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Abstract

Background: The human intestine and its microbiota is the most common infection site for soil-transmitted helminths
(STHs), which affect the well-being of ~ 1.5 billion people worldwide. The complex cross-kingdom interactions are not
well understood.

Results: A cross-sectional analysis identified conserved microbial signatures positively or negatively associated with
STH infections across Liberia and Indonesia, and longitudinal samples analysis from a double-blind randomized trial
showed that the gut microbiota responds to deworming but does not transition closer to the uninfected state. The
microbiomes of individuals able to self-clear the infection had more alike microbiome assemblages compared to
individuals who remained infected. One bacterial taxon (Lachnospiracae) was negatively associated with infection in
both countries, and 12 bacterial taxa were significantly associated with STH infection in both countries, including Olsenella
(associated with reduced gut inflammation), which also significantly reduced in abundance following clearance
of infection. Microbial community gene abundances were also affected by deworming. Functional categories identified
as associated with STH infection included arachidonic acid metabolism; arachidonic acid is the precursor for
pro-inflammatory leukotrienes that threaten helminth survival, and our findings suggest that some modulation
of arachidonic acid activity in the STH-infected gut may occur through the increase of arachidonic acid
metabolizing bacteria.

Conclusions: For the first time, we identify specific members of the gut microbiome that discriminate between
moderately/heavily STH-infected and non-infected states across very diverse geographical regions using two
different statistical methods. We also identify microbiome-encoded biological functions associated with the STH
infections, which are associated potentially with STH survival strategies, and changes in the host environment.
These results provide a novel insight of the cross-kingdom interactions in the human gut ecosystem by unlocking
the microbiome assemblages at taxonomic, genetic, and functional levels so that advances towards key mechanistic
studies can be made.
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Background
The gut microbiota of healthy older children and adults
is complex but relatively stable in composition and func-
tion [1]. The gut microbiota has a large impact on hu-
man physiology, and has been demonstrated to
modulate immune function, growth [2–4], metabolism,
and overall health [5]. Helminths that reside in the gut
can directly affect the immune system [6–8] or can in-
directly influence the immune system through their
effects on the gut microbiota and on the intestinal mu-
cosa. Children are often exposed to helminth infections
prior to the stabilization of their microbiota (up to 42%
by 3 years of age [9]), increasing the risk of a lifetime
disruption of normal microbial community development
that can lead to long-term dysbiosis (possibly due to a
reduced ability to extract nutrients from food for host
absorption) [10]. Understanding the detailed relationship
between helminths and the microbiota will provide im-
portant insights into how to reduce the negative impacts
of helminth infection through simple nutritional strat-
egies to supplement anthelminthic treatment as an inte-
grated therapeutic tool [10]. However, little is known
about the interactions between bacteria, the most preva-
lent soil-transmitted helminths (STHs; hookworms
(Necator americanus and Ancylostoma duodenale], large
roundworm [Ascaris lumbricoides], and whipworm
[Trichuris trichiura]), and the human gut.
The massive number of infected individuals (1.5 billion),

constant reinfections, highly variable drug efficacies, and
disappointing treatment success rates for some species
(e.g., whipworms [11]) make STHs one of the most im-
portant causes of chronic morbidity in the world. Despite
massive efforts to control STHs [12], their prevalence re-
mains high because of high rates of reinfection (i.e., 94,
82, and 57% for Ascaris, whipworm and hookworm, re-
spectively; [13]). Furthermore, drug resistance (frequently
against all three classes of anthelmintics) is common in
veterinary helminthes [14], and resistance to montepantel
(the latest anthelmintic introduced to the market) arose
within 4 years of its release [15]). These problems of drug
resistance may eventually pose a risk in humans [16]. This
is especially important since according to WHO recom-
mendations, the current target is to reduce moderate and
heavy infections to less than 1% among school children
[17], requiring high treatment coverage and increasing the
selection for drug resistance in human nematode popula-
tions. Therefore, developing an integrated and sustainable
STH management strategy for humans is urgently needed.
Given recent progress in microbiome-driven therapeutics
[18], gut bacterial genomics could offer insights that have
eluded decades of mechanism-based and classic pharma-
cologic approaches to treatment, and may present
opportunities for enhancing deworming efforts and under-
standing helminth-microbiome interactions.

