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Abstract

Since the colonization of land by ancestral plant lineages 450 million years ago, plants and their associated
microbes have been interacting with each other, forming an assemblage of species that is often referred to as a
“holobiont.” Selective pressure acting on holobiont components has likely shaped plant-associated microbial
communities and selected for host-adapted microorganisms that impact plant fitness. However, the high microbial
densities detected on plant tissues, together with the fast generation time of microbes and their more ancient
origin compared to their host, suggest that microbe-microbe interactions are also important selective forces
sculpting complex microbial assemblages in the phyllosphere, rhizosphere, and plant endosphere compartments.
Reductionist approaches conducted under laboratory conditions have been critical to decipher the strategies used
by specific microbes to cooperate and compete within or outside plant tissues. Nonetheless, our understanding of
these microbial interactions in shaping more complex plant-associated microbial communities, along with their
relevance for host health in a more natural context, remains sparse. Using examples obtained from reductionist and
community-level approaches, we discuss the fundamental role of microbe-microbe interactions (prokaryotes and
micro-eukaryotes) for microbial community structure and plant health. We provide a conceptual framework
illustrating that interactions among microbiota members are critical for the establishment and the maintenance of
host-microbial homeostasis.
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Background
In nature, healthy and asymptomatic plants cohabit with
diverse microbes such as archaea, bacteria, fungi, and
protists (collectively termed the plant microbiota, see an
example for Arabidopsis thaliana root microbiota in
Fig. 1) that form complex microbial consortia and im-
pact plant growth and productivity [1–4]. Although
plants have evolved their own adaptations to alleviate
most biotic and abiotic stresses in nature, they also rely
on their microbial partners to survive and defend them-
selves against microbial invaders [5]. Several studies have
reported a wide range of beneficial effects of microbiota
members on plant health including disease suppression
[6, 7], priming of the plant immune system [8], induc-
tion of systemic resistance [9], increased nutrient acqui-
sition [10], increased tolerance to abiotic stresses [11],

adaptation to environmental variations [12], or promo-
tion of the establishment of mycorrhizal associations
[13]. Interactions between plants and their associated
microbial communities are not unidirectional. The host
plant also provides novel metabolic capabilities to its
microbial associates, leading to the adaptation of niche-
specialized inhabitants that can either have positive
(mutualistic), neutral (commensalistic), or deleterious
(pathogenic) impact on plant fitness [14].
A current concept considers the multicellular host and

its associated microbiota as a functional entity called the
“holobiont,” in which evolutionary selection likely occurs
between the host and the microbes but also among
microbes [15]. Although extensive evidence supports the
co-evolution of binary interactions between plants and
pathogenic or symbiotic microbes, it remains unclear
whether genomic signatures exist for the microbial
community-related fitness phenotypes in the host
genome and its associated microbiome. It is likely that
not all microorganisms within the plant holobiont affect
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each other’s evolution trajectories and that selective
pressure does not only impact holobiont fitness in a
positive way [16–18]. Although the evolution of plant-
microorganism partnership and particularly of mutual-
ism has been discussed in respect of the holobiont con-
cept [18], the evolution of microbe-microbe interaction
mechanisms that favor co-existence of highly diverse
microbial consortia on or inside plant habitats remains
poorly described. A more comprehensive understanding
of the evolution of microbe-microbe-host interactions
remains challenging due to the complex ecological inter-
actions taking place in nature and the different ways
plant-associated microbes are inherited (i.e., vertical
transmission via seeds [19–21] vs. horizontal acquisition
from the environment [22, 23].
The very ancient origin of microbes on Earth, tracing

back to the beginning of life more than 3.5 billion years
ago, indicates that microbe-microbe interactions have
continuously evolved and diversified over time, long be-
fore plants started to colonize land 450 million years ago
(Fig. 2). Therefore, it is likely that both intra- and inter-
kingdom intermicrobial interactions represent strong
drivers of the establishment of plant-associated micro-
bial consortia at the soil-root interface. Nonetheless, it
remains unclear to what extent these interactions in the
rhizosphere/phyllosphere and in endophytic plant com-
partments (i.e., within the host) shape microbial assem-
blages in nature and whether microbial adaptation to

plant habitats drive habitat-specific microbe-microbe
interaction strategies that impact plant fitness. Further-
more, the contribution of competitive and cooperative
microbe-microbe interactions to the overall community
structure remains difficult to evaluate in nature due to
the strong environmental noise. To mitigate these tech-
nical hurdles, reductionist approaches have been primarily
used to identify several of the diverse and sophisticated
molecular mechanisms used by microbes to cooperate
and compete on plant tissues and persist as complex
microbial consortia [24–27].
We focus this review on three microbial groups

(bacteria, fungi and protists) that are abundantly found
on plant tissues and briefly describe the diverse mecha-
nisms used by these microbes to cooperate and compete
in planta. We further discuss how these microbial inter-
actions represent important organizational rules struc-
turing the plant microbiota as well as their impact on
plant growth and health.

Composition of plant-associated microbial
communities and structuring factors
The bacterial and archaeal microbiota of plants
It is now widely accepted that bacterial community
establishment on plants is not random but rather con-
trolled by specific assembly rules [4, 22, 23]. The factors
impacting the structure of bacterial communities in plants
include soil type [28, 29], plant compartment [30–34],

