic acid (− 15% [95% CI − 29% to − 0.4%]).
Conversely, PFOA and dioxin-like PCB-167 were associated with 61% (95% CI 35% to 87%) and 22% (95% CI 8% to 35%)
more propionic and acetic acid, respectively.

Conclusions: Environmental toxicant exposure may influence infant gut microbial function during a critical
developmental window. Future studies are needed to replicate these novel findings and investigate whether this has any
impact on child health.
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Background
During a critical period for developmental programming,
infants may be exposed to both environmental toxicants
and multiple microbiome-altering factors. Breastmilk is
a unique and complex substance that has evolved to
provide nutrition and crucial immune support at a time
when the gut microbiome changes from low diversity at
birth to a rapidly evolving ecosystem [1]. Breastfeeding
has clear health benefits such as protection from infec-
tions, particularly in low- and middle-income countries
[2]. However, breastmilk can also be contaminated with
persistent toxicants [3], which may directly affect health
or indirectly through interaction with the gut micro-
biome. These chemicals once commonly used in agricul-
ture as pesticides and fungicides, and in manufacturing,
as flame retardants or non-stick substances, are persist-
ent organic pollutants, which bind to lipids or proteins
and thus bioaccumulate and biomagnify through the
food chain and are ubiquitous in the environment and
human food such as fish, meat, and dairy [4, 5]. The ma-
ternal body burden of these toxic chemicals accumulates
during her lifetime and is transferred to her baby in
utero and through breastfeeding [6, 7]. These chemicals
can affect immune, endocrine, and metabolic systems in
humans, particularly following in utero exposure [8, 9].
Experimentally, some chemicals have been shown to
alter the gut microbiome, although many studies were at
high doses, with the effect of environmentally relevant
doses less clear [10, 11].
Early toxicant exposure and the development of the

gut microbiome occur during critical windows for devel-
opmental programming and immune system maturation
[12], influencing later health [8, 13, 14]. Short-chain fatty
acids (SCFAs) are signaling molecules primarily pro-
duced by gut microbiota during fermentation of
non-digestible fibers and protein and are immunomodu-
latory [15] and neuromodulatory [16]. Emerging evi-
dence suggests that neurodevelopment and metabolic
disorders are associated with both less microbiome di-
versity [17] and chemical exposure [18, 19].
We investigated whether exposure to multiple envir-

onmental toxicants that are globally present in breast-
milk [3, 20] is associated with gut microbiome composition
and function among infants at 1 month.

Results
Characteristics of the study cohort
NoMIC is a Norwegian prospective birth cohort, where
mothers were recruited in Østfold county hospital, two
term for every preterm delivery [21–23]. Our analyses
included 267 mother-child pairs where at 1-month post-
partum both infant gut microbiota and breastmilk con-
centrations of chemicals have been characterized. Twins
and infants who had antibiotics 2 weeks prior to

sampling were excluded from the analyses. Mothers had
a mean age of 30.4 (± 4.4) years, with a normal body
mass index (mean 24.3 ± 4.5 kg/m2), were non-smokers
(90%), educated more than 12 years (72.8%) and Cauca-
sian (99.6%), and with 22.5% preterm deliveries due to
the oversampling scheme (Additional file 1: Table S1).
Table 1 shows the distributions of toxicants measured in
this study. Overall, toxicants were detected in more than
96% of samples, with the exception of PBDE-154 (11.2%
< LOD). In particular, there were low concentrations and
variability of the polybrominated diphenyl ethers
(PBDEs). There were statistically significant correlations
within and between classes of toxicants. The highest
cross-class correlations were between organochlorine
pesticides and polychlorinated biphenyls (PCBs) (46% of
the correlations r = 0.6 to 0.85), while flame retardant
PBDEs and per- and polyfluoroalkyl substances (PFASs)
were not strongly correlated with other toxicant classes
(r < 0.56) (Additional file 1: Figure S1). Child fecal sam-
ples were characterized by 16S rRNA gene amplicon se-
quencing of the V4 region. We used Deblur, a novel
sub-operational taxonomic-unit (sub-OTU) approach
that provides a higher resolution than OTU-based ana-
lyses [24]. At 1 month, infants had a median Shannon
diversity index of 2.3 (IQR 1.8–2.7) (Additional file 1:
Table S2), and their gut microbiome was dominated by
Bifidobacterium, followed by Streptococcus, Erwinia, and
Bacteriodes (Additional file 1: Figure S2).

PFOS and PBDE-28 associate with infant gut microbiome
α-diversity
To test which of the 28 chemicals were associated with
α-diversity (Shannon diversity, Faith’s phylogenetic diver-
sity, and number of observed sub-OTUs), we used elas-
tic net regression, a penalized regression method to
select among correlated chemicals [25, 26], adjusting for
C-section, preterm delivery, maternal α-diversity 4 days
after birth, and proportion of meals given through
breastfeeding at 1 month. Elastic net selected 2 of 28
toxicants as the best predictors associated with less
α-diversity, although more PBDEs were associated in
single pollutant models (Additional file 1: Figure S3). In
the unpenalized model, a one standard deviation (SD)
increase of 0.5 ng/g milk lipid of PBDE-28 was associ-
ated with less Shannon diversity (− 4%, 95% confidence
interval [CI]: − 7% to − 2%, relative to mean Shannon),
explaining 2% of variance. In the same model, preterm
delivery was associated with less Shannon diversity (−
15%, 95% CI − 23% to − 7%), any formula feeding with
more (11%, 95% CI − 1% to 24%), while none of the
other potential confounders were associated. A 1SD in-
crease of 63 ng/L of perfluorooctane sulfonate (PFOS)
was associated with less phylogenetic diversity (− 5%,
95% CI − 9 to − 1%), explaining 4% of variance. Of the
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potential confounders in that model, only C-section was
significantly associated with phylogenetic diversity (− 9%,
95% CI − 18% to − 1%). PFOS was also associated with
number of observed sub-OTUs (− 7%, 95% CI − 12 to −
1%) (Additional file 1: Figure S3).
Sensitivity analyses (restricting to complete case,