The role of commensal bacteria in STH infections is
not well understood, but it is recognized that active
cross-kingdom talk exists (mainly based on animal stud-
ies, e.g., [19–25]), However, studies in humans have been
very limited to date, with only two published cross-
sectional studies [26, 27]. In addition, results from these
studies were inconsistent. The study from Ecuador did
not identify any association between STHs and the fecal
microbiome [27] while the study from Malaysia found
significantly higher microbiota richness in feces from
humans with whipworm infections [26]. More studies
are needed to determine if this discrepancy is related to
confounding factors, such as the different geographical
regions, different helminth species, the depth of sequen-
cing, or the platform used (2 k 454/Roche vs. 19 k
Illumina reads per sample). Overall, it has been noted
that strong conclusions about the nature of helminth
interactions with the gut microbiome have been limited
by the small number of studies, variations in sampling
and analysis techniques, and small sample sizes within
each study [28].
Here, we greatly expand on the existing knowledge of

interactions between the human gut microbiome and
STHs by precisely defining the microbial ecology under-
lying the STH infections in two very distinct geographic
regions (Liberia and Indonesia) and identifying
conserved STH-associated taxa despite the very different
gut microbiome structure among individuals from these
regions. To determine the association among the STHs
and the gut microbiome, we considered only moder-
ately/heavily infected and uninfected individuals (with
precisely-quantified infection status). We successfully
identified bacterial taxa positively and negatively associ-
ated with single and/or multiple worm infections.
Furthermore, we compared the longitudinal changes in
microbiomes from a double-blind randomized trial,
identifying bacterial taxa that respond to deworming,
while taking the time and treatment effects into consid-
eration. Reconstruction of the metabolic pathways of the
microbial communities on a subset of the longitudinal
samples revealed functions differentially affected by
deworming. The results provide novel (and much more
comprehensive) understanding of the cross-kingdom in-
teractions and provide a solid foundation for designing
experiments to determine mechanistic insight of these
interactions during infections and after deworming.

Results
Our sample set included 402 fecal samples from 250 indi-
viduals from different villages in Liberia (n = 98; Table 1,
Additional file 1: Table S1) and Indonesia (n = 304; Table
1, Additional file 2: Table S2). All samples were sequenced
using targeted metagenomics (V1 V3 hypervariable region
of 16S rRNA gene), and relevant sample set comparisons
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discussed below are shown in Fig. 1. A subset of samples
(n = 24; Additional file 3: Table S3) were sequenced using
a metagenomic shotgun approach. The STH species en-
demic in the studied areas included Ascaris lumbricoides
(“Ascaris”), Necator americanus (“Necator”), and Trichuris
trichiura (“Trichuris”). Other intestinal helminths such as
Ancylostoma duodenale, Enterobius vermicularis, or
Strongyloides stercoralis were not detected in the study
population.

Diagnostic accuracy and precise worm burden quantitation
drive accurate microbiome characterization
Morbidity due to STHs is strongly correlated with infec-
tion intensity [29], as measured by the Kato-Katz smear
in eggs per gram (EPG) of feces (per WHO recommen-
dations). However, it is widely recognized that this

microscopy-based test is suboptimal and labor insensi-
tive [30], with high day-to-day variation [31]. In contrast,
quantitative real-time PCR (qPCR) provides consistent
results for detecting single or multiple parasitic
infections in stool (mixed infections are common in
most STH endemic countries [32, 33]). For the 98 sam-
ples collected from Liberia (Table 1, Additional file 1:
Table S1), we compared STH abundance using both
qPCR cycle threshold (CT) values (Additional file 4:
Table S4) and the standard EPG procedure (Fig. 2a, b)
for samples with “moderate/heavy infections” according
to EPG thresholds recommended by the WHO (over
5000 and 2000 EPG for Ascaris and Necator, respectively
[11, 34]). Consistent with a previous study analyzing As-
caris and Necator fecal abundance [32], a significant cor-
relation between EPG and CT was found for both
Ascaris (Fig. 2a) and Necator (Fig. 2b), the two most
prevalent species among these individuals (P < 10− 5).
However, at a CT value of 28 and below (chosen based
on the lines of best fit for both Ascaris and Necator, as
well as being the median detectable value in the previous
study for Necator [32]), different subsets of individuals
were identified as being moderately or heavily infected
[35], with the qPCR method being more sensitive and
identifying more individuals as STH positive overall. For
all comparative analysis in this study (Fig. 1), only
individuals with zero eggs and zero detection by qPCR
(CT value ≥ 40) were used as negative controls, and indi-
viduals with ≤ 28 CT were considered infected.
The downstream effect of quantifying the level of in-