Fig. 1 Microbial consortia naturally formed on the roots of Arabidopsis thaliana. Scanning electron microscopy pictures of root surfaces from
natural A. thaliana populations showing the complex microbial networks formed on roots. a Overview of an A. thaliana root (primary root) with
numerous root hairs. b Biofilm-forming bacteria. c Fungal or oomycete hyphae surrounding the root surface. d Primary root densely covered by
spores and protists. e, f Protists, most likely belonging to the Bacillariophyceae class. g Bacteria and bacterial filaments. h, i Different bacterial
individuals showing great varieties of shapes and morphological features
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host genotype/species [29, 35–42], plant immune system
[24, 43], plant trait variation/developmental stage [43–47],
and residence time/season [48–53]. Despite the large
number of bacterial phyla described in nature and the
multiple factors that affect these communities, the bacter-
ial microbiota of plants is dominated by three major phyla
(Proteobacteria, Actinobacteria, and Bacteroidetes) in
both above- and belowground plant tissues [22, 54].
Extensive overlap between root- and leaf-associated
community members has been described at OTU
(operational taxonomic unit) level resolution in grapevine,
agave, wild mustard, and A. thaliana [30, 31, 34, 55, 56],
and the reciprocal relocation between root- and leaf-
associated bacterial communities has been further vali-
dated using microbiota reconstitution experiments with
germ-free A. thaliana [31]. Despite the striking structural
similarities observed between A. thaliana leaf- and root-
associated bacterial communities, large-scale genome se-
quencing and re-colonization of germ-free plants revealed
that host-associated microbiota members are specialized
and adapted to their respective cognate plant organs [31].
Although Archaea represent abundant members of the
plant microbiota (i.e., 35.8%) [57], they have been less
studied than their bacterial counterparts, most likely be-
cause no pathogenic isolates have been described to date.
Plant endophytic archaeal taxa primarily belong to the
phyla Thaumarchaeota, Crenarchaeota, and Euryarchaeota,

but their functional relevance for their plant host remains
to be clarified [57].

The fungal microbiota of plants
Even though less attention has been given to the fungal
microbiota of plants, culture-independent community
profiling revealed a staggering diversity of fungi colonizing
both above- and belowground plant tissues, mainly belong-
ing to two major phyla: Ascomycota and Basidiomycota
[58–60]. In roots, although arbuscular- (Glomeromycota
phylum) and ectomycorrhizal fungi have been mostly
studied, recent community profiling data indicate that
other endophytic fungi also represent an important
fraction of the fungal root microbiota [59, 61]. In non-
mycorrhizal plant species such as A. thaliana, Arabis
alpina, or Microthlaspi, it has been proposed that they
might compensate for the lack of mycorrhizal partners
[62–64]. Similar to bacteria, the structure of plant-
associated fungal communities is not random [65–67] and
varies depending on soil type, plant compartment, plant
species, or seasons [55, 68–72]. Compared to the bacterial
microbiota, fungal communities established in soil and on
plant roots seem to be more subjected to stochastic varia-
tions [73–75] and respond differently to environmental
factors [76–78]. Consequently, mainly dispersal limitation
and climate explain the global biogeographic distribution
of fungi and have been suggested to constrain fungal

Fig. 2 Evolutionary history of microbe-microbe and plant-microbe interactions. Microbial interactions are outlined at the evolutionary scale,
showing that plant-microbe interactions occurred relatively recently compared to the more ancestral interactions among bacteria or between
different microbial kingdoms. Both competitive (red) and cooperative (green) interactions within and between microbial kingdoms are depicted.
Mya, million years ago. Evolutionary divergence estimated from [237, 238]
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dispersal, favoring high endemism in fungal populations
[79–81]. Consistent with that, simultaneous investigation
of both fungal and bacterial communities associated with
plants suggested a greater importance of biogeography for
structuring fungal communities compared to bacterial
communities [55, 61, 71, 82]. Whether this pattern is ac-
centuated by the different taxonomic resolutions resulting
from 16S rRNA and ITS marker loci remains to be
clarified [83].

Plant-associated protists: the neglected fraction of the
plant microbiota
Most of the protists that are known to interact with
plants belong to the Stramenopiles-Alveolata-Rhizaria
supergroup (SAR) [84], and particularly those belonging
to the Oomycota (Stramenopiles) and Cercozoa
(Rhizaria) lineages. Within Oomycota, few members
belonging to the genera Pythium, Phytophthora, Pero-
nospora (and other downy mildew genera), or Albugo
are often found living in association with plant roots or
leaves [85–88]. Notably, the vast majority of oomycete
species described so far are highly destructive plant
pathogens that have a major impact on plant produc-
tivity worldwide [89]. Nonetheless, root colonization by
closely related oomycetes (Pythium spp.) can have
contrasted effect on plant growth, and specific strains
(i.e., Pythium oligandrum) were reported to confer fit-
ness benefit to the host [90–92], suggesting that some
members can establish non-pathogenic interactions with
plants. Although profiling of oomycetal communities in
healthy plant tissues remains sparse, recent reports indi-
cate a very low diversity [88, 93], with members of the
Pythiaceae family being the most represented on plant
tissues [93]. Within Cercozoa, one of the dominant pro-
tistan groups in terrestrial ecosystems, community pro-
filing data revealed an unexpectedly high diversity in
plant roots and leaves [93, 94], as well as a strong plant
filtering effect on community structure, pointing to spe-
cific niche adaptation to plant habitats. Taken together,
these data support the importance of considering pro-
tists, and particularly Oomycota and Cercozoa members
for holobiont fitness.

Cooperative interactions among plant microbiota
members
Although the structure of microbial communities
formed in the leaves and roots of several plant species
has been elucidated, there is still a lack of knowledge
regarding how cooperation between plant-associated
microbiota members influences microbial community
establishment and plant health. In the following para-
graphs, we summarize the cooperative mechanisms that
are employed by microbiota members to persist within
the plant holobiont (Fig. 2).