breast milk sample collection age < 60 days, exclusive
breastfeeding, and excluding extreme values) attenuated
effect estimates or altered precision in some cases, but
in general did not affect the overall interpretation. When
restricting to term births, elastic net additionally selected
PCB-167 associated with significantly less phylogenetic
diversity and number of sub-OTUs (Additional file 1:
Table S5). We found no material influence on results

from the inclusion/exclusion of additional variables or
interactions (including preterm delivery) as described in
the methods.

PFOS and PCB-167 associate with infant gut microbiome
β-diversity
For each toxicant, we tested whether infants exposed to
“low” (< 20th), “medium” (≥ 20–≤ 80th) or relative “high”
(> 80th percentile) breastmilk concentrations were more
or less similar based on β-diversity distances (weighted or
unweighted UniFrac), using permutational multivariate
analysis of variance (PERMANOVA) to test significance,
with Bonferroni correction for multiple testing. There
were significant differences in community composition

Table 1 Distribution of environmental chemicals in breast milk at 1 month post-partum (31.4 [± 19.9] days)

Class Exposure N % missinga % < LOD Mean (± SD) Min p25 p50 p75 Max

Dioxin-like PCBs PCB-105 266 0.3 0 1.64 (1.09) 0.41 0.99 1.4 1.93 12.72

PCB-114 266 0.3 1.4 0.39 (0.22) LOD 0.26 0.35 0.48 2.09

PCB-118 266 0.3 0 7.68 (5.01) 1.99 4.96 6.82 8.95 62.23

PCB-156 266 0.3 0 3.83 (2.34) 0.58 2.43 3.34 4.53 22.73

PCB-157 266 0.3 0 0.76 (0.55) 0.09 0.44 0.61 0.9 4.87

PCB-167 264 1 0 0.97 (0.65) 0.19 0.64 0.84 1.13 8.05

PCB-189 266 0.3 0.3 0.30 (0.21) LOD 0.19 0.25 0.35 2.48

Non-dioxin-like PCBs PCB-74 266 0.3 0 4.12 (2.35) 0.84 2.65 3.74 4.8 18.68

PCB-99 266 0.3 0 4.98 (2.66) 0.84 3.35 4.48 6.14 24.74

PCB-138 266 0.3 0 22.63 (12.85) 4.39 15.54 20.27 26.89 145.06

PCB-153 266 0.3 0 37.73 (22.50) 7.34 25.81 34.7 44.12 296.03

PCB-170 266 0.3 0 7.79 (4.44) 1.22 5.25 6.89 9.27 46.49

PCB-180 266 0.3 0 19.65 (12.05) 4.2 13.17 17.73 23.38 142.46

PCB-194 266 0.3 0.3 1.56 (1.10) LOD 0.94 1.37 1.85 11.76

PCB-209 225 14.2 3.7 0.12 (0.10) LOD 0.07 0.1 0.13 0.78

Organochlorine pesticides HCB 266 0.3 0 11.14 (4.72) 1.72 8.72 10.45 12.93 48.72

β-HCH 266 0.3 0 4.70 (2.98) 0.7 2.9 4.32 5.63 31.34

p,p′-DDE 266 0.3 0 66.03 (54.00) 5.37 38.08 53.48 77.16 617.26

p,p′-DDT 219 16.2 0.4 2.65 (2.80) 0.04 1.54 2.11 2.93 35.16

Oxychlordane 258 3 0 3.77 (2.69) 0.53 2.38 3.27 4.48 30.27

PDBEs PBDE-28 257 3.4 1.4 0.25 (0.47) 0.01 0.11 0.16 0.26 5.59

PBDE-47 257 3.4 0 1.99 (4.96) 0.18 0.74 1.1 1.74 59.19

PBDE-99 257 3.4 0 0.48 (1.18) 0.04 0.18 0.26 0.42 14.99

PBDE-100 257 3.4 0.4 0.41 (0.74) 0.01 0.19 0.26 0.4 7.5

PBDE-153 256 3.7 0 0.61 (0.48) 0.05 0.35 0.5 0.7 4.03

PBDE-154 257 3.4 11.2 0.04 (0.09) 0 0.02 0.03 0.04 1.18

PFAS PFOA 230 12.5 2.8 57.60 (33.98) 2.19 34.42 50.77 71.18 182.55

PFOS 230 12.5 0 126.70 (63.07) 22.99 80.39 116.73 158.05 370.63

Breastmilk concentrations in ng/g lipid except for PFOS and PFOA, which are ng/L
LOD limit of detection, PCB polychlorinated biphenyl, HCB hexachlorobenzene, β-HCH beta-hexachlorocyclohexane, p,p′-DDE dichlorodiphenyldichloroethylene, p,p
′-DDT dichlorodiphenyltrichloroethane, PBDE polybrominated diphenyl ether, PFOA perfluorooctanoic acid, PFOS perfluorooctanesulfonic acid
a“Missing” because the breast milk samples had not undergone chemical analysis at the time of this study. Only compounds that had N > 200 and > 80% of
samples above the LOD were included
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between PFOS exposure groups, with greater dissimilarity
between high and medium exposed (p = 0.003), and be-
tween high and low exposed (p = 0.010) using unweighted
UniFrac (Fig. 1a). Community composition in infants rela-
tively highly exposed to PCB-167 was more diverse than
in low exposed infants (p = 0.001) with unweighted Uni-
Frac (Fig. 1c). There were no other significant differences
in unweighted UniFrac, nor any differences in weighted
UniFrac among other toxicant exposures.

