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Abstract

Background: The bacterial community present in the female lower genital tract plays an important role in maternal
and neonatal health. Imbalances in this microbiota have been associated with negative reproductive outcomes,
such as spontaneous preterm birth (sPTB), but the mechanisms underlying the association between a disturbed
microbiota and sPTB remain poorly understood. An intrauterine infection ascending from the vagina is thought to
be an important contributor to the onset of preterm labour. Our objective was to characterize the vaginal microbiota of
pregnant women who had sPTB (n = 46) and compare to those of pregnant women who delivered at term (n= 170).
Vaginal swabs were collected from women at 11–16 weeks of gestational age. Microbiota profiles were created by PCR
amplification and pyrosequencing of the cpn60 universal target region.

Results: Profiles clustered into seven community state types: I (Lactobacillus crispatus dominated), II (Lactobacillus gasseri
dominated), III (Lactobacillus iners dominated), IVA (Gardnerella vaginalis subgroup B or mix of species), IVC (G. vaginalis
subgroup A dominated), IVD (G. vaginalis subgroup C dominated) and V (Lactobacillus jensenii dominated). The microbiota
of women who experienced preterm birth (< 37 weeks gestation) had higher richness and diversity and higher Mollicutes
prevalence when compared to those of women who delivered at term. The two groups did not cluster according to CST,
likely because CST assignment is driven in most cases by the dominance of one particular species, overwhelming the
contributions of more rare taxa. In conclusion, we did not identify a specific microbial community structure that predicts
sPTB, but differences in microbiota richness, diversity and Mollicutes prevalence were observed between groups.

Conclusions: Although a causal relationship remains to be determined, our results confirm previous reports of an
association between Mollicutes and sPTB and further suggest that a more diverse microbiome may be important
in the pathogenesis of some cases.
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Background
Preterm birth is defined as delivery before 37 completed
weeks of gestational age [1] and can be further
sub-categorized in extremely preterm (≤ 27+6 weeks+days),
very preterm (28 to 31+6) and late preterm (32 to 36+6)
[2]. Preterm birth comprises 11% of all livebirths world-
wide, and its complications are estimated to cause 35% of
world’s neonatal deaths, which represents 3.1 million

deaths annually [3]. Children who are born prematurely
also have higher rates of cardiovascular disorders, respira-
tory distress syndrome, neurodevelopmental disabilities
and learning difficulties compared with children born at
term [4].
Preterm birth is a complex multi-factorial condition

with several known risk factors, such as low and high
maternal ages [5–7], low BMI [8], black ethnicity [9], to-
bacco use, heavy alcohol intake, illicit drug use [4], close
temporal proximity to a previous delivery [10], and mul-
tiple gestation [11]. Although studied extensively, some
preterm cases remain unexplained for women with no
known risk factors. Intrauterine infection with organisms
ascending from the vagina has been hypothesized as an
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important contributor to preterm birth since many or-
ganisms isolated from the amniotic fluid/membranes of
women who experienced preterm birth are also found in
the lower genital tract of pregnant women [12–15]. A
large number of studies support this hypothesis based
on the strong association between intra-amniotic bacter-
ial infection and preterm birth [12, 14–20].
The microbiological diagnosis of a ‘normal’ or dis-

turbed vaginal microbiota has historically been based on
the Nugent score, the current gold standard diagnostic
method that relies on Gram stain of vaginal smears [21].
The ‘normal’ vaginal microbiota in non-pregnant repro-
ductive aged women is understood to be dominated by
Lactobacillus species, while an abnormal microbiota
(defined as bacterial vaginosis) is characterized by low
abundance of lactobacilli and an overgrowth of anaer-
obic bacteria, such as Gardnerella vaginalis, Prevotella
spp., Bacteroides spp., Mobiluncus spp. and Mycoplasma
hominis [22]. In low-risk pregnant women, it has been
shown that the vaginal microbiota has reduced richness
and diversity and increased abundance of lactobacilli
compared to those of non-pregnant women [23–27]. An
abnormal microbiota has been previously associated
with preterm birth [28], but only a few in depth
culture-independent studies of the vaginal microbiota of
women who had preterm birth have been published,
with inconsistent conclusions [29–32].
The objective of this study was to assess whether there

are differences in the vaginal microbiota composition,
early in gestation, of women who had spontaneous pre-
term birth (sPTB) and term delivery that could be fur-
ther investigated as diagnostic indicators of preterm
birth risk. Microbiome profiling was based on sequen-
cing of the cpn60 universal target, which provides higher
resolution than 16S rRNA variable regions [33] and al-
lows the resolution of Gardnerella vaginalis subgroups,
a hallmark bacteria in the disturbed microbiota [34].

Methods
Study population and sampling
This retrospective cohort study analysed the vaginal
microbiota of women who experienced spontaneous pre-
term birth (sPTB) and compared the resulting microbial
profiles to those of pregnant women who delivered at
term. The bacterial profiles of pregnant Canadian women
at low risk of sPTB who had term deliveries (n = 170) were
previously generated by our research group [24]. The vagi-
nal microbial profiles of Canadian women who had pre-
term birth originated from samples of this previous study
(n = 7) [24] and from the Ontario Birth Study (n = 39),
resulting in 46 samples. The Ontario Birth Study
(ontariobirthstudy.com) is an open longitudinal pregnancy
cohort at Mount Sinai Hospital, Toronto, Canada. It is a
platform for studies of both pregnancy complications as