Nutritional interdependencies
These interactions refer to the reciprocal exchange of
metabolites between nutritionally dependent microbes
to compensate metabolic deficiencies [95–97]. Using this
strategy, microbes can extend their fundamental niches
to persist in nutrient-poor environments [98, 99], access
recalcitrant compounds that cannot be easily broken
down, remove toxic metabolites, or exchange electrons
[95, 96]. Such metabolic exchanges appear widespread
among microbes, including soil, water, and the human
gut bacteria [100]. For example, the rhizobacterium,
Bacillus cereus UW85, tightly associates with and stimu-
lates the growth of bacteria from the Cytophaga-
Flavobacterium group (CF, Bacteroidetes) in the soybean
rhizosphere. The growth-promoting mechanism likely
involves bacterial cell wall components, since peptido-
glycan isolated from B. cereus cultures stimulated the
growth of the CF rhizosphere bacterium Flavobacterium
johnsoniae in vitro [101]. Nutritional interdependencies
likely promote beneficial interactions and increase con-
nectedness among community members, which might ul-
timately result in adaptive gene loss [96, 102]. Evolution
of nutritional dependencies through gene loss is well de-
scribed for endosymbiotic bacteria inhabiting hyphae of
mycorrhizal or soil-borne fungi [103] but remains to be
more thoroughly investigated among plant microbiota
members. Evolution of dependencies through gene loss
might occur between microbiota members if partner fi-
delity is high between microbes colonizing plant tissues
and if a redundant function can be complemented by
the presence of the other. In this case, independency can
be irreversibly lost without any gain of function. Deter-
mining whether plant microbiota members display a low
or high degree of metabolic complementarity will not
only have critical implications for microbiome research
and synthetic microbial ecology but also provide novel
insights into how evolutionary processes act on holo-
biont components.

Biofilm formation
Biofilms are micro-architectural constructions that
embed microbial communities. The secretion of extra-
cellular polymeric substances to build biofilms requires
microbial cooperation [104, 105]. These secretions,
which are the result of combined processes from clonal
or multispecies microbial consortia [106, 107], provide
selective advantage for microbes such as protection from
competitors and antimicrobial molecules [108], activa-
tion of enzymatic processes that require high cellular
density [109], and acquisition of new genes via horizon-
tal gene transfer [110]. Recently, it has been shown that
biofilm-mediated microcolonies formed on root hairs of
finger millet by a root-inhabiting bacterial endophyte
(Enterobacter sp.) confer a physical and chemical barrier
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that prevents root colonization by the pathogen
Fusarium graminearum [111]. Importantly, bacterial
traits related to motility, attachment, and biofilm forma-
tion are needed for the anti-Fusarium activity in planta.
These results suggest that a complex interplay takes
place between the bacterium and root-hair cells, leading
to the formation of this specialized killing microhabitat
[111]. Although the formation of biofilm has been
mainly described for plant-associated bacteria (Fig. 1)
[112, 113], mixed bacterial-fungal biofilms or bacterial
biofilm formed on the surface of fungal hyphae seems
common on plant tissues [26, 114]. Recently, it has been
shown that bacterial ability to form a biofilm on fungal
hyphae is widely shared among soil bacteria but rarely
occurs on the hyphae of ascomycete fungi. Notably, the
ability of Pseudomonas fluorescens BBc6 to form a biofilm
on the hyphae of the ectomycorrhizal fungus Laccaría bi-
color is enhanced at the vicinity of the ectomycorrhizal
root tip, suggesting that the establishment of the ectomy-
corrhizal symbiosis stimulates bacterial biofilm formation
on fungal host surfaces [115]. Taken together, these
studies indicate that biofilm formation on plant tissues
represents a hotspot for microbial interactions that locally
shape microbial assemblages.

Molecular communications
These mechanisms correspond to stimuli and responses
used by microbes to sense other microbes, activate specific
biological processes, and/or gauge population density. One
of the most described mechanisms is known as quorum
sensing, which is used by several Gram-negative bacteria
to monitor their own population densities through the
production of the signaling molecule N-acyl-l-homoserine
lactone (AHL) [116]. AHLs have a conserved chemical
structure, varying in length and nature at the C3 position
of the acyl chain. Consequently, different bacterial taxa can
produce the same signal molecule type and cooperate or
interfere (quorum quenching) with other unrelated taxa.
This crosstalk phenomenon is supported by the fact that 8
to 12% of isolates from rhizobacterial libraries can activate
AHL-specific reporter strains (biosensor) in vitro. The
authors’ results suggest that AHLs serve as a universal lan-
guage for bacteria-bacteria communication in the rhizo-
sphere [117]. Importantly, quorum sensing is also likely
important for inter-kingdom communication between bac-
teria and plant-associated fungi, as recently shown in the
animal field [118]. Quorum sensing signal production and
regulation have also been evidenced in the case of certain
fungi such as Saccharomyces cerevisiae and Candida
albicans, an opportunistic human fungal pathogen. The
latter secretes the signaling molecule farnesol to control
filamentation [119, 120], to inhibit biofilm formation [121],
and to activate oxidative stress responses or drug efflux
[122, 123]. Similar quorum sensing mechanisms have not

been yet thoroughly described for plant-associated fungi.
Nevertheless, and beyond quorum sensing mechanisms,
numerous microbial compounds such as volatile organic
compounds (VOCs), oxalic acid, trehalose, glucose or
thiamine have been reported to act as signaling molecules,
triggering directed movement between rhizospheric bac-
teria and fungi and promoting fungal-bacterial associations
[124–126]. It is therefore tempting to speculate that the
sensing mechanisms used by soil- and plant-associated mi-
crobes are highly diverse and evolutionarily ancient, arising
long before plant-microbe associations occurred (Fig. 2).