Relative abundance of sub-OTUs belonging to Firmicutes
differ in infants in the “high” toxicant exposure group
Next, we tested differential abundance of microbes in in-
fants with relatively high vs. low exposure to individual
chemicals, using analysis of composition of microbiomes
(ANCOM) with a Benjamini-Hochberg correction, and
adjusted for gestational age [27]. We detected differential

abundance of some sub-OTUs in those exposed > 80th vs.
< 20th percentile, and assigned lineages following the pos-
ition of the sub-OTU sequence in the Greengenes refer-
ence tree and collecting taxonomic labels along the path
to the root. Infants in the high exposure group had some
differentially abundant sub-OTUs within Firmicutes, par-
ticularly the genus Lactobacillus (Fig. 2). Infants in the
high perfluorooctanoic acid (PFOA) exposure group
lacked a sub-OTU from the lineage of Lactobacillus zeae
(p < 0.001) and 1.1-fold more of a sub-OTU of the genus
Enterococcus (p = 0.03). Infants in the high dioxin-like
PCBs exposure group had 1.8-fold lower Lactobacillus
gasseri (p = 0.005) and 1.8-fold greater abundance of Clos-
tridium perfingens (p = 0.013). High organochlorine pesti-
cide exposure showed 0.9-fold more of a sub-OTU within
the genus Streptococcus (p = 0.001), while the high
PBDE-28 exposure group had 2.8-fold less Veillonella

Fig. 1 Environmental chemicals in breastmilk associate with infant gut microbiome β-diversity at 1 month by low, medium, and high exposure
groups. PFOS and unweighted UniFrac, a box plots and b PCoA plot. PCB-167 and unweighted UniFrac, c boxplots and d PCoA plot. P value from
PERMANOVA, * indicates significant after Bonferroni correction. There are three groups of boxplots per pairwise test showing distances within
each of two exposure groups (“low”/“high,” “medium”/“high,” or “medium”/“low”) and “inter” the distances between exposure groups, e.g., a) The
“inter” (gray) UniFrac distance between “low” PFOS exposed group (green) and “high” exposed group (purple) is greater than the distances within
either the low group or the high group. Samples of both clusters partially overlap, obscuring these differences in PCoA plot B. In (c), the
distances within the “low” (green) PCB-167 are lower (more similar) than the distances in the “high” (purple) group
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dispar (p = 0.017). The deblurred FASTA sequences are in
Additional file 1: Table S3. Using a closed-reference OTU
table for the same raw reads, more taxa were differentially
abundant in the high breast milk-toxicant exposure group,
notably PCB-167 (Additional file 1: Table S4). In addition
to differential OTUs within Firmicutes, we detected lower
Actinobacteria (Bifidobacterium bifidum, Corynebacter-
ium, Eggerthella lenta) and Bacteroidetes (Bacteroides fra-
gilis and other unidentified species of Bacteroides).

Dioxin-like PCB-167 associates with relative abundance
and more α-diversity of the predicted functional profile
Since a taxonomic group might be replaced by an-
other while preserving its functional contribution to
the microbial community, we used PICRUSt to infer
the microbiome functional profile based on clusters
of orthologous groups of proteins (COG) and alterna-
tively by players in metabolic pathways of the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [28].
We tested relative abundance of the various features
in “high” vs. “low” exposure groups, and compared α-
and β-diversity of the functional profile across expos-
ure groups. Infants exposed to milk with higher
PCB-167 had a larger functional spectrum: signifi-
cantly higher Shannon diversity in COG (Fig. 3a) and

KEGG (Fig. 4a). The microbiome of higher exposed
infants also had 0.2-fold enrichment of “cell motility”
associated predicted proteins (p = 0.003) and 0.05-fold
less abundant “carbohydrate transport and metabol-
ism” (p = 0.006) (Fig. 3b). They also had upregulated
predicted proteins of “cellular processes,” “human dis-
eases,” and “unclassified” pathways, and less abun-
dance of predicted proteins involved in “genetic
information processing” and “metabolism” pathways
(Fig. 4c). Seven enzymes involved with amino acid
synthesis, one carbon pool by folate, and lipid metab-
olism pathways were less abundant in the high
PCB-167 exposure community compared with low
(Fig. 4d). Other toxicants were less consistently asso-
ciated with differences in the predicted metagenome
(Additional file 1: Figures S4 and S5).