well as Developmental Origins of Health and Disease re-
lated research. The PTB rates for the low-risk cohort and
OBS cohorts were 4 and 6.2%, respectively. All biospeci-
mens, including maternal vaginal swabs and maternal and
infant blood, are collected concurrently with routine clin-
ical specimens to reduce the burden on study participants.
Detailed demographic and lifestyle characteristics are ob-
tained from women during pregnancy and postpartum,
and clinical information is extracted from the health re-
cords. For the purposes of this report, self-administered
vaginal swabs were taken at 16 weeks gestation and placed
in dry tubes prior to being placed in − 80 °C for storage in
the Lunenfeld Tanenbaum Research Institute Biospecimen
Storage and Processing Laboratory. Specimens from all
cohorts were processed similarly in terms of sample col-
lection, storage, DNA extraction, library preparation and
sequencing.
Clinical and behavioural questionnaire data (pregnancy

history, family and personal medical history, psycho-
social health, demographic factors and other lifestyle and
environmental exposures) were transferred to the
Research Electronic Data Capture (REDCap) database
protected by a secure server [35]. For the PTB group,
eligible participants for this study were women who had
undergone preterm delivery at greater than 20 weeks but
less than 37 weeks gestational age, where onset of labour
occurred spontaneously or in association with cervical
incompetence or preterm premature rupture of mem-
branes (PPROM). Vaginal swabs collected from pregnant
women (both PTB and term groups) at 11–16 weeks of
gestational age were used for bacterial genomic analysis.
Total nucleic acid was extracted from swabs using the

MagMAX™ Total Nucleic Acid Isolation Kit (Life Tech-
nologies, Burlington, ON, Canada) as per manufacturer’s
instructions. Kit reagents are aliquoted to eliminate re-
peated accessing of open reagents, and samples are proc-
essed in small batches using filter tips to prevent
cross-contamination. Pipettes and other lab surfaces are
regularly treated with DNA surface decontaminant
(DNA Away, Thermo Fisher Scientific, Waltham, MA).
Samples from both cohorts were processed in exactly
the same way in terms of swab type, storage temperature
(no stabilizer was used), DNA extraction, library prepar-
ation and sequencing.

Total bacterial DNA (qPCR) and detection of Mollicutes (PCR)
Quantitative PCR (qPCR)
Total bacterial DNA quantity in each sample was esti-
mated using a SYBR Green assay based on amplification
of the V3 region of the 16S rRNA gene. Primer se-
quences were as follows: SRV3-1 (5′-CGGYCCAG
ACTCCTAC-3′), SRV3-2 (5′-TTACCGCGGCTGCT
GGCAC-3′) [36]. Reactions were run on a MyiQ ther-
mocycler using the following cycling parameters: 95 °C
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for 3 min, followed by 30 cycles of 95 °C for 15 s, 62 °C
for 15 s and 72 °C for 15 s, with a final extension at 72 °C
for 5 min [37].

Conventional PCR
Some Mollicutes (Mycoplasma and Ureaplasma) species
lack a cpn60 gene [38]. Thus, we performed a family-
specific semi-nested PCR targeting the 16S rRNA gene
to detect Mollicutes [39], and a PCR targeting the
multiple-banded antigen gene to detect Ureaplasma spp.
PCR products from U. parvum and U. urealyticum can
be differentiated by size [40].

cpn60 universal target (UT) PCR and pyrosequencing
Universal primer PCR targeting the 549–567 bp cpn60
UT region was performed using a mixture of cpn60
primers consisting of a 1:3 M ratio of primers H279/
H280:H1612/H1613, as described previously [41–43]. To
allow multiplexing of samples in a single sequencing
run, primers were modified at the 5′ end with one of 24
unique decamer multiplexing identification (MID) se-
quences, as per the manufacturer’s recommendations
(Roche, Brandford, CT, USA). Amplicons were pooled in
equimolar amounts for sequencing on the Roche GS
Junior sequencing platform. The sequencing libraries
were prepared using the GS DNA library preparation
kit, and emulsion PCR (emPCR) was performed with a
GS emPCR kit (Roche Diagnostics, Laval, Canada).
Samples were handled in small batches to avoid

cross-contamination, and experimental controls were in-
cluded at several steps in the study. Regular monitoring of
DNA extraction controls in our lab by universal PCR con-
firms that these procedures are sufficient to eliminate de-
tectable template contamination of study samples. A no
template control was also included in each set of PCR re-
action as negative controls. Experimental controls were
not sequenced as they did not yield any amplification.

Analysis of operational taxonomic units (OTU)
Raw sequence data was processed by using the default
on-rig procedures from 454/Roche. Filter-passing reads
were used in the subsequent analyses for each of the py-
rosequencing libraries. MID-partitioned sequences were
mapped using Bowtie 2 (http://bowtie-bio.sourceforge.
net/bowtie2/) on to a manually curated reference set of
1561 OTU sequences representing the human vaginal
microbiota. Bowtie 2 was run using the default
end-to-end alignment mode.
The OTU reference set was generated originally by de

novo assembly of cpn60 sequence reads from 546 vaginal
microbiomes using the microbial Profiling Using Meta-
genomic Assembly pipeline (mPUMA, http://mpuma.
sourceforge.net) [44] with Trinity as the assembly tool
[45] (Additional file 1). OTU were labeled according to

their nearest reference sequence determined by
watered-Blast comparison [46] to the cpn60 reference
database, cpnDB_nr (downloaded from http://
www.cpndb.ca [38]). This reference assembly approach al-
lows us to compare the microbial profiles from various co-
horts under investigation, including the 46 pregnant
women who had sPTB described in this study.
The result of mapping is an OTU frequency table

(Additional file 2) that was used for microbiome data ana-
lysis. Some analyses were also performed at species level,
i.e. combined OTU that have the same nearest neighbour.