fection with qPCR instead of egg counting on bacterial
taxa associated with infection was tested using LEfSe
[36], which performs both a non-parametric Kruskal-
Wallis sum test and linear discriminant analysis to esti-
mate effect size (Fig. 2c, d; Additional file 5: Table S5).
Using this approach, 79 microbiome taxa were signifi-
cantly associated with the Ascaris-infected individuals
identified by qPCR (among samples from Liberia),
whereas only 31 are significant when using the

Table 1 Characteristics of 16S samples from Liberia and Indonesia

Category Country of origin

Liberia Indonesia

2008 2010

Total Number of samples 98 152 152

Number of villages sampled 8 3 3

Sex of individuals Male 45 68 84

Female 53 68 84

Age of individuals Average 26 27 29

Median 17.5 28 30

Min. (90th percentile) 6 6 8

Max (90th percentile) 59 49 51

Nematode presence*
according to qPCR (< 28CT)

Ascaris 18 23 18

Necator 8 32 15

Trichuris** 1 42 34

Any Infection 26 78 50

Multiple infections 4 16 14

Zero infection 48 43 83

*Moderate to heavy presence
**Trichuris identified by formol-ether concentration in Indonesia

Fig. 1 Sample set comparisons. Samples are excluded if they only have a low-level STH infection. Figures corresponding to each analysis
are indicated
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Kato-Katz identification method (Fig. 2c). Of the 18 taxa
identified as significant by both approaches, 16 are less
significant using the Kato-Katz identifications. Similarly,
for infections with any STH (Fig. 2d), 54 more taxa are
identified as significant by qPCR than by Kato-Katz (85
vs. 31, with 16 in common). Thus, the use of qPCR for
STH quantification used here results in more sensitive
detection of differentially abundant taxa, compared to
microscopy-based approaches.

Metadata analysis identified no significant cross-metadata
associations
“Hierarchical All-against-All” (HAllA; http://huttenhowe
r.sph.harvard.edu/halla) significance testing was used to
identify significant associations between the various
metadata, including infection status, cohort (according
to definitions in Fig. 1), village, age, and sex. With the
exception of positive Ascaris infections being associated
with any positive infection in Liberia (18 of 26 infected
samples had high Ascaris infections), no other significant
associations were found between the various metadata
according to thresholds used for HAllA in previous
studies (FDR q < 0.05, similarity score > 0.5; [37];

Additional file 6: Figure S1A). Principal component ana-
lysis (PCA) was also used to cluster the Liberia and
Indonesia samples according to relative taxa abundance
values. For each of the metadata visualized (infection
status in Additional file 6: Figure. S1B and S1D, and
village and sex in Additional file 6: Figure. S1C and
S1E), PERMANOVA [38] did not identify a significant
clustering association (P > 0.1 in all comparisons),
suggesting that it is not one of the metadata variables
that is driving the overall microbiome profiles of the in-
dividuals in the study, and that infection status did not
significantly correlate with any of the metadata.

STH-associated gut microbiota defined and validated
using independent geographical cohorts
Of the 98 individuals sampled from Liberia, 26 had high
STH infections (≤ 28 CT), while 48 had zero STH infec-
tion. Prevotella was dominant among the 98 individuals
accounting for an average of 32% of all 16S reads (Fig. 3).
Species richness was increased with STH infections
(89.5 vs 82.1 with no infection; P = 5.8 × 10− 3, 2-tailed t
test with unequal variance, Shapiro-Wilk test 0.98 for
normal distribution) and Shannon diversity index