Enhanced dispersal
Although motile bacteria can independently move by
using different mechanisms (e.g. swimming, swarming,
etc.), they remain dependent on other microbes to effi-
ciently disperse, especially in water-unsaturated soils
[127]. Although this phenomenon has been primarily de-
scribed for interactions between bacteria and filament-
ous eukaryotes, it is likely that other root-associated
micro-eukaryotes such as motile protists can also serve
as a carrier for fungal spores or bacterial cells along the
soil-root continuum. It has been well demonstrated that
specific bacteria can use hyphae of filamentous eukary-
otes as a vector, the so-called “fungal highway,” giving
them a selective advantage at spreading in their environ-
ments [128, 129]. Particularly, motile bacteria use fungal
mycelium’s hydrophobicity to reach faster and solubilize
pollutants, which opens a promising branch of research
for bioremediation purposes [128, 130, 131]. These my-
celial networks have been shown to facilitate horizontal
gene transfer between spatially separated bacteria, by
providing continuous liquid films in which bacterial mi-
gration and contacts are favored [132]. Consistent with
the tight physical association observed between plant-
associated fungi/oomycetes and bacteria [114], it is also
likely that specific microbiota members use fungal and
oomycetes hyphae and mycelial networks as vectors to
colonize the plant endosphere (i.e., within plant tissues)
[133]. This hypothesis is consistent with the fact that
bacterial communities associated with the roots of
Bistorta vivipara plants are spatially structured up to a
distance of 60 cm, whereas no spatial structure was ob-
served for soil bacterial communities [134]. According
to a recent report on community assembly in cheese
rind microbiota [135], it is also likely that fungal net-
works established along the soil root continuum may
also favor the growth of motile over non-motile bacteria
at the root vicinity.

Bacterial endosymbiosis in fungi
This cooperative mechanism includes the highly special-
ized interaction that occurs between plant-associated
fungi and their bacterial endosymbionts [136]. The
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bacteria, detected in the fungal cytoplasm, can be ac-
tively acquired from the environment [137] and, in most
cases, vertically inherited via fungal spores [138, 139].
Several examples of bacterial endosymbionts that live in
intimate association with plant-associated fungi (i.e.,
Rhizophagus, Gigaspora, Laccaria, Mortierella, Ustilago,
Rhizopus sp.) have been reported and mostly belong to
the families Burkholderiaceae or related [138, 140–142],
Bacillaceae [143, 144], or are Mollicutes-related endo-
bacteria [145]. Such interactions can impact the repro-
ductive fitness of both members; for example, the
bacterial endosymbiont (Burkholderia sp.) of a patho-
genic Rhizopus fungus produces a toxin that provides fit-
ness benefit to the fungus and is required for successful
fungal colonization of rice plants [140]. This bacterium
is also required for fungal reproduction, and its absence
impairs fungal spore formation [139]. Interestingly,
spores of the arbuscular mycorrhizal fungus Gigaspora
margarita can host both Burkholderia- and Mollicutes-
related endobacteria, supporting the idea that some root-
associated fungi have their own intracellular bacterial low-
diversity microbiome [146]. Taken together, these data
suggest that fungal-bacterial symbioses are widespread and
may influence the outcome of plant-fungal associations.

Competitive interactions among plant microbiota
members
Plant-associated microbiota members also engage in
direct or indirect competition with closely or distantly
related-microbiota members. These competitive mecha-
nisms are diverse and likely have cascading conse-
quences on microbial community structure and stability,
as well as on host-microbiota homeostasis. In the follow-
ing paragraph, we describe the competitive mechanisms
employed by plant microbiota members for successful
niche colonization (Fig. 2).

Resource competition
Microbes can use indirect mechanisms to compete with
other microbes, such as rapid and efficient utilization of
limiting resources. For instance, bacteria have evolved
sophisticated strategies to sequestrate iron via secretion
of siderophores, subsequently altering the growth of op-
ponent microbes in their immediate vicinity [147–149].
Nutrient sequestration is also recognized as an import-
ant trait of biocontrol agents to out-compete pathogens
[25, 150]. For example, the secretion of iron-chelating
molecules by beneficial Pseudomonas spp. has been
linked to the suppression of diseases caused by fungal
pathogens [151]. Furthermore, it has been recently
shown that resource competition is an important factor
linking bacterial community composition and pathogen
invasion in the rhizosphere of tomato plants [152].
These results not only underline the role of resource

competition for microbial interactions, but also indicate
their relevance for plant health.

Contact-dependent competition
Plant-associated bacteria can engage in direct antagonis-
tic interactions mediated by contact-dependent killing
mechanisms. These are largely mediated by the bacterial
type VI secretion system, a molecular weapon deployed
by some bacteria (mostly Proteobacteria) to deliver effec-
tors/toxins into both eukaryotic and prokaryotic cells
[153]. The plant pathogen Agrobacterium tumefaciens
uses a puncturing type VI secretion system to deliver
DNase effectors upon contact with a bacterial competi-
tor in vitro and in the leaves of Nicotiana benthamiana.
Remarkably, this contact-dependent antagonism pro-
vides a fitness advantage for the bacterium only in
planta, underlining its specific importance for niche
colonization [154]. In addition, the essential role of the
bacterial type III secretion system for bacterial-fungal
and bacterial-oomycetal interactions has been illustrated
several times in the literature, suggesting that bacteria
employ this strategy to successfully colonize a broad range
of eukaryotic hosts (plants, animals, small eukaryotes)
[155–158]. For instance, it has been reported that
Burkholderia rhizoxinica utilizes this secretion system ap-
paratus to control the efficiency of its symbiosis with the
fungal host, Rhizopus microsporus, and that mutants de-
fective in such secretion system display a lower intracellu-
lar survival and fail to provoke fungal sporulation [156].
Contact-dependent competitive mechanisms seem wide-
spread among bacteria and are likely relevant for both
intra- and inter-kingdom microbe-microbe interactions.

Secretion of antimicrobial compounds
Numerous plant-associated microbes have been shown
to secrete chemical compounds that directly suppress
the growth of microbial opponents [159]. Filamentous
eukaryotes are well known to produce a multitude of
low-molecular-weight secondary metabolites that have
antifungal activities against phylogenetically unrelated
microbes (such as acetylgliotoxin and hyalodendrin)
[160, 161]. These secondary metabolites are often silent
in pure culture and only activated in co-culture or in a
community context [162–165], indicating their specific
role in competitive interactions. Bacteria also produce
different metabolites, including antibiotics and enzymes
that exhibit broad-spectrum activity against phylogenet-
ically unrelated fungal plant pathogens [166, 167].
Antagonistic interactions among bacteria have been re-
ported to be important in the structuring of soil-, coral-,
or plant-associated bacterial communities [168–170].
Notably, the study of antagonistic interactions among
bacterial isolates from the rhizosphere, the roots, and
the phyllosphere of the medicinal plant Echinacea
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purpurea suggests that plant-associated bacteria com-
pete against each other through the secretion of antimi-
crobials [170]. Moreover, bacteria from different plant
compartments showed different levels of sensitivity to
antagonistic activity, thereby indicating that antagonistic
interactions might play an important role in shaping the
structure of the plant microbiota [170].