Toxicants associate with lower concentrations of short-
chain fatty acids, except PCB-167 and PFOA, which
associate with higher concentrations
We studied SCFAs measured in fecal samples (n = 70).
At 1 month of age, infant fecal samples were dominated
by acetic (91.7 ± 7.4%) and propionic acids (5.4 ± 5.1%)
(Additional file 1: Table S2). Elastic net selected a num-
ber of toxicants as predictors of acetic and propionic

Fig. 2 Differentially abundant sequences in the high vs. low chemical exposure groups. Restricted to exclusively breastfed infants with exposure
> 80th percentile or < 20th percentile (N = 90), differential abundance tested using ANCOM, adjusting for gestational age. P values for Mann-
Whitney test comparing mean log relative abundance where p < 0.05 after Bonferroni correction. We assigned lineages by starting from the sub-
OTU tip, following the path up to the root and collecting taxonomic labels along this path. Deblurred FASTA sequences are in Additional file 1:
Table S4. Taxa are differentially abundant where the proportion of rejected hypotheses within each taxon is greater than 0.7 (more conservative),
except for PCB118 (0.6)
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acid in models adjusting for confounders (C-section,
preterm delivery, maternal diversity 4 days after birth,
and proportion of meals given through breastfeeding at
1 month). Multipollutant models explained 20% and
34% of variance in acetic and propionic acid, respect-
ively, increasing to 25% and 48% when the confounders
were included (Fig. 5). PCB-209 and PBDE-47 were as-
sociated with less acetic acid (− 15% [95% CI − 29% to
− 0.4%] and − 11% [95% CI − 31% to 9%], respectively,
statistically non-significant for the latter). Brominated
flame retardants were also associated with less propionic
acid (− 24% [95% 95% CI − 35% to − 13%] for PBDE-28,
and − 16% [95% CI − 35% to 3%] for PBDE-47), as was
PCB-170 (− 40% [95% CI − 102% to 21%], statistically
non-significant for the latter two). Conversely, dioxin-like

PCB-167 and PFOA were associated with more acetic acid
(22%, 95% CI 8% to 35%) and propionic acid (61%, 95% CI
35% to 87%). Associations were generally imprecise for
other SCFAs (low concentrations and large proportion
below LOD) (Additional file 1: Figure S6).

Discussion
Children are developmentally exposed to environmental
toxicants abundant in breastmilk. At 1 month postpar-
tum, some of these chemicals were associated with as-
pects of infant gut microbial composition and function.
These novel findings could reveal a mode of action for
persistent toxicants not previously considered; However,
these findings should be interpreted with caution and re-
quire replication in other studies.

Fig. 3 Metagenome prediction based on clusters of orthologous groups of proteins (COG) for the infant gut microbiome according to low,
medium, and high breast milk PCB-167 exposure groups. These plots show the significant results from Mann-Whitney test where p < 0.05 after
Bonferroni correction. Shannon diversity of COG features is higher in the medium and high PCB-167 exposure groups (a). There is differential
abundance of COG pathways in the high versus low PCB-167 exposure groups (b)
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PBDEs
PBDE-28 was associated with 4% less Shannon diversity.
Additionally, infants highly exposed to PBDE-28 had
samples with relatively less abundance of Veillonella.
PBDE-28 and PBDE-47 were also associated with less
propionic and acetic acids, the signaling metabolites that
play an important role in immune system development
[29]. We speculate that these lower levels of SCFAs may
in part be explained by relatively lower abundance of
Veillonella in the high exposed, as these bacteria are
known to utilize lactate in the intestine, fermenting it to
both propionic and acetic acids [30]. The potential of
brominated flame retardants for disrupting microbiome
composition and function has been demonstrated experi-
mentally. In a small study, mice fed PBDE-47 or PBDE-99
had decreased microbial richness, differential abundance
of some taxa, and disrupted bile acid metabolism com-
pared with control mice [31]. The acute doses of PBDEs
by oral gavage (48.5 mg/kg body weight for BDE-47), al-
though higher than environmental exposures, were esti-
mated to result in circulating levels at concentrations

similar to that found in human populations. PBDE-71 ex-
posure at environmentally realistic concentrations led to
decreased bacterial diversity of the zebra fish gut micro-
biome and disrupted metabolic functions such as energy
metabolism, virulence, respiration, cell division, cell sig-
naling, and stress response [32]. However, we also note
that for Shannon diversity, the differences associated with
PBDE-28 were much less than that from either preterm
delivery (15% less than term delivery) or any formula feed-
ing (11% more compared to exclusive breastfeeding).

PFASs
PFOS was associated with 5% less microbiome α-diversity.
By comparison, C-section, known to disrupt the micro-
biome, was associated with 9% less phylogenetic diversity
in this population (while preterm delivery and full formula
feeding were not associated). The PFOS finding was ro-
bust to sensitivity analyses including the addition/exclu-
sion of other potential confounders and restriction to
term births. Furthermore, there was greater dissimilarity
between the communities in the low and high PFOS

Fig. 4 Metagenome prediction of metabolic pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG) for the infant gut microbiome
according to low, medium and high breast milk PCB-167 exposure groups. These plots show the significant results from Mann-Whitney test
where p < 0.05 after Bonferroni correction. Shannon diversity of KEGG pathways (a) and enzymes (b) is higher in the medium and high PCB-167
exposure groups. There is differential abundance of KEGG pathways (c) and enzymes (d) in the high versus low PCB-167 exposure groups
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exposure groups than within them. In an experimental
setting, mice fed PFOS through oral gavage had a signifi-
cant decrease in abundance of bacteria [33]. However, an-
other study of mice with dietary exposure to PFOS at
doses corresponding to general population and occupa-
tional exposure found no significant differences in gut mi-
crobial diversity relative to the control group [34]. They
did observe differential abundance of bacteria within Fir-
micutes and Bacteroidetes, and high-dose PFOS exposure
significantly induced butanoate metabolism. Here, we did
not find a statistically significant association between
PFOS and the SCFA metabolites. In contrast, higher
PFOA exposure was associated with both more propionic

acid, absence of a sub-OTU within the genus Lactobacillus,
and greater relative abundance of a sub-OTU of Enterocco-
cus. In rodents, propionic acid enhances adipocyte differen-
tiation of 3 T3-L1 pre-adipocytes via increased expression
of GPR43 and peroxisome proliferator-activated receptor γ
(PPARγ) [35], as does PFOA [36]. PFASs continue to be a
concern for human health, as evidenced by the recent
lowering of the European Food Safety Authority’s tol-
erable weekly intake [37], and the interaction between
these compounds and the gut microbiome requires
further investigation.
Dioxin-like PCB-167 was associated with greater