Fig. 2 Comparisons of Kato-Katz and qPCR approaches for quantifying STH infections (based on Liberia samples). qPCR identifies more samples as being
positive for Ascaris (a) and Necator (b), and identifies a different subset of samples as being infected than Kato-Katz quantification. Horizontal dashed
lines = 28CT threshold for positivity, vertical dashed lines =moderate-infection according to Kato-Katz threshold, red dashed lines = line of best fit. c, d
Significance values for the association of bacterial taxa with infections of Ascaris (c) and any STH (d). Blue dots = significant in both comparisons, dashed
lines = adjusted significance thresholds of 0.05
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(measures evenness and richness of communities within a
sample) value was also increased (2.8 vs 2.4; P = 0.0008,
Shapiro-Wilk test 0.96), indicating higher alpha diversity
for infected individuals. In addition to an increased alpha
diversity, the average between-individual diversity
(Bray-Curtis beta diversity) was higher among the in-
fected individuals (0.52) than among the uninfected
individuals (0.43; P < 10− 5, 2-tailed t test with unequal
variance; Shapiro-Wilk W = 0.978).
As a cross-cohort baseline (pre-treatment) comparison,

we also characterized the microbiome in a separate cohort
comprised of 152 individuals from Indonesia (using the
2008 samples; Table 1, Additional file 2: Table S2). Unlike
in Liberia, a wide variety of taxa dominate the micro-
biomes of individuals in Indonesia (Fig. 4), resulting in less
structured clustering. In Indonesia, within-individual
alpha diversity (Shannon diversity) was higher than in the
Liberia individuals (average 3.0, no significant difference
between infected and uninfected) and species richness
was lower (partially due to the sequencing platform;
Additional file 7: Figure S2). However, the pattern of
higher richness among infected individuals was also
observed here (66.9 in infected individuals, 63.8 in unin-
fected individuals; P = 0.049). Unlike in Liberia, the
between-individual diversity among infected individuals in
Indonesia (0.606) was not significantly different than
among uninfected individuals (0.607; P = 0.86).

Overall, between-individual diversity was much higher
in Indonesia (0.618) than in Liberia (0.473; P < 10− 5), pro-
viding a distinct cohort for comparison. The overall gut
microbiome compositions at the phylum level (Fig. 5)
indicated that the baseline microbiomes for infected and
uninfected individuals (Fig. 5a) in Indonesia were domi-
nated by Firmicutes, while the Liberia individuals were
dominated by a similar ratio of both Firmicutes and Bac-
teroidetes, with a reduction of Bacteroidetes among in-
fected individuals. The dataset from the previously
published Ecuador study [27] identified Firmicutes and
Bacteroidetes abundances between those of Indonesia and
Liberia, with no large differences in phylum abundance
between infected and uninfected individuals
(Additional file 8: Figure S3). Comparing the Shannon di-
versity index for each phyla between infected and unin-
fected individuals (Fig. 5b), we observed that Bacteroidetes
had a significantly higher diversity among infected individ-
uals in both countries (P = 0.008 in Liberia and P = 0.011 in
Indonesia) while Actinobacteria diversity was higher among
infected individuals in Liberia (P = 0.013) but lower among
infected individuals in Indonesia (P = 0.042). These results
indicate that different phyla dominate the samples from the
different cohorts, and that the STH-associated differences
in the overall phyla are not consistent between them.
Differential bacterial taxa abundance was tested using

LEfSe [36]. First, taxa associated with single STH

Fig. 3 Bray-Curtis distance-based clustering of the 98 fecal samples from Liberia based on microbiota profiles
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infections (zero abundance of other STHs) were identi-
fied for individuals infected with Ascaris (n = 12),
Necator (n = 12) or Trichuris (n = 19) in Indonesia (base-
line 2008; Fig. 1, Fig. 6a, b). Most of the identified differen-
tially abundant taxa (38/51 positively and 29/34 negatively
associated) were associated with a specific STH species in-
fection, while one genus (Succinivibrio) and its family and
order were positively associated with infection of each of
the STHs individually. Solobacterium was positively asso-
ciated with Necator and Trichuris, while Desulfovibrio and
its family, order and class were positively associated with
Ascaris and Trichuris (also previously found to be in-
creased in pigs infected with T. suis [39]). Five taxa (four
Firmicutes and one unclassified Bacteroidetes) including
Allobaculum were positively associated with Ascaris and
Necator. Additionally, four taxa including Lachnospiraceae
(also discussed below) were negatively associated with
Ascaris and Necator, and Rhodococcus was negatively
associated with Ascaris and Trichuris (Additional file 5:
Table S5). These results indicate that individual STH spe-
cies mainly associate with specific microbiome taxa.
Comparisons of the taxa significantly associated with

any STHs in both countries (Fig. 6c; Fig. 1; 2008 samples

used for Indonesia) showed that Lachnospiraceae incer-
tae sedis was the only consistently negatively associated
genus, and the most significant positively associated gen-
era were Olsenella, Flavonifractor, and Enterococcus.
Altogether, 7 of the 12 taxa increased with infection in
both countries belonged to the Firmicutes phylum, in-
cluding 4 genera from the Clostridales order.
We have also independently analyzed the previously-