Statistical analysis
Comparisons of socio-demographic characteristics of co-
horts and participants were based on analysis of variance
(ANOVA), t test and chi-square, performed in IBM SPSS
(Statistical Package for the Social Sciences, version 21)
at 5% level of significance. For analysis of associations
between socio-demographic characteristics and micro-
biota profiles (CST), a false discovery rate (FDR) correc-
tion for multiple comparisons was applied [47].
Alpha (Shannon diversity and Chao1 estimated species

richness) and beta diversity (jackknifed Bray–Curtis dis-
similarity matrices) were calculated as the mean of 100
subsamplings of 1000 reads (or all reads available when
less than 1000) in QIIME (Quantitative Insights Into
Microbial Ecology) [48]. Plots of alpha diversity mea-
sures against bootstrap sample number were generated
in R and visually inspected to ensure that an adequate
sampling depth for each sample was achieved.
For community state type (CST) analysis, a Jensen–

Shannon distance matrix was calculated using the ‘veg-
dist’ function in the vegan package [49] with a custom
distance function that calculates the square root of the
Jensen–Shannon divergence [50]. This distance matrix
was used for hierarchical clustering using the ‘hclust’
function in R, with Ward linkage.
The function aldex.clr from the ALDEx2 package in R

was used to compare the differential relative abundance
of individual taxa in term and preterm groups [51]. Sig-
nificant differences were determined based on the false
discovery rate (FDR), which is the result of a Benjamini–
Hochberg corrected p value from a Welch’s t test calcu-
lated within ALDEx2.

Results
Description of the study population and pregnancy outcomes
Socio-demographic characteristics of women who had
spontaneous preterm birth (n = 46) and women who had
term deliveries (n = 170) are summarized in Table 1.
There were no significant differences in maternal age,
BMI, ethnicity, smoking status, consumption of alcohol
or use of probiotics between term and preterm groups
(all p > 0.05). Average maternal age was 33 for
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participants in both cohorts. Average body mass index
(BMI) was 22.9 and 24.2 for women in the term and pre-
term groups, respectively. Most women in both cohorts
identified themselves as white ethnicity, followed by East
Asian and South/Southeast Asian (Table 1). Consump-
tion of tobacco (term 2.3%; preterm 0%), alcohol (term
5.9%; preterm 4.3%) or probiotic supplements (term
4.1%; preterm 6.5%) was low among women in both
groups (chi-square, all p > 0.05).
Most women in the preterm group had a Bachelor/

graduate degree (29/46) and an average house income

higher than CAD 100,000 per year (25/46). A minority
of women who had preterm birth (5/46) reported con-
sumption of substances without prescription prior preg-
nancy, of which 3/46 women consumed marijuana/
hashish, 1/46 woman consumed tranquilizers/nerve pills
and 1/46 woman consumed cocaine/crack. Approxi-
mately 74% of the participants in the preterm group re-
ported a pre-existing condition. A total of 12/46 women
had some condition related to mental health, such de-
pression or anxiety. Seventeen percent (8/46) had a
neurological condition, including migraine headaches,

Table 1 Socio-demographic and microbiological characteristics of subjects

Characteristics Term pregnancies (n = 170) Preterm pregnancies
(n = 46)

p value

Age (mean ± SD, range)1 33.6 ± 4.2 (21–45) 33.65 ± 4.1 (25–45) 0.948

21–25 5 (2.9%) 1 (2.1%)

26–35 114 (67.1%) 32 (69.5%)

36–45 51 (30.0%) 13 (28.2%)

BMI (mean ± SD, range)1 22.9 ± 3.8 (17–40) 24.2 ± 5.6 (19–43) 0.125

Underweight (< 18.50) 7 (4.1%) 0 (0%)

Normal weight (18.51–24.9) 131 (77.0%) 33 (73.3%)

Overweight (25.0–29.9) 25 (14.7%) 8 (17.7%)

Obese (> 30) 7 (4.1%) 4 (9.0%)

MD3 0 (0%) 1 (2.2%)

Ethnicity2 0.261

White 108 (63.5%) 22 (47.8%)

East Asian 26 (15.3%) 6 (13.0%)

South/Southeast Asian 15 (8.8%) 4 (8.7%)

Latin America/Hispanic 8 (4.7%) 3 (6.5%)

Black 3 (1.8%) 2 (4.4%)

Other/mixed ethnicity 10 (5.9%) 6 (13.0%)

MD 0 (0%) 3 (6.5%)

Community state type (CST)2 0.361

I 56 (32.9%) 17 (37%)

II 9 (5.3%) 5 (10.9%)

III 28 (16.5%) 8 (17.4%)

IVA 31 (18.2%) 6 (13%)

IVC 19 (11.2%) 2 (4.3%)

IVD 11 (6.5%) 1 (2.2%)

V 16 (9.4%) 7 (15.2%)

Estimated bacterial load (log copies of 16S rRNA gene)/swab (mean ± SD, range)1 7.78 ± 0.93 (4.89–10.67) 8.07 ± 0.71 (6.32–10.33) 0.049

Presence of Mollicutes2 68 (40%) 28 (60.8%) 0.012

Presence of Ureaplasma2 40 (23.4%) 14 (30.4%) 0.337

U. parvum 37 (21.7%) 14 (30.4%)

U. urealyticum 3 (1.7%) 0 (0%)

Shannon diversity (mean ± SD, range)1 1.28 ± 0.86 (0.13–4.52) 1.81 ± 1.13 (0.34–5.16) 0.004