β-diversity of the gut microbiome, enriched metabolic

Fig. 5 Environmental chemicals in breast milk associate with short-chain fatty acids at 1 month. Exposure units are ng/g lipid except for PFOA
and PFOS (ng/L). All models adjusted for proportion of feeding from breast milk, gestational age, and C-section (yes/no). The point indicates the
β estimate, the horizontal line the 95% CI, as percentage change relative to the mean of the SCFA, per 1 SD increase in exposure. ENET selected
exposures (SDs in above units): p,p′-DDE (54), PCB-167 (0.7), PCB-170 (4.4), PCB-194 (1.1), PCB-209 (0.1), PBDE-28 (0.5), PBDE-47 (5.0), PFOA (34.0).
ENET (green triangle) indicates chemical selected by and estimate derived from penalized elastic net using the minimum CV-MSE. Multipollutant
model estimate (blue circle) from unpenalized linear regression with exposures selected via elastic net. For propionic acid, we excluded PCB-194,
the exposure collinear with PCB-170 that had the lowest ENET estimate. Substitution of PCB-170 with PCB-194 did not materially affect results.
Single pollutant models (orange circle) are unadjusted for other toxicants
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activity, and more acetic acid. This may indicate a more
heterogeneous response to exposure, leading to a larger
functional spectrum in more exposed communities. In
experimental studies, the AhR mediates dioxin-like com-
pounds’ toxicity and exposure increased butyrate and
propionate in AhR+/+ but not AhR−/− mice [38], while
larval exposure to PCB-126 increased phylogenetic di-
versity in the frog gut [39]. Exposure may perturb com-
munity structure, selecting for specialized/more tolerant
microbes able to degrade the chemical [40]. This could
allow colonization by potential opportunistic microbes;
here, infants with higher PCB-105 exposure had greater
abundance of Clostridium perfringens. In mice,
dioxin-elicited changes in the host decreased B. fragilis
[41], which, in our study was relatively lower in abun-
dance in the higher breastmilk toxicants exposure group,
as were some Lactobacillus. Due to financial constraints,
we only had measured levels of the less toxic of the
dioxin-like PCBs; however, we expect these to be moder-
ately correlated with dioxins and other more toxic
dioxin-like compounds [3]. Given our findings and ex-
perimental studies, a more detailed investigation of di-
oxins and the human gut microbiota is warranted.

Organochlorine pesticides
There were fewer associations with organochlorine pesti-
cides. High oxychlordane and dichlorodiphenyltrichloro-
ethane (p,p′-DDT) exposed communities were associated
with greater relative abundance of a sub-OTU of the
genus Streptococcus, while the metabolite dichlorodiphe-
nyldichloroethylene (p,p′-DDE) was selected as a pre-
dictor of less propionic acid. In rats, coliform bacteria
metabolize p,p′-DDT to p,p′-DDD [42], which is probably
relevant for humans.

Non-dioxin like PCBs
These compounds were associated with gut microbial
function (decreased acetic and propionic acid), with less
evidence for a disturbed community composition. Limited
experimental evidence reports that mice orally exposed to
non-dioxin-like PCBs had decreased abundance of gut
bacteria, primarily Proteobacteria [43].

Strengths and limitations
This study is based on a prospective birth cohort with rich
questionnaire data to assess potential confounding. We had
extensive exposure assessment of persistent chemicals at
the time when fecal samples were collected, providing sub-
stantial information on the multiple breast milk toxicants
to which gut bacteria were exposed. Our methods allowed
for adjustment for confounding from co-occurring toxi-
cants in linear regressions, although we could not consider
the exposure profile of co-occurring toxicants when asses-
sing low, medium, and high exposure groups of individual

toxicants. PCB-167 influenced a number of microbiome
metrics; however, given the high correlation with other
PCBs (r = 0.77 – r = 0.92), these may represent common ef-
fects. Additionally, other unmeasured compounds may be
more influential confounders (i.e., arsenic [44]). We
assessed breast milk concentrations as direct exposure for
the bacteria and not child blood concentrations (although
they are correlated in early life [45]), which could influence
gut microbiota through host physiology.
Using Deblur increases resolution, and reduces false

positive annotations [24]. We detected more differentially
abundant taxa using a Greengenes closed-reference table,
thus some taxonomic differences may be expressed in spe-
cies- to genus-level rather than sub-OTU level. This could
be followed up with in vitro studies of toxicant effects on
strains and species from the same genus.
We had a reasonable sample size for the α-diversity ana-

lyses; however, SCFA analyses were in 70 infants, and
should be interpreted cautiously. Arsenic and diazinon per-
turb the gut microbiata in a sex-specific manner in mice
[46, 47]; there was no interaction between toxicants and
sex on α-diversity, but for SCFAs we could not test this.
All toxicant classes were associated with some alter-

ations in composition and function, but not consistently
across all metrics, or toxicants. This could be due to
specific chemicals only affecting particular aspects of the
microbiome, misclassification of exposure, statistical
methods, or chance findings. The sensitivity and resili-
ence of gut microbiota to environmental toxicants has
been demonstrated in fish [48], and it may be difficult to
detect small, transient effects in an observational design.
Preterm babies, whose gut microbiota could be more