published Ecuador dataset [27] (n = 97) using our analysis
pipeline (data from the study on Malaysia individuals [26]
was not available in public databases), identifying associa-
tions (positive or negative) between STH infections and
17 genera. All of the 7 individual taxa positively associated
with STH infection in Ecuador belonged to the phylum
Firmicutes, including 2 taxa from the class Clostridia
(which included the genera Eubacteria) and 5 taxa from
the class Bacilli, which included 3 Lactobacillales (order)
taxa and the genera Streptococcus. In our current study,
we likewise have identified cross-cohort STH-associated
members of Lactobacillales (Enterococcus, Enterococca-
ceae, and an unclassified Lactobacillaceae family; P =
0.002 and 0.0003 for over-representation compared to all
detected taxa in Liberia and Indonesia, respectively;

Fig. 4 Bray-Curtis distance-based clustering of the 152 fecal samples from Indonesia (at baseline, 2008) based on microbiota profiles

Rosa et al. Microbiome  (2018) 6:33 Page 6 of 19



binomial distribution test) and Clostridia (the genera
Butyrivibrio, Flavonifractor, Mogibacterium, and Oscilli-
bacter; not significantly over-represented compare to all
detected taxa), with a total of 10 of the 15 cross-cohort
taxa belonging to Firmicutes (P = 0.0004 and 0.02 for
over-representation compared to all detected taxa in
Liberia and Indonesia, respectively).

Microbiome-based predictive STH-infection model and
validation
We utilized a supervised machine-learning technique for
identifying non-linear relationships in high dimensional
microbiome data (random forest (RF) [40]) to identify
STH-infection discriminating taxa in the Liberia individ-
uals (Fig. 6d), and tested its predictive value in the
Indonesia individuals. The RF model built using the
Liberia samples had 74.3% classification power within
the Liberia dataset (by “out of bag” error), and 72.4%
predictive power for STH infections for the Indonesia
validation dataset, with the top-ranked taxa being
Eggerthella, Allobaculum, Olsenella, and Lachnospiracae
incerta sedis (according to their “importance score”,
measured using the mean decrease in the model’s

accuracy as a result of excluding a taxa [1]). The LEfSe
and RF approaches identify many of the same microbiota
members as being significantly associated with STH
infection in both geographical regions, including Olse-
nella, Lachnospiracae incerta sedis, Allobaculum, and
other members of the Erysipelotrichaceae family, which
provides further statistically independent verification of
the cross-cohort association of these taxa with STH in-
fection. As with the LEfSe analysis, most of the most
significantly differentially abundant taxa had relatively
low abundance in our dataset, highlighting the critical
importance of both accurate and comprehensive sam-
pling of the microbial communities. Performance im-
provement (up to 92% predictive value) can be achieved
when phylogenetic dependency for grouping microbial
data is used, as we have shown using subset of the indi-
viduals [41]; however, here a standard RF analysis is used
for straightforward comparison to the LEfSe results.

Abundance correlation networks identify clusters of
infection-related taxa
In order to better understand the relationship between
differentially abundant taxa, correlation networks were

Fig. 5 Phylum-level microbiome comparisons between Liberia and Indonesia, infected and uninfected individuals. a Relative phylum abundance
and richness for each sample set. b Per-phylum comparisons of within-sample diversity among each sample set
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generated based on 16S abundances across all taxa iden-
tified at the genera level (Fig. 6e, f ). SPARCC correlation
values [42] (calculated based on 16S profiles while
accounting for community diversity and utilizing appro-
priate statistics to deal with a high number of zero
values) were utilized for network generation (P ≤ 0.05,
correlation ≥ 0.2). Several genera were differentially
abundant in both countries (Fig. 6e, f ) and formed
correlation subnetworks which include country-specific
differentially abundant genera. In both countries, there
are subnetworks connecting four consistently STH-
associated genera (Oscillibacter, Flavonifractor, Butyrivi-
brio, and Allobaculum). In Liberia, this subnetwork
includes Mogibacterium and Olsenella, but these taxa
are separated in the Indonesia network. In both coun-
tries, Enterococcus is significantly associated with infec-
tion, but it clusters separately from the other taxa. These
networks provide further insight into which consistent

STH-associated taxa may be affected by similar bio-
logical mechanisms, or may possibly regulate each other.