Chao1 richness (mean ± SD, range)1 36.22 ± 14.80 (14.39–115.74) 46.38 ± 24.19 (20.20–126.01) 0.009
1t test; 2chi-square; 3MD = missing data
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and 24% (11/46) had a genitourinary condition (corpus
luteal cyst, bicornuate uterus, cervical polyp, cervical
dysplasia (2), uterine polyp, ovarian cyst, polycystic ovar-
ian syndrome, urinary tract infections with and without
kidney stones (3).
Characteristics regarding pregnancy and neonatal out-

comes are described in Table 2. Pregnancy outcome infor-
mation was not available for one woman in the preterm
group as she was lost to follow-up. There were no signifi-
cant differences in gestational age at enrolment, mode of
conception or fetal sex between groups (all p > 0.05). Aver-
age gestational age at delivery was 39+3 weeks for the
women who delivered at term and 34+2 weeks for women
who had preterm birth, most of which were considered
late preterm, i.e. delivery between 32 and 36+6 weeks of
gestational age. Women in the preterm group were more
likely to have experienced preterm birth or miscarriage in
their previous pregnancy (chi-square, p < 0.001). They also
had higher percentage of caesarean sections than women
who delivered at term. Number of previous gestations also
differed between groups; women who had preterm birth
were more likely to be primigravida (22/46) in comparison
with women who had term deliveries (45/170). There was

a significant difference between term and preterm groups
regarding birth weight and number of infants admitted to
level 3 neonatal intensive care unit (NICU) (Table 2).
Apgar score at 1 (term 8.75 ± 0.6; preterm 8.38 ± 1.1) and
5 min (term 8.97 ± 0.17; preterm 8.76 ± 0.7) between
groups also differed (t test, all p < 0.001). One preterm
infant (1/46) died shortly after birth (20 weeks of gesta-
tional age).
Among women who delivered preterm, 63% (29/46)

had premature rupture of membranes (PPROM), 10.8%
(5/46) had gestational diabetes and 4.3% (2/46) had
anemia unresponsive to therapy. Twenty-four percent of
women (11/46) presented one of the following condi-
tions: maternal elevated liver enzymes, short cervix and
incompetent cervix; fetal ascites, fetal distress and large
foetus for gestational age; and placental findings of mar-
ginal cord insertion, two-vessel umbilical cord, placenta
previa and low-lying placenta.

Sequencing results and OTU analysis
Raw sequence data files for the samples described in this
study were deposited to the NCBI Sequence Read Arch-
ive (Accession SRP073152, BioProject PRJNA317763;

Table 2 Gestation characteristics, pregnancy and neonatal outcomes

Characteristics Term pregnancies (n = 170) Preterm pregnancies (n = 46) p value

Gestational age in weeks+day

At enrolment (mean ± SD, range)1 13+ 2 ± 1+1 (11+1–16+6) 13+3 ± 1+0 (11+6–16+0) 0.641

At delivery (mean ± SD, range) 1 39+3 ± 0+6 (39+3–41+2) 34+2 ± 2+6 (20+0–36+6) < 0.0001

Late preterm (32 to 36+6) NA 39 (84.8%)

Very preterm (28 to 31+6) NA 5 (10.8%)

Extremely early (≤ 27+6) NA 1 (2.1%)

Previous pregnancy history (excludes women in first pregnancy)2 (n = 125) (n = 24) < 0.0001

Livebirth, term 89 (71.2%) 9 (37.5%)

Livebirth, preterm 0 (0%) 3 (12.5%) < 0.0001

Spontaneous abortion 20 (16%) 8 (33.3%) 0.046

Pregnancy termination 16 (12.8%) 3 (12.5%) 0.968

Ectopic pregnancy 0 (0%) 1 (4.1%)

Mode of delivery2 0.042

Vaginal delivery 128 (75.3%) 27 (58.7%)

C-section 42 (24.7%) 18 (39.1%)

Parity2 0.005

0 55 (32.3%) 28 (60.8%)

1 94 (55.3%) 12 (26%)

2–4 21 (12.3%) 6 (13%)

Assisted conception2 17 (10%) 6 (13%) 0.591

Fetal sex (% male/% female) 2 (48.8%)/(51.1%) (41.3%)/(56.5%) 0.430

Birth weight (g) (mean ± SD, range)1 3398 ± 459 (1970–5200) 2550 ± 559 (1300–3595) < 0.0001

Infant in NICU (n, %)2 1 (0.6%) 24 (52.2%) < 0.0001
1t test; 2chi-square
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BioProject PRJNA403856). Total dataset contained
1,635,072 cpn60 reads; median and average read count
per sample were 4936 and 7569 (range 402–37,378),
respectively. Average read length was 424 bp. Results of
Bowtie2 mapping showed that these reads corresponded
to 728 OTUs from the reference assembly
(Additional file 1).

Microbiota profiles
Microbiota profiles were created by PCR amplification
and pyrosequencing of the cpn60 universal target region.
Hierarchical clustering of vaginal microbiota profiles
resulted in seven community state types (CST): I
(Lactobacillus crispatus dominated), II (Lactobacillus
gasseri dominated), III (Lactobacillus iners dominated),
IVA (Gardnerella vaginalis subgroup B or mix of differ-
ent species), IVC (G. vaginalis subgroup A dominated),
IVD (G. vaginalis subgroup C dominated) and V
(Lactobacillus jensenii dominated) (Fig. 1). Each CST is
defined by the dominance of one species of Lactobacillus (I,
II, III, V), Gardnerella vaginalis (IVC, IVD) or a mixture of
bacteria species (IVA), as previously described [52, 53].
Overall microbiota profiles did not cluster together

based on gestational age at delivery (Figs. 1 and 2). Most
microbial profiles from the preterm group (80.5%) were
assigned to Latobacillus-dominated CST: CST I (37% of
profiles), CST III (17.4%), CST V (15.2%) and CST II
(10.9%). The remaining profiles (19.5%) were assigned to
CST IVA, IVC or IVD (Table 1). The CST IVA was the
most heterogeneous group, represented by the domin-
ance of Lactobacillus delbrueckii, Bifidobacterium den-
tium, Bifidobacterium infantis, Atopobium vaginae,
Bifidobacterium breve or a mixture of different bacteria
species. The CST IVC was dominated by G. vaginalis
subgroup A and Megasphaera spp., and CST IVD was
dominated by G. vaginalis subgroup C (Fig. 1).