susceptible to the effect of toxicants due to immaturity
of their immune system, were over-represented. In the
linear regressions, adjusting for preterm delivery did not
influence the toxicant effect estimates, although restrict-
ing to term births (22.5% reduction in study population)
affected the interpretation of PCB-167, which became
associated with decreased α-diversity.
Forty percent of mothers in the NoMIC cohort did

not deliver milk, and these women were not breastfeed-
ing (15%), or preterm (39% vs. 26% of those who deliv-
ered milk), or if they were breastfeeding exclusively
breastfed for a shorter period (2.3 vs. 4.2 months), pos-
sibly indicating difficulties breastfeeding. However, there
were no significant differences in infant gut diversity in
the full cohort compared with our study population, so
we do not expect this to bias our results.
Breast milk is an evolutionary development containing

numerous specialized bioactive substances. Oligosaccha-
rides, milk lipids, secretory IgA, and hormones are re-
leased into the milk and are uniquely adapted to the
individual baby in response to the mother’s living condi-
tions. Protection against infections and a small beneficial
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effect on IQ are well documented health benefits of
breastfeeding [2]. Furthermore, there is a growing under-
standing of the role of breast milk bacteria in seeding
the infant gut [49]. Here, maternal-reported formula
feeding at 1 month (i.e., non-exclusive breastfeeding)
was associated with more Shannon diversity in their in-
fants (with stronger effect size than from the toxicants),
and the implications of such on child health should be
investigated in a targeted study. Although the toxicant
concentrations were lipid-normalized, we recognize that
there is a complex relation between lipophilic chemicals
and fatty acids, with a possible effect on the gut micro-
biome. Potential interactions between lipids, bioactive
substances, bacteria, and environmental toxicants in
breast milk are an avenue for future research.
The milk was sampled between 2002 and 2006 from

women in Norway. In World Health Organization surveys
2005–2010, breast milk from Norway had higher levels of
dioxin-like PCBs (expressed as toxic equivalency factor, 3 pg
TEQs/g lipid) and sum of 6 indicator PCBs (62 ng/g lipid)
than the less industrialized countries of the southern hemi-
sphere (i.e., Australia 1.8 pg TEQs/g lipid and < 20 ng/g
lipid), but not among the highest (i.e., Czech Republic 7 pg
TEQs/g and 380 ng/g lipid). However, regardless of level,
surveyed countries had levels of dioxin-like PCBs and sum
of PCBs in human milk at one to two orders of magnitude
above those considered toxicologically safe in early childhood
[3, 50]. By contrast, the sum of DDT in Scandinavian breast
milk was the lowest (< 100 μg/kg lipid), with other
European countries comparatively higher (i.e., Czech
Republic 130 μg/kg lipid, and the highest in the tropical
countries using DDT for vector control i.e. India > 1000 μg/
kg lipid). PBDE levels are also relatively low in Norway [51].
Due to restrictions, these chemicals are in decline [52],
although exposure continues through dust and food, espe-
cially in countries with lower environmental controls. These
findings are relevant for the general population due to con-
tinued contamination of fish and meat.

Conclusions
Our results suggest that environmental toxicants in breast
milk, notably PBDE-28, PFOA, PFOS, and dioxin-like
PCB-167, influence infant gut microbial composition and
function. These novel findings must be interpreted with
caution, and should be replicated in independent popula-
tions. It is unclear whether these potential toxicant-induced
alterations have implications for child health, and this needs
studying both in this cohort and in countries with higher
contamination.

Methods
Study population and data collection
The Norwegian Microbiota Cohort (NoMIC) is a pro-
spective birth cohort [21–23]. Mothers were recruited at

the maternity ward of Østfold county hospital (2002–
2005), two consecutive term births per preterm delivery.
Fluency in Norwegian and residency in the county were
inclusion criteria. Mothers were asked to collect and
freeze one fecal sample from themselves at 4 days post-
partum, as well as samples from their infants when they
were 4, 10, 30, 120, 365, and 730 days old. Participants
were asked to collect by hand a 25-ml breast milk sam-
ple each morning for eight consecutive days, between
2 weeks and 2 months postpartum [20], but minor
changes in sampling protocol were also accepted. Sam-
pling was undertaken on multiple days to reduce
within-subject variability in estimated level of exposure.
The milk was stored in a 250-ml container in the
freezer. When the mothers had filled the container, the
milk samples and fecal samples were collected by study
personnel, kept frozen during transport to the Norwe-
gian Institute of Public Health (NIPH), and stored at −
20 °C upon arrival. DNA was extracted after all samples
were collected [21, 53]. Six hundred one women agreed
to participate, 89% returned fecal samples, leaving a co-
hort of 552 children. Three hundred twenty-one
mothers also delivered breastmilk samples with mea-
sured toxicants, corresponding to 333 children (includ-
ing multiple births); 5 did not have microbiome
information due to lost samples leaving 328 children
with measurement of toxicants and gut microbiome di-
versity at any time point. We focused on 1 month, a sen-
sitive period when the microbiome undergoes rapid
development [54], and 87% of women were exclusively
breastfeeding; whereas feces sampled at later time points
could be influenced by other factors such as antibiotic
use, introduction of solid food, and diet. Three hundred
seven infants had both chemicals measured and fecal
samples at 1 month. We excluded twins and triplets who
may have different feeding patterns and thus the toxi-
cants sampled in milk were not representative of their
exposure (n = 26), infants whose mothers reported no
breastfeeding at 1 month (n = 3), or infants with antibi-
otics use 14 days prior to fecal sampling (n = 3). Two
hundred sixty-seven infants were in our α-diversity ana-
lysis (Additional file 1: Figure S7). To assess differences
in microbiome composition between infants grouped by
low (< 20th), medium (≥ 20th–< 80th), and high (≥ 80th
percentile) breast milk toxicant exposure, we restricted
to exclusively breastfed babies, since we could not adjust
for confounders in those analyses (n = 239). SCFAs were
not available for all children due to lack of sample vol-
ume, thus we studied microbiota function in a subset of
participants (n = 70).
We obtained information on gestational age, maternal

smoking, and birth weight and length through the
Norwegian Medical Birth Registry, and additional import-
ant covariates, including maternal education, antibiotics
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use, breastfeeding, and C-section, from the 1-month
questionnaire.