Emission of volatile organic compounds
In addition to antibiotic production, different bacteria
(Pseudomonas, Serratia, Stenotrophomonas, Streptomy-
ces) can also produce VOCs that act as infochemicals
within and between microbial groups and have been
shown to inhibit the growth of a broad diversity of
plant-associated fungi and oomycetes [171–173]. Re-
cently, it has been shown that bacterial VOCs also drive
species-specific bacteria-protist interactions and likely
serve as signals for protists to sense suitable prey. Not-
ably, a Collimonas pratensis mutant, defective in terpene
production, lost the ability to affect protists activity, indi-
cating that terpenes represent key components of VOC-
mediated communication between bacteria and protists
[174]. Although the VOC activity of fungi/oomycetes
towards bacteria has been less investigated, recent data
indicate that soil filamentous microbes can also produce
volatile blends that are perceived by bacteria. Schmidt and
colleagues identified over 300 VOCs from soil and rhizo-
spheric fungi/oomycetes and demonstrated that some can
be sensed by bacteria, thereby influencing their motility
[126]. Soil bacteria have also been shown to produce
VOCs (reviewed in [171]). The best illustrated example is
the genus Streptomyces that is known to produce sesqui-
terpenes exhibiting antimicrobial activity [172]. More re-
cently, the comparative genomic analysis of the six strains
of Collimonas have revealed that C. pratensis harbor func-
tional terpene synthase genes responsible for the biosyn-
thesis of a blend of sesquiterpenes with antimicrobial
properties [173]. Taken together, these results suggest that
VOCs produced by bacterial and fungal members of the
plant microbiota act as an additional defense line against
other microbes and are also likely important for long dis-
tance structuring of the microbial communities [171].

Predation
As well-known among macroorganisms, microbes can
also predate on other microbes at the root-soil interface.
For instance, bacterial mycophagy consists on bacteria’s
ability to actively grow at the expense of living fungal
hyphae [175, 176]. Recently, it has been suggested that
diverse mycophagous bacteria colonize saprotrophic
rhizosphere fungi and feed as secondary consumers on
root-derived carbon [177]. Similarly, specific fungi can
grow, feed, and reproduce on other fungi (i.e., mycopara-
sitism), leading to the death of the latter [178]. This

lifestyle appears to be ancient since it has been dated to
at least 400 million years ago based on fossil records
[179]. Some fungal or oomycetal species belonging to
the genus Trichoderma or Pythium, respectively, can
parasite or antagonize other fungi or oomycetes and can
be used as biocontrol agents for plant protection, since
they can also intimately interact with plant roots without
causing disease symptoms [92, 180, 181]. Root-
associated bacteria can also prey on other bacteria as de-
scribed for Bdellovibrio spp. Phylogenetic and prey range
analyses suggested that root-associated Bdellovibrio spp.
differ from those in the soil, likely because these bacteria
are best adapted to prey on root-associated bacteria
[182]. Protist predation on bacteria has been also well
documented [183], and recent microbiota reconstitution
experiments in microcosm indicate a clear effect of Cer-
comonads (Rhizaria: Cercozoa) grazing on the structure
and the function of the leaf microbiota [184]. Their re-
sults indicate that Alpha- and Betaproteobacteria are less
resistant to grazing and that predation restructures the
bacterial network in leaves and influences bacterial
metabolic core functions [184]. These data are consist-
ent with the hypothesis that microbes are trophic ana-
logs of animals and that trophic networks are likely
important organizational rules for microbiota establish-
ment [185].

Importance of intermicrobial interactions for
structuring plant-associated microbial
communities
The various mechanisms employed by microbes to co-
operate and compete on plant tissues suggest that
microbe-microbe interactions play fundamental roles in
shaping and structuring microbial networks in nature.
Therefore, the combination of host-microbe and microbe-
microbe interactions is likely critical for the establishment
of complex and diverse multi-kingdom plant-associated
microbiota (Fig. 3) [186, 187]. However, the mechanistic
understanding of the intermicrobial interactions in a com-
munity context as well as their functional impacts on
plant-associated microbial communities remains sparse.
In this section, we discuss recent data obtained from
microbial community profiling studies and associated
ecological networks that underline the importance of
microbe-microbe interactions for shaping microbial com-
munities on plant tissues.

The mycosphere: a niche hosting specific inhabitants
As part of the mycosphere, fungal hyphae or fruiting
bodies have been recognized for a long time as important
niches that can be colonized, both externally and internally,
by specific bacterial taxa, including Pseudomonas strains
and bacteria from the Oxalobacteraceae, Bacillaceae, and
Burkholderiaceae families, among others [188–192].
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Fungal exudates seem to play a specific role for myco-
sphere colonization by stimulating the growth of specific
bacteria or inducing changes in bacterial community struc-
ture [193–195]. Particularly, exudates produced by the
arbuscular mycorrhizal fungus Rhizophagus irregularis
have been shown to stimulate bacterial growth and modify
bacterial community structure, which is marked by an in-
creased abundance of several Gammaproteobacteria [194].