Ecological analysis and total bacterial load
Assessment of alpha diversity revealed that microbiomes
of women who delivered preterm were richer (Chao1
richness 46.3 ± 24.1) and more diverse (Shannon diver-
sity index 1.8 ± 1.1) when compared to those of women
in the term group (36.2 ± 14.8; 1.2 ± 0.8) (t test, p < 0.01)
(Table 1). Total bacterial load was estimated based on
qPCR targeting the 16S rRNA gene, and it was expressed
as log 16S rRNA gene copy number per swab. Higher
bacterial loads were detected in samples from the
preterm group (7.7 ± 0.9) compared to term group
(8.0 ± 0.7) (t test, p = 0.049) (Table 1).

Bacteria species relative abundance and prevalence
To investigate whether there was an association between
individual taxa and sPTB, the abundance and prevalence
of each species was evaluated. The ALDEx2 analysis

assessed the relative abundance of each taxa (at the
OTU and species level) in term and preterm groups.
Eight OTU/species were more abundant in the term
group in comparison with preterm, all of which were
considered rare members of the bacterial community
(Fig. 3). L. acidophilus represented 1% of the total reads
in the dataset and had a low relative abundance average
of 1.98% (range 0–69%) and 0.18% (range 0–0.87%) in
samples from term and preterm groups respectively. All
the other seven bacteria together represented only 0.4%
of the total reads in the dataset.
Bacteria prevalence (presence/absence) was also

assessed (only species with at least 10 total reads were
included). A total of 60 taxa had significant differences
in prevalence between term and preterm groups; 11 spe-
cies had greater prevalence in the term cohort and 49
species were more prevalent in the preterm cohort
(Table 3). Bifidobacterium infantis, for example, was two
times more prevalent in the term group in comparison
with preterm, and Prevotella timonensis was 1.58 times
more prevalent in the preterm group (Table 3). Several
Prevotella spp. were associated with both term and pre-
term. Prevotella amnii and P. tannerae had greater
prevalence in the term cohort, whereas P. timonensis, P.
bivia, P. corporis and P. bucalis were more prevalent in
the preterm group (Table 3). It is important to note that
read depth distribution did not differ between term and
preterm cohorts (t test, p > 0.05); therefore, the differ-
ences observed here in bacteria prevalence were unlikely
to be driven by cohort sequencing bias.
Mollicutes (Mycoplasma and/or Ureaplasma) were de-

tected by family-specific conventional PCR in 28/46
(60%) of pregnant women who delivered preterm
(Table 1). Ureaplasma species were detected by
genus-specific PCR in samples of 14/46 (30%) women
who had PTB, with all women testing positive for U.
parvum and none for U. urealyticum. Women who de-
livered at term were less likely to be PCR positive for
Mollicutes compared to women who had PTB (Table 1).
No significant differences were observed in Ureaplasma
prevalence between the two groups (Table 1). An associ-
ation between Mollicutes/Ureaplasma detection and the
composition of the vaginal microbiota, represented as
CST, was also investigated. Detection of Mollicutes and
Ureaplasma was not associated with any CST in particu-
lar when investigated in the term cohort, preterm cohort
or both groups together (chi-square, p > 0.05).

Relationships between microbiological and socio-demographic
characteristics within the preterm group
The association between CST (I, II, III, IVC, IVD, V)
from profiles of women who delivered preterm and sev-
eral microbiologic-socio-demographic characteristics
was investigated. Only two associations were significant:
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Fig. 1 (See legend on next page.)
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CST and microbiota richness, and CST and microbiota
diversity (ANOVA, p < 0.001). There was no significant
association between CST and the remaining following
metadata: microbiota richness and diversity (continuous
variable), presence of Mollicutes and Ureaplasma (yes/
no), log 16S rRNA gene copies (continuous variable),
maternal age (continuous variable; 18–25, 26–35,
36–45), BMI category (underweight, normal, overweight,
obese; < 25, ≥ 25), ethnicity (White, East Asian, South
Asian, Black, Hispanic, Other), natural conception (yes/no),
parity (0, > 1), gestational age (continuous variable), mode
of delivery (vaginal, C-section), pre-existing condition
(yes/no), folic acid intake before or during pregnancy
(yes/no), drinking alcohol (yes/no), neonate in high
level care (yes/no), birth weight (continuous variable)
and Apgar score at 1 and 5 min (1–9).

Discussion
In this study, we determined the composition of the va-
ginal microbiota of women who had spontaneous pre-
term birth and compared these profiles to those of
women who delivered at term, previously reported by
our research group [24]. The availability of foundational
data on women who delivered at term and the infeasibil-
ity of collecting large numbers of samples at 11–16 weeks
gestation from women who would go on to deliver
pre-term, our study design included comparison of

samples collected in a previously published study [24]
and from the OBS. To minimize any batch effects, we
were rigorous in implementation of consistent sample
processing and did extensive analysis of the clinical and
demographic characteristics to ensure they were well
matched (Table 1). The cohorts were comparable in
terms of maternal age, BMI, ethnicity, consumption of
tobacco, alcohol and probiotics, which is of interest
given that several of these characteristics have been pre-
viously associated with preterm delivery. In particular,
previous described factors included low and high mater-
nal ages [5–7], low BMI [8], black ethnicity [9], high
levels of tobacco, alcohol and illicit drugs consumption
[4], close temporal proximity to a previous delivery [10]
and multiple gestation [11]. This cohort is unique in that
it did offer the opportunity to have gestational age at de-
livery as the main characteristic distinguishing these two
groups recognizing that the majority of preterm births
occurred beyond 32 weeks gestation.
A difference in number of previous gestations was ob-

served between groups, with women who experienced
preterm birth more likely to be primigravida in compari-
son with women who had term deliveries. It has been re-
cently demonstrated that women with a prior
conception, regardless of whether or not this proceeded
to a birth, have a decrease in the relative abundance of
L. crispatus and a concomitant increase in the