Exposure variables
Mothers sampled their breast milk at a mean (SD) age of
31.4 (19.9) days using the WHO protocol [20]. Due to fi-
nancial constraints, 28 chemicals were analyzed in breast
milk samples in 3 laboratories: non-dioxin-like PCBs,
mono-ortho dioxin-like PCBs, organochlorine pesticides,
PBDEs, and PFAS (Additional file 1: Table S6). University
of Life Sciences-NMBU measured PCBs and organochlor-
ine pesticides in 15 samples using liquid-liquid extraction,
gravimetrical lipid determination, and clean-up with sul-
furic acid [53, 55, 56]. Following this, the laboratory at
The Department of Environmental Exposure and Epi-
demiology, Norwegian Institute of Public Health (NIPH)
established methods and analyzed the lipophilic chemicals
using liquid-liquid extraction and gas chromatography–
mass spectrometry (GC/MS) with negative chemical
ionization [57, 58]. The majority of PFAS samples were
measured in breast milk using high-performance liquid
chromatography/tandem mass spectrometry (LC-MS/MS)
at the NIPH [57, 59], with additional samples measured at
Vrije University, Institute for Environmental Studies [60].
Measured concentrations of the lipophilic chemicals were
normalized by dividing by total lipid content in the spe-
cific milk sample. We replaced values below the limit of
detection (LODs) by a randomly imputed number be-
tween zero and LOD.

Outcomes
Mothers were in close contact with health personnel
and reminded to collect fecal samples at 1 month using
a standard protocol.

Sequencing and data processing
We extracted DNA using the Earth Microbiome Project
protocol: (http://press.igsb.anl.gov/earthmicrobiome/
emp-standard-protocols/dna-extraction-protocol/). We
sequenced 100 nt from the V4 region of the 16S rRNA
gene with the Illumina HiSeq instrument. We used a re-
cently developed sub-operational-taxonomic-unit ap-
proach, Deblur, which uses error profiles to obtain
putative error-free sequences from Illumina sequencing
platforms [24]. By removing noise, Deblur gives a higher
resolution than OTU-based analyses or analyses of raw
sequence data, and because it is reference free, it may
pick up sequences of novel bacteria that are not repre-
sented in existing databases. To control for variation in
sequencing coverage, the data were rarified at a depth of
20,000 sequences per sample, which lead to the removal
of 8 samples. Data processing was performed in the
Quantitative Insights Into Microbial Ecology (QIIME)
pipeline version 1.9.1. [61]. More detailed information

on DNA extraction, sequencing, and data processing is
provided in the Supplemental Material.

Gut microbiota composition: α-diversity, β-diversity,
differential abundance of taxa
We used three α-diversity measures: (i) Shannon diver-
sity, the total number of species (species richness)
weighted for their relative abundances (species even-
ness); (ii) Faith’s phylogenetic diversity, the amount or
proportion of branch length in a phylogenetic tree that
leads to different organisms (species richness); and (iii)
the number of observed unique sub-OTUs. To study
variation in diversity in the bacterial community in the
exclusively breastfed children based on low, medium, or
high toxicant concentrations, we calculated β-diversity
using unweighted and weighted UniFrac [62]. In order
to obtain a phylogenetic tree for diversity computation,
we used Qiime2’s fragment-insertion [63] to phylogenet-
ically place the sub-OTU sequences into the reference
Greengenes 13.8 99% identity tree [64].
We also tested for differentially abundant taxa (sub-O-

TUs) as described below.

SCFAs
Two laboratories analyzed fecal samples for eight
SCFAs using published analytical methods [65–67].
Briefly, distillates of fecal material were analyzed with gas
chromatography and quantified using flame ionization de-
tection. We assessed SCFAs with > 50% above LOD:
acetic, propionic, n-butyric, i-butyric, and i-valeric acids
(Additional file 1: Table S2).

Covariates
We selected potential confounding factors a priori using
directed acyclic graphs (Additional file 1: Figure S8). The
minimum adjustment set to assess the effect of breast
milk toxicants on gut diversity/SCFAs at 1 month was
proportion of meals given through breast milk (vs. for-
mula feeding, continuous 0–1), preterm delivery (Yes/
No), maternal gut α-diversity, and C-section (Yes/No).