Notably, bacterial ability to colonize the mycosphere corre-
lates with their ability to use particular carbonaceous com-
pounds abundantly found in mycosphere exudates such as
L-arabinose, L-leucine, m-inositol, m-arabitol, D-mannitol,
and D-trehalose [195]. Analysis of the soil bacterial com-
munity in the presence and absence of the arbuscular
mycorrhizal fungus Glomus hoi using a microcosm experi-
ment also revealed the significant effect of the fungus on

Fig. 3 Representative microbial networks in different plant habitats. The figure illustrates microbial communities in the soil, air, rhizosphere,
phyllosphere, and inside plant tissue (endosphere). In each of these habitats, microbes (represented by colored circles) could interact positively,
negatively, or do not interact with other microbes (no lines). Specific microbes, often defined as “hub” or “keystone” species (circles highlighted in
bold), are highly connected to other microbes within the networks and likely exert a stronger influence on the structure of microbial communities.
(a) Root-associated microbes mainly derive from the soil biome. (b) Leaf-associated microbes originate from various sources such as aerosols, insects,
or dust. (c) Relocation between aboveground and belowground microbiota members. The combination of microbe-microbe and host-microbe
interactions is proposed to be critical for the establishment of the plant microbiota
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bacterial community structure and suggests that nitrogen
export by the fungus is an important driving force
explaining bacterial community shift [196].
Recent studies have analyzed the bacterial diversity

associated with mycorrhizal root tips, revealing the com-
plexity of the interactions between mycorrhizal fungi
and their associated bacterial microbiota in the mycor-
rhizosphere [134, 197–200]. Specifically, some bacterial
orders (Burkholderiales and Rhizobiales) were reprodu-
cibly found within ectomycorrhizal root tips, indicative
of a tight fungal-bacterial association [197]. Using
microcosm experiments and germ-free Pinus sylvestris,
Marupakula and collaborators recently found that root
tips colonized by three different ectomycorrhizal fungi
host statistically distinct bacterial communities. Al-
though all three mycorrhizal types tightly associate with
high abundance of Burkholderia, specific bacterial signa-
tures could be detected for each fungus [200]. Similar to
the mechanisms described for the mycorrhizosphere
[201], it is therefore likely that numerous plant-
associated fungi could indirectly impact bacterial com-
munities by different means such as changes in nutrient
availability, modulation of environmental pH, production
of fungal exudates, or nutrient competition.

Influence of pathogen invasion on the plant microbiota
Plant infection by pathogenic microbes often correlates
with microbial community shifts in different plant
compartments, including seeds [202], roots [203], wood
[204], and leaves [87]. Analysis of the impact of two
microbial invaders, the bacterial strain Xanthomonas
campestris pv. campestris (Xcc) 8004 and the fungal iso-
late Alternaria brassicicola (Ab) Abra43 on the structure
of seed-associated microbial assemblages in Raphanus
sativus, indicates the different effect on the endogenous
seed microbiota. The bacterial strain Xcc 8004 has no
effect on microbial assemblages, whereas seed invasion
by the fungal pathogen massively perturbs the resident
fungal seed microbiota. Seed invasion by the pathogenic
fungus explains ~ 60% of the variation of fungal commu-
nities observed between infected and non-infected seeds,
likely due to fungal-fungal competition for resources and
space [202]. Infection of oak leaves by the obligate
filamentous pathogens Erysiphe alphitoides (powdery
mildew fungus) or A. thaliana leaves by Albugo sp.
(oomycete) is accompanied by significant changes in the
composition of the phyllosphere microbiota [87, 205].
Notably, the pathogen Albugo has strong effects on
epiphytic and endophytic bacterial colonization by de-
creasing species richness and stabilizing the community
structure, which has been validated by manipulation ex-
periments under controlled laboratory conditions [87].
Based on microbial correlation networks, Jakuschkin and
collaborators identified 13 bacterial and fungal OTUs

that significantly associate, either negatively or positively,
with powdery mildew disease. Although the protective
activities conferred by the corresponding microbes have
not been validated yet, a direct antagonistic effect of
Mycosphaerella punctiformis on E. alphitoides has been
suggested [205]. Significant associations were also found
between the composition of the endogenous fungal
microbiota in poplar leaves and rust symptom severity,
suggesting that resident foliar fungal endophytes can en-
hance or attenuate disease severity in wild trees [206].
Taken together, these data indicate a tight link between
pathogen invasion and the microbial community struc-
ture in planta that likely results from the combined effect
of microbe-microbe and microbe-host interactions.

Co-occurrence and co-exclusion relationships among
plant microbiota members
Until recently, microbial profiling data were primarily
used to characterize the overall structure of plant-
associated microbial communities as well as to determine
the contribution of different factors on community struc-
ture. Currently, bioinformatics tools have been also devel-
oped to infer microbial co-occurrence networks from
community profiling or metagenomic data [207, 208].
Microbial association networks, built based on pairwise
comparisons between abundance profiles of individual
taxa, allow the identification of possible connections
(either positive, neutral, or negative) among plant micro-
biota members [32, 41, 87, 209]. Although these correla-
tions do not necessarily predict causal relationships [210],
analysis of plant-associated microbial networks tends to
indicate that positive correlations dominate among mi-
crobes from the same kingdom, whereas negative interac-
tions primarily occur through inter-kingdom microbe-
microbe interactions [87]. These results suggest that
evolutionary selection might have primarily favored
competitive mechanisms between phylogenetically distant
microbial groups, rather than between closely related taxa.
Nonetheless, intra-kingdom competition through anti-
biotic secretion is known to sculpt bacterial networks in
the rhizosphere, since the pattern of co-association was
found to correlate with Streptomyces antagonistic activity
[187]. Furthermore, it has been recently shown that mi-
crobial network analysis allows the identification of micro-
bial taxa that positively associate with the absence of root
infection by Rhizoctonia solani [211] or leaf infection by E.
alphitoides [205]. These microbial taxa represent putative
biocontrol agents that can be further validated through
antagonistic activity tests and may represent interesting
candidates for disease management. These sparse exam-
ples illustrate the power of microbial networks for
identifying putative functional links among microbiota
members. It remains nonetheless crucial to subject micro-
bial network architecture to experimental testing in order
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to enable the transition from correlation- to causation-
based studies.