(See figure on previous page.)
Fig. 1 Vaginal microbiota profiles of women who had sPTB and term deliveries. a Hierarchical clustering of Jensen–Shannon distance matrices
with Ward linkage on the relative proportions of reads for each OTU within individual vaginal samples. b Community state type (CST). c Gestational
age at delivery. d Heatmap of relative abundances of bacterial species within each vaginal microbiota. Each column represents a woman’s vaginal
microbiota profile, and each row represents a bacteria species. Only species that are at least 1% abundant in at least one sample are shown.
e Shannon diversity indices calculated for each sample

PC2 (14.60%)

PC3 (10.65%)

PC1 (29.56%)

PC2 (14.60%)

Gestational age at delivery Community State Type (CST)

Term Preterm I II III IVA IVC IVD V

PC3 (10.65%)

PC1 (29.56%)

Fig. 2 Vaginal microbiota profiles coloured by gestational age at delivery or CST. Jackknifed principal coordinates analysis (PCoA) of Bray–Curtis
distance matrices of microbial profiles from all participants in the study
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abundance of other Lactobacillus species as well as
Gardnerella [54].
Other known risk factors for sPTB include maternal

medical disorders like hypertension, asthma, diabetes
and thyroid disease [4]. Although some women in both
cohorts reported these conditions, there were not
enough participants to stratify the data based on the in-
dividual disorder and therefore was not possible to in-
vestigate the interaction between those medical
conditions and gestation outcome. We were, however,
able to confirm previous reports of history of prematur-
ity as a risk factor for preterm birth [55].
Since many organisms isolated from the amniotic cav-

ity of women who experienced preterm birth are also
found in the genital tract [12–15], an intrauterine infec-
tion ascending from the vagina is one of the currently
hypothesized triggers of PTB [56]. In this study, how-
ever, we did not identify a signature microbiota compos-
ition (CST) associated with preterm birth. This
observation is consistent with the results presented by
others [29, 30]. CST assignments are largely driven by
the dominance of a single species, which may mask dif-
ferences in rare taxa that would differentiate term and
preterm groups, and indeed, further analysis revealed
that the vaginal microbiota of women who experienced
preterm birth was richer and more diverse than those of
women who delivered at term. Also, most women
(84.8%) in our study were considered late preterm and

although we cannot address this question, it is possible
that sPTB driven by an ascending infection would be
more evident in a high-risk cohort or extreme preterm
cases. A recent study of a high-risk pregnant cohort has
reported that L. iners was strongly associated with short
cervix and preterm birth, as L. crispatus was associated
with term deliveries [57]. Those differences in study out-
comes indicate that the pathogenesis of sPTB in low-
and high-risk groups might be different. Identifying dif-
ferences in the causes of early and late sPTB and the
role of the vaginal microbiota in those processes will re-
quire further study.
One controversy that challenges the current hypoth-

esis of preterm caused by an ascending infection is that
antibiotic administration to pregnant women with a dis-
turbed vaginal microbiota does not improve outcome in
most cases, as demonstrated by study trials [58, 59] and
systematic reviews [60–62]. One explanation for the in-
efficacy of antibiotic treatment in the prevention of pre-
term birth relies is the high rates of antibiotic resistance
among bacterial-vaginosis-associated bacteria [63, 64]. In
this case, antibiotics not only do not kill the targeted
bacteria, but might also reduce the vaginal Lactobacillus
population leading to an even more disturbed micro-
biota, as recently demonstrated [65].
In addition to differences in richness and diversity, dif-

ferences in the microbiota between the two cohorts re-
garding bacterial abundance and prevalence were also
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Table 3 Bacteria prevalence in the vaginal microbiomes of women who delivered preterm and at term

Species Total
reads

Preterm (n = 46) Term (n = 170) Prevalence
ratio

FDR*

Reads Prevalence (%) Reads Prevalence (%)