Statistics
For microbiome α-diversity analyses, we imputed miss-
ing values for exposures and covariates using multiple
imputation by chained equations to generate 20 imputed
data sets [68, 69]. Correlations between exposures were
assessed using Spearman’s rank correlation coefficients.
To assess associations between breastmilk toxicants and
gut microbiota α-diversity, we adopted two regression
approaches, in which we standardized exposures to one
SD, and adjusted for identified covariates. First, to select
among individual toxicants, we used elastic net regres-
sion modeling, a hybrid penalized method robust to ex-
treme correlations among the predictors [25, 26]. We
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selected α = 0.9 and optimized λ using tenfold
cross-validation repeated 10 times based on minimum
standard error, and unpenalized covariates [70], and re-
peated in each of the 20 multiply imputed datasets, con-
sidering the exposures which were selected (β ≠ 0) in
more than half of the models as noteworthy [71]. We
then used generalized linear models to obtain unbiased
(unpenalized) estimates and assessed all pollutants indi-
vidually for comparison, and then fitted multipollutant
models with the elastic net-selected exposures.
We investigated group differences for low (< 20th),

medium (≥ 20–≤ 80th), and high (> 80th percentile)
breast milk toxicants. First, we assessed β-diversity using
weighted and unweighted UniFrac, testing significance
of pairwise groups with PERMANOVA [72]. Second, we
investigated differences in sub-OTU abundance between
low vs. high groups using the analysis of composition of
microbiomes (ANCOM) framework [27]. ANCOM ac-
counts for the compositional nature of the taxa relative
abundances and is based on the analysis of difference in
pairwise log-ratios of microbial OTU abundances/rela-
tive abundances, between comparison groups of interest.
For each taxon, we computed a statistic indicating the
number of significantly different pairwise log-ratios
while controlling for false discoveries. We applied
ANCOM with a Benjamini-Hochberg correction at 5%
level of significance, and adjusted for gestational age. For
comparison with other studies, we assigned lineages to
the identified differentially abundant sub-OTUs. Instead
of using machine learning approaches like classifying
against the RDP, we used the phylogenetic tree produced
for diversity computation and its assigned Greengenes
taxonomy labels to obtain lineages for the sub-OTUs:
For every sub-OTU sequence, we started from the
inserted sub-OTU tip and followed the path up to the
root while collecting taxonomic labels along this path.
Third, we analyzed the predicted metagenome. We
tested for differentially abundant functions using a
discrete false-discovery rate correction [73]. For the
same relative abundances, we computed α-diversity of
the normalized relative PICRUSt abundances by apply-
ing the Shannon metric and used two-sided
Mann-Whitney tests to check for significant differences
between the three exposure groups. We then computed
β-diversity distances for the same relative abundances
via the Bray-Curtis metric and performed PERMA-
NOVA tests with 9999 permutations to check for statis-
tically significant differences within vs. between the
groups of “high,” “medium,” and “low” labeled samples.
We used Bonferroni correction for multiple hypothesis
testing with p < 0.05 to consider two groups as different.
Finally, we tested the relation between toxicants and

SCFAs, using elastic net regression and generalized lin-
ear models, with a natural logarithm to transform the

SCFAs and adjusting for confounders. We did not in-
clude maternal gut diversity in the SCFA analyses, as
there were 56% missing and the multiple imputation
models for the SCFAs would not converge. All regres-
sion models were tested for and met the assumptions of
normality, homoscedasticity, and linearity.
We used STATA 14.0 for multiple imputation and

generalized linear regression and R programme version
3.2 [74] for ANCOM and elastic net (using the glmnet
package [25]). We used scikit-bio 0.5.1 for PERMA-
NOVA tests.

Sensitivity of regression analyses
We tested the sensitivity of regression model estimates:
restricting to complete case, breast milk sample collec-
tion age < 60 days, exclusive breastfeeding, term births,
ln-transformed exposures, and excluding extreme values.
We tested the inclusion/exclusion of: household pets, in-
fant antibiotics in the first 2 weeks of life (as those with
antibiotics in the 2 weeks prior to sampling were ex-
cluded from the analyses), parity, smoking at the start of
pregnancy, maternal BMI, and education. We tested in-
teractions between the elastic net-selected compounds
sex, maternal BMI and preterm birth for the α-diversity
models.

Additional files

Additional files 1: Supplemental material Table S1. Characteristics of
NoMIC current study population, full cohort and general population of
birth-giving mothers in Norway. Table S2. Distribution of diversity mea-
sures and short-chain fatty acids in infant fecal samples at 1 month.
Table S3. Greengenes lineage for deblurred FASTA sequences. Table S4.
Differentially abundant taxa in the high (>80th percentile) vs. low (<20th
percentile) chemical exposure groups based on Greengenes 13.1 closed-
reference OTU Table (97% identity). Table S5. Association between indi-
vidual toxicants and Shannon diversity, phylogenetic diversity and observed
sub-OTUs restricted to term births (≥37weeks gestational age) (n = 207) .
Figure S1. Spearman’s correlations between concentrations of environmen-
tal chemicals in breast milk at 1 month. Figure S2. Characterization of the
gut microbiota samples of infants at 1 month. Figure S3. Environmental
chemicals in breastmilk associated with infant gut microbiome α-diversity at
1 month. Figure S4. Metagenome prediction based on Clusters of Ortholo-
gous Groups of proteins (COG) for the infant gut microbiome according to
low, medium and high breast milk dioxin-like PCB exposure groups. Figure
S5. Metagenome prediction of metabolic pathways of the Kyoto
Encyclopedia of Genes and Genomes (KEGG) for the infant gut microbiome
according to low, medium and high breast milk chemical exposure groups.
Figure S6. Environmental chemicals in breast milk associated with short-
chain fatty acids at 1 month. Figure S7. Flowchart of participants in NoMIC
study. Figure S8. Direct acyclic graph of the relation between toxicants
in breast milk and infant gut diversity. Methods. Additional informa-
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Additional file 2: Sample R script and Stata syntax for unadjusted
analyses. (ZIP 8 kb)

Additional file 3: Data files. (ZIP 65 kb)
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