Microbial hubs as modulators of plant-associated
microbial communities
Microbial network analysis represents an elegant way to
identify specific microbes that have a more central pos-
ition in the network, often defined as “keystone” species
or “hubs.” These microbes frequently co-occur with
other taxa (highly connected to other microbes within
the network) and likely exert a strong influence on the
structure of microbial communities (Fig. 3) [87, 208]. A
comprehensive survey of bacterial, fungal, and oomyce-
tal communities associated with the leaves of A. thaliana
revealed the presence of few microbial hubs, such as the
obligate biotrophic oomycete pathogen Albugo sp. and
the basidiomycete yeast fungus Dioszegia sp., that act by
suppressing the growth and diversity of other microbes.
Other candidate bacterial hubs (Comamonadaceae) were
also found to positively control the abundance of numer-
ous phyllosphere bacteria [87]. Specific leaf-associated
Cercomonads (Protists: Rhizaria: Cercozoa) were also re-
cently shown to exert a significant effect on bacterial
community composition. A less complex bacterial cor-
relation network with a higher proportion of positive
correlations was observed in the presence of protists,
underlining the importance of predator-prey interactions
for bacterial community structure [184]. In plant roots,
Niu and colleagues have recently employed a simplified
seven-species synthetic community that is representative
of the maize root microbiota to study the role of in
planta interspecies interactions in altering the host
health and the establishment of root-associated bacterial
communities [212]. Notably, the removal of one com-
munity member, Enterobacter cloaceae, caused a signifi-
cant reduction in species richness indicating that E.
cloaceae plays the role of “keystone” species within the
seven-species community. In perennial plants, network
analysis of mycorrhizal and endophytic fungi from beech
trees (Fagus sp.) revealed the presence of two distinct
microbial networks, consisting of diverse functional
groups of mycorrhizal and endophytic fungi. Import-
antly, a different fungal hub dominates in each module
(either Oidiodendron sp. or Cenococcum sp.), suggesting
that diverse fungal hubs can differentially sculpt micro-
bial assemblages within a single plant population [213].
However, microbial hub species identified through co-
occurrence network analysis could represent generalist
microbes that are reproducibly and abundantly found in
plant tissues. These microbial hub species likely act on
microbial communities either directly via microbe-
microbe interactions and/or indirectly through (1) cascade
modifications in the interconnected microbial network,
(2) competition for space and nutrients, (3) alteration of

the host immune system, or (4) modification of the host
physiology. Validating the functional role of microbial
hubs and determining the molecular mechanisms used by
these microbes to modulate microbial community struc-
ture must now be prioritized using microbiota reconstitu-
tion experiments with germ-free plants.

Cascading consequences of intermicrobial
interactions on plant growth and health
Although competitive and cooperative interactions sig-
nificantly impact plant-associated microbial assemblages,
these microbial interactions might also alter plant
growth and fitness in beneficial or deleterious ways.
Although some correlations were observed between
microbial community composition and plant host phyl-
ogeny [37, 39, 214], it is likely that a core plant micro-
biota has evolved with terrestrial plants (lycopods, ferns,
gymnosperms, and angiosperms) over 450 million years
[214] (Fig. 2). Therefore, it is plausible that these co-
occurring core microbiota members have evolved, in
parallel, niche-specific inter-microbial interactions strat-
egies that impact plant growth and health.

Intermicrobial interactions and plant growth promotion
Bacterial-mycorrhizal-plant relationships have been inten-
sively studied since this microbial interplay can provide a
direct benefit for the host plant [215]. The interaction be-
tween mycorrhizal fungi and specific rhizobacteria pro-
motes the establishment and functioning of mycorrhizal
symbioses with the plant host, including both endo- and
ectomycorrhizal interactions [13, 216–220]. These so-
called “helper” bacteria are able to act at several levels: (1)
they increase the receptivity of the root to mycorrhizal
fungi, (2) enhance soil conduciveness to the fungus, (3)
promote germination of fungal spores, and (4) enhance
mycelium survival [217]. Furthermore, this relationship
appears to be specific, since some bacteria isolated from
specific mycorrhizal fungi have antagonistic activities
towards other phylogenetically unrelated fungi [217]. Be-
yond mycorrhiza helper bacteria, some bacterial endosym-
bionts of root-associated fungi also directly affect the
plant host, as demonstrated for Rhizobium radiobacter F4.
This Serendipita indica’s (formerly Piriformospora indica)
endosymbiont is able to grow in the absence of its fungal
host and can promote plant growth and resistance to plant
leaf pathogens independently from S. indica, suggesting
that S. indica-mediated plant growth promotion is partly
mediated by its bacterial endosymbiont [221, 222] or by
other bacterial members influencing fungal growth [223].
In nature, most land plants are co-colonized by fungal

and bacterial symbionts, as well as a staggering diversity
of endophytic and pathogenic microbes [59, 61]. However,
it remains unclear how the competing demand of multiple
partners is balanced in plant roots to maintain a beneficial
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output. A focus of interest is the cooperation between
mycorrhizal fungi and nitrogen-fixing bacteria. These im-
portant members of the root microbiota are widespread
and co-occur in the roots of many plant species [216].
Interestingly, it has been recently shown that these mi-
crobes can complement each other to maximize nutrient
acquisition in the host and act synergistically to promote
plant diversity and productivity [10]. Although the direct
role of microbe-microbe interaction in this process is
likely minor, mixed microbial consortia could, nonethe-
less, indirectly stimulate ecosystem functioning and plant
productivity through different resource use strategies.