A term/preterm

Bifidobacterium infantis 56,246 409 19.57 55,837 40.00 2.04 0.033

Lactobacillus delbrueckii subsp. lactis 48,063 9 4.35 48,054 28.82 6.63 0.005

Lactobacillus acidophilus 17,440 569 89.13 16,871 97.65 1.10 0.033

Prevotella amnii 13,339 68 4.35 13,271 21.76 5.01 0.023

Pseudovibrio sp. 1634 52 15.22 1582 91.76 6.03 0.000

Streptococcus parasanguinis 1199 63 19.57 1136 88.82 4.54 0.000

Sphingobium yanoikuyae 1174 16 13.04 1158 80.00 6.13 0.000

Prevotella tannerae 930 58 15.22 872 88.24 5.80 0.000

Clostridium innocuum 814 42 13.04 772 81.18 6.22 0.000

Eubacterium siraeum 641 43 17.39 598 78.24 4.50 0.000

Massilia timonae 426 6 8.70 420 70.00 8.05 0.000

B preterm/term

Prevotella timonensis 11,450 4211 71.74 7239 45.29 1.58 0.005

Dialister micraerophilus 7381 2850 67.39 4531 44.12 1.53 0.021

Prevotella sp. 2216 626 47.83 1590 14.71 3.25 0.000

Bacteroides coagulans 1283 1212 41.30 71 7.06 5.85 0.000

Corynebacterium accolens 1083 999 52.17 84 13.53 3.86 0.000

Porphyromonas uenonis 1040 795 28.26 245 12.94 2.18 0.038

Actinomyces neuii subsp. anitratus 877 738 43.48 139 10.00 4.35 0.000

Peptoniphilus harei 875 811 45.65 64 7.65 5.97 0.000

Lactobacillus fermentum 729 664 17.39 65 5.29 3.29 0.026

Facklamia hominis 711 709 15.22 2 1.18 12.93 0.000

Prevotella bivia 638 228 26.09 410 8.24 3.17 0.005

Prevotella corporis 535 463 23.91 72 5.88 4.07 0.000

Corynebacterium timonense 503 355 34.78 148 10.00 3.48 0.000

Corynebacterium genitalium 372 323 34.78 49 7.06 4.93 0.000

Tepidanaerobacter sp. 329 303 23.91 26 4.12 5.81 0.000

Corynebacterium amycolatum 264 228 32.61 36 4.71 6.93 0.000

Parvimonas micra 193 183 10.87 10 1.18 9.24 0.005

Mobiluncus curtsii subsp. curtsii 183 171 21.74 12 2.35 9.24 0.000

Finegoldia magna 155 149 13.04 6 3.53 3.70 0.038

Coprococcus eutactus 154 68 47.83 86 27.06 1.77 0.026

Brevibacterium linens 147 142 10.87 5 0.59 18.48 0.000

Rothia dentocariosa 144 120 30.43 24 5.29 5.75 0.000

Streptococcus thermophilus 132 126 19.57 6 2.35 8.32 0.000

Magnetospirillum magnetotacticum 116 40 43.48 76 24.12 1.80 0.033

Dethiobacter alkaliphilus 101 97 10.87 4 1.76 6.16 0.017

Brevibacterium massiliense 99 86 15.22 13 1.18 12.93 0.000

Eremococcus coleocola 90 82 10.87 8 1.76 6.16 0.017

Anaeromusa acidaminophila 86 85 15.22 1 0.59 25.87 0.000

Arthrobacter globiformis 66 48 10.87 18 1.76 6.16 0.017

Staphylococcus epidermidis 54 47 13.04 7 2.35 5.54 0.009
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identified. The ALDEx2 analysis indicated that eight rare
taxa were more abundant in the term group, which does
not necessarily mean they are associated with a ‘health-
ier’ state or implicated in preventing sPTB. Since these
bacteria are detected at very low abundance within the
microbiota profiles, their biological significance in the
vaginal microbiome is questionable. Differences in the
prevalence of several other taxa between groups were
also observed. For example, more women in the term
group had Prevotella amnii and P. tannerae detected in
their vaginal samples, whereas P. timonensis, P. bivia, P.
corporis and P. bucalis were more frequently detected in
samples from women in the preterm group (Table 3).
Prevotella spp. have been previously associated with bac-
terial vaginosis and preterm labour [22, 66, 67], and our
results indicate that different Prevotella species might
have different roles in sPTB. Several of the taxa that
were significantly different in their prevalence among
women in the two groups also had low sequence read
counts (Table 3). Further investigation would be re-
quired to determine if these rare members of the micro-
bial community play a yet unknown role in sPTB.
It is also important to note that the number of bacterial

species with greater prevalence in the preterm (49/60) was
higher than in the term (11/60) cohort (Table 3), which is

consistent with our results of increased microbial richness
and diversity in the samples from women who experi-
enced preterm birth. This might indicate that increased
richness, rather than the presence of specific taxa, might
be associated with sPTB. Those differences might also be
an indicator of physiological/biochemical dissimilarities in
the vaginal microbiomes of women who deliver at term or
preterm. In other words, the physiological state that leads
to sPTB might also create an environment that supports a
richer/more diverse microbiota.
Our results also confirmed previous reports of an as-

sociation between Mycoplasma and preterm birth [68].
Mollicutes were detected significantly more often in
women in the preterm group compared to women in the
term group, but no differences were observed in
Ureaplasma prevalence between groups indicating that
the difference in Mollicutes prevalence is primarily
driven by the presence of Mycoplasma spp. Although in-
dividual Mycoplasma species could not be discerned
based on assay used in our study, both Mycoplasma
genitalium [69–71] and Mycoplasma hominis [72–75]
have been previously associated with negative reproduct-
ive outcomes including PTB.
Collectively, our overall findings were similar to other

two studies, which provided us the opportunity to

Table 3 Bacteria prevalence in the vaginal microbiomes of women who delivered preterm and at term (Continued)

Species Total
reads

Preterm (n = 46) Term (n = 170) Prevalence
ratio

FDR*

Reads Prevalence (%) Reads Prevalence (%)

Corynebacterium simulans 52 41 26.09 11 1.76 14.78 0.000

Anaeroglobus geminatus 52 49 15.22 3 1.18 12.93 0.000

Cellvibrio gilvus 42 26 15.22 16 1.76 8.62 0.000

Prosthecochloris vibrioformis 41 40 6.52 1 0.59 11.09 0.028

Prevotella buccalis 33 33 15.22 0 0.00 – 0.000

Acidaminococcus fermentans 31 29 13.04 2 1.18 11.09 0.000

Brevibacterium casei 25 24 8.70 1 0.59 14.78 0.005

Streptococcus sanguinis 23 18 13.04 5 2.35 5.54 0.009

Atopobium parvulum 23 20 8.70 3 1.18 7.39 0.023

Peptoniphilus duerdenii 22 20 10.87 2 0.59 18.48 0.000

Pelobacter propionicus 21 18 6.52 3 0.59 11.09 0.028

Staphylococcus hominis 21 17 15.22 4 1.76 8.62 0.000

Atopostipes suicloacalis 18 8 10.87 10 1.18 9.24 0.005

Corynebacterium pyruviciproducens 18 13 13.04 5 1.76 7.39 0.005

Corynebacterium jeikeium 14 11 13.04 3 0.59 22.17 0.000

Sporichthya polymorpha 13 11 8.70 2 1.18 7.39 0.023

Rhodococcus jostii 13 7 8.70 6 1.18 7.39 0.023

Nitrospina gracilis 10 5 8.70 5 0.59 14.78 0.005

Megasphaera sp. BV3C16-1 10 9 6.52 1 0.59 11.09 0.028

Panel A: species with greater prevalence in the term group (ratio term/preterm)
Panel B: species with greater prevalence in the preterm group (ratio preterm/term)
*FDR (false discovery rate) represents the corrected p value for multiple comparisons
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compare different study designs (based on different co-
horts and barcode gene) that addressed the same re-
search question. Hyman and colleagues [30] described
the vaginal microbiota of 83 pregnant women (term n =
66, preterm n = 17) based on Sanger sequencing of
cloned 16S rRNA genes. Samples were collected at each
trimester and preterm was defined as delivery before
37 weeks of gestation. There was no correlation between
preterm and absence/low abundance of Lactobacillus in
the microbiota; in other words, preterm outcome could
not be predicted based on CST. Similar to our results,
they found an association between increased microbiota
diversity and preterm delivery among women of white
ethnicity (n = 40) (data from women of others ethnicities
was not included in the analysis because of small sample
sizes). Although there was no association between CST
and ethnicity, it is important to note that most women
enrolled in this study described themselves as being
white, and it is possible that an increased sample size of
participants of other ethnicities could result in a differ-
ent conclusion.
Romero and colleagues [29] also investigated the vaginal

microbiota of pregnant women who experienced preterm,
defined as delivery before 34 weeks of gestation (term
n = 72, preterm n = 18). The profiles were created by
16S rRNA amplicon sequencing, and samples were col-
lected every 4 weeks until 24 weeks of gestation and then
every 2 weeks. They found no differences in the frequency
of different CST between women who had term and pre-
term deliveries. Likewise, no differences in bacteria rela-
tive abundance were observed between the two cohorts,
although only bacteria that were present in at least 25% of
samples were included in the analysis. These results are
consistent with our findings of bacterial abundance based
on the ALDEx analysis since we only found significant dif-
ferences in relative abundance for eight rare bacteria. Un-
like Hyman et al. [30] and our results, Romero et al. [29]
did not find differences in microbiota diversity between
women who delivered preterm and at term. One possible
explanation for this contradictory result might be related
to differences in participant ethnicity among these studies.
While most women in our study and the Hyman et al.
study described themselves as white, the majority of par-
ticipants in the Romero et al. study described themselves
as African American. It has been reported that the com-
position of the vaginal microbiota is strongly associated
with a woman’s ethnicity [52, 76]. Other studies have also
demonstrated that black ethnicity is associated with an in-
creased microbiota diversity in comparison with white
ethnicity [77], which could have masked differences in
bacterial diversity between term and preterm cohorts in
the Romero study.
Contrary to our overall findings, DiGiulio and col-

leagues [31] found a strong association between the

non-Lactobacillus-dominated CST IV and preterm birth
in a case–control study based on the 16S rRNA ampli-
con sequencing. Pregnant women (preterm n = 34, term
n = 15), mostly of white ethnicity, were sampled weekly
throughout gestation. Interestingly, the authors pointed
out that if samples had been collected less frequently,
short-term ‘excursions’ to CST IV would have been
missed and probably the association between CST IV
and preterm birth would have been less obvious. The de-
tection of a temporary microbiota disturbance repre-
sented by a change from a Lactobacillus-dominated CST
to CST IV may have been missed in our study since
samples were not collected longitudinally. Moreover, a
recent study has demonstrated that PTB–microbiota as-
sociations are population-dependent [32]; lower
Lactobacillus and higher Gardnerella abundances were
associated with PTB in a low-risk predominantly
Caucasian cohort, but not in a high-risk predominantly
African American cohort. These population-dependent
associations might contribute to explain contradictory
conclusions among different studies and emphasize the
importance of investigating the vaginal microbiota of dif-
ferent populations with varying ethnic backgrounds and
from different geographical locations.
Most samples in the preterm group were dominated by

Lactobacillus, yet, they collectively had higher richness
and diversity compared to samples from the term group.
The increased microbiota richness/diversity might indi-
cate a transient state between Lactobacillus-dominated
CST and non-Lactobacillus-dominated, i.e., CST IV (A, C
or D). In other words, the increased richness and diversity
we observed might be a remnant characteristic of the pre-
vious disturbed microbiota. In summary, although we did
not “detect” a specific microbial community structure that
is associated with preterm birth, the increased microbiota
richness/diversity was associated with preterm birth. In
addition, the association with differences in Prevotella spe-
cies and Mycoplasma presence may point to signature
species associated with preterm birth.

Conclusions
Taken together, our results suggest that the differences
in the microbiota of women who had preterm deliveries,
such as increased microbiota richness and diversity and
greater prevalence of Mollicutes and other bacteria, may
have a role in sPTB. Other differences between cohorts
might have been masked by the presence of highly dom-
inant bacteria like Lactobacillus. At the overall level, we
did not identify a specific vaginal microbial community
structure at 11–16 weeks gestation age that predicts
sPTB. Also, differences in relative abundance of bacterial
species between term and preterm groups were only sig-
nificant for a few low abundance species. Although a
causal relationship remains to be determined, our results
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confirm previous reports of an association between
Mollicutes and preterm birth, and further suggest that a
diverse bacterial community may contribute to the
microbiome’s role in sPTB. Alternatively, the more rich
and diverse microbiotas of the preterm group may re-
flect physiological differences between the groups that
affect selection of bacteria. This study provides valuable
evidence of subtle alterations in the microbiome associ-
ated with preterm birth that requires further study utiliz-
ing sequencing methodology. In addition, future study
should include evaluation of the microbial metabolite
production and host response to further elucidate factors
leading to sPTB and identify women at risk early in
pregnancy.
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