Intermicrobial interactions and disease suppression
Soil bacterial communities from different taxonomic
groups have an important biocontrol potential in the so-
called “disease-suppressive” soils. In these soils, plants
are less affected by pathogenic microbes due to the ef-
fect of their surrounding microbiota. Specifically, it has
been proposed that fungal oxalic acid produced by the
fungal root pathogen Rhizoctonia solani or compounds
released from plant roots under attack promotes the
growth of particular bacterial families (Oxalobacteraceae
and Burkholderiaceae), leading to a bacterial community
shift and the activation of bacterial stress and antagonis-
tic responses that restrict the growth of the fungal
pathogen [6, 224]. Furthermore, it has been shown that
Streptomyces strains isolated from disease-suppressive
soils can produce different VOCs with antifungal activity
[225]. Other Streptomyces species have also been isolated
from disease-suppressive soils from a strawberry field
[226]. These bacteria have been found to produce an anti-
fungal thiopeptide targeting fungal cell wall biosynthesis
in Fusarium oxysporum, suggesting that different bacterial
species use different competitive mechanisms [226].
Similarly, Santhanam and colleagues have elegantly

demonstrated how root-associated bacteria provide an
effective rescue to Nicotiana attenuata from the sudden-
wilt disease. Seed inoculation with a core consortium of
five bacterial isolates naturally adapted to the environment
provides an efficient plant protection under field condi-
tions, underlining the importance of using locally adapted
microbiota members to control plant disease [227]. In the
phyllosphere, it has been shown that the leaf surface
microbiota, together with endogenous leaf cuticle mecha-
nisms, leads to A. thaliana resistance against the broad
host range necrotrophic fungal pathogen Botrytis cinerea
[7]. Although it is not clear whether these bacterial com-
munities were already stable or restructured after patho-
gen attack, it is likely that the plant actively recruits
disease-suppressive bacteria during seed production or
germination [19, 228]. Although many examples illustrate
the biocontrol activity of plant-associated microbiota
members, the molecular mechanisms leading to pathogen

growth suppression on plant tissues remain sparse. Re-
cently, it has been shown that the millet bacterial endo-
phyte Enterobacter sp. can promote both growth and
bending of millet root hairs, resulting in a multilayer root-
hair endophyte stack that efficiently prevents entry by the
fungal pathogen Fusarium. Tn5-mutagenesis further
demonstrated that bacterial biocontrol activity re-
quires c-di-GMP-dependent signaling, diverse fungicides,
and resistance to a Fusarium-derived antibiotic [111].
Although it is known that the plant-associated micro-

biota can prevent disease, it remains difficult to engineer
functionally reliable synthetic microbial consortia that
promote plant growth and suppress disease. Reductionist
approaches with synthetic microbial consortia suggest
that pathogen suppression increases when the diversity
of the bacterial consortium increases. It has been shown
that complex Pseudomonas species consortia better pro-
tect tomato plants against the root pathogen Ralstonia
solanacearum than low-complexity Pseudomonas spp.
consortia, due to the combined action of antagonistic
activities and resource competition [229]. Similarly, Wei
and collaborators showed that disease incidence is re-
duced when the trophic network favor resource compe-
tition between non-pathogenic R. solanacearum and a
pathogenic strain, due to overlap in resources acquisition
[152]. These highlighted examples provide evidence that
microbial diversity, resource competition, and intermi-
crobial antagonism are important factors to consider for
engineering functionally relevant microbial consortia
that efficiently suppress plant diseases.

Intermicrobial interactions and disease facilitation
Intermicrobial interactions do not necessarily impact
plant fitness in a positive way but can also be deleterious
for the plant by enhancing disease. For instance, the
bacterial plant pathogen Clostridium puniceum secretes
clostrubins (antimicrobial polyketide) to compete against
other microbial pathogens and survive in aerobic
environments [230]. It has been also shown that toxin
production by the bacterial endosymbiont of the plant-
pathogenic fungus Rhizopus is required for successful
fungal colonization of rice plants, indicating that fungal-
bacterial symbioses can also promote disease [140].
Recently, high-throughput fungal profiling methods,
combined with manipulative experiments, have shed
new light on the ecological importance of fungal endo-
phytes for rust disease modification in wild trees. Au-
thors specifically showed that certain fungal endophytes
in the poplar phyllosphere could reduce rust disease
symptoms, whereas others promote susceptibility [206].
Taken together, these studies clearly show that intermi-
crobial interactions are complex and can also mediate
disease facilitation.
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Conclusions
Plants live in intimate association with complex and
diverse microbial communities. Next-generation sequen-
cing has already enabled us to explore different microbial
groups through the targeting of specific microbial loci or
using environmental metagenomes. Nonetheless, a more
holistic understanding is still needed to better understand
the intermicrobial interactions within the microbiota of
plants and to better define the functional relevance of the
microbial networks for holobiont fitness [18, 231]. Pro-
karyotic and eukaryotic microbes have evolved a myriad
of cooperative and competitive interaction mechanisms
that shape and likely stabilize microbial assemblages on
plant tissues. However, most of the data are derived from
one-to-one interaction studies, and only few incorporate
complex microbial communities in controlled laboratory
conditions to reconstitute the plant microbiota and to
understand the role of intermicrobial interactions. Such
experiments will shed new light on the fundamental
principles that govern the assembly of complex mi-
crobial communities and the maintenance of host-
microbial homeostesis. Combining both empirical
approaches [168–170, 232] and computationally in-
ferred association networks [233–236] will be crucial to
understand the ecology of microbial interactions during
plant-microbiota establishment, to better predict assembly
and stability of natural or synthetic microbial communi-
ties, and to better define the dynamics of microbial com-
munity establishment in time and in space. Finally, it is
important to consider microbe-microbe interactions to
accept or reject the hologenome theory, which postulates
that selection can operate on horizontally acquired plant
microbiota members. According to this concept, it is likely
that microbes that tightly associate with plants also evolve
community level microbe-microbe interaction strat-
egies that allow them to persist within the plant
holobiont. It is now crucial to determine whether the
microbiota of plant shows high heritability, and to dis-
sect whether community-level selection occurs between
the host and the microbial community and between
members of the microbial community.
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