Gut microbiota respond to STH deworming and self-clearing
Longitudinal study in Indonesia was used to analyze
changes in the microbiomes after deworming. Repeated
measures of the same 152 individuals in 2008 and 2010
were compared. These individuals were classified into
two study arms: uninfected individuals treated with an-
thelmintic or placebo, and infected individuals treated
with anthelmintic or placebo (Fig. 1; Table 1 and
Table 2; see “Methods”). Between the 2 years, 16 indi-
viduals were treated with anthelmintics but were never
infected in either year with any STH species (Fig. 1;
treatment effect), while another 16 were not treated and
were also never infected in either year (time effect).
Using the LEfSe enrichment approach (with individuals
specified as a repeated-measures subclass to perform

Fig. 6 The identification of taxa significantly associated with helminth infection. Baseline (2008) positively (a) and negatively (b) STH-associated taxa
are identified among individuals from Indonesia who were only infected by a single STH species. c Consistent STH associated-taxa are identified in
both Liberia and Indonesia. d The STH-discriminatory taxa of highest importance in classifying samples from the random forest (RF) analysis. Only taxa
with an “importance score” greater than 3 are shown in the figure, and many of these are the same taxa identified by LEfSe analysis in both countries.
e A correlation network, connecting genera based on abundance values across samples from Liberia. f A correlation network, connecting genera based
on abundance values across samples from Indonesia. Taxa of interest are identified with labels (bolded when significant in both countries only)
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longitudinal analysis), we identified 10 taxa differen-
tially abundant in the anthelmintic-treated but not the
untreated uninfected individuals between the 2 years,
including two genera-level taxa (Table 2 (A and B)): En-
terococcus, which was higher in 2010 compared to 2008
only among treated individuals (P = 0.009), and Ochro-
bactrum (and its family Brucellaceae), which was lower
in 2010 compared to 2008 only among treated
uninfected individuals (P = 0.037; Additional file 3:
Table S3). Earlier study tested 19 clinically relevant
antimicrobial agents against Ochrobactrum isolates and
showed their susceptibility to trimethoprim/sulfameth-
oxazole and ciprofloxacin [43] indicating that the

anthelmintic albendazole may be having a similar effect
as these antimicrobials.
A total of 27 STH-infected individuals were treated

with albendazole and dewormed, resulting in no (zero)
STH infection in 2010. Between 2008 and 2010, 18 taxa
were differentially abundant for this group, 7 of which
were not overlapping with the taxa from the treatment
effect or time effect and were therefore considered to be
differentially abundant as a result of deworming (Fig. 1;
Table 2 (C and D)). Of these seven taxa, three were
higher following deworming including Sphingobacterium
(genus), an unclassified Deltaproteobacteria class, and
Clostridium_XVIII (genus), and four were lower

Table 2 Significantly differentially abundant taxa between 2008 and 2010 among groups of individuals of interest from the Indonesia dataset

Phylum Class Order Family Genus P value

A. Treatment effect—lower only after treatment

Proteobacteria Alphaproteobacteria Rhizobiales Brucellaceae 3.7E-02

Proteobacteria Alphaproteobacteria Rhizobiales Brucellaceae Ochrobactrum 3.7E-02

B. Treatment effect—higher only after treatment

Bacteroidetes Sphingobacteria 3.2E-04

Bacteroidetes Sphingobacteria Sphingobacteriales 2.0E-04

Bacteroidetes Sphingobacteria Sphingobacteriales Sphingobacteriaceae 5.1E-04

Bacteroidetes Flavobacteria 2.1E-03

Bacteroidetes Flavobacteria Flavobacteriales 2.1E-03

Bacteroidetes Flavobacteria Flavobacteriales Flavobacteriaceae 2.1E-03

Proteobacteria Gammaproteobacteria Pseudomonadales 7.6E-03

Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus* 9.3E-03

C. Deworming effect—higher only after deworming

Bacteroidetes Sphingobacteria Sphingobacteriales Sphingobacteriaceae Sphingobacterium 3.7E-02

Proteobacteria Deltaproteobacteria 3.8E-02

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Clostridium_XVIII** 4.2E-02

D. Deworming effect—lower only after deworming

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Xylanibacter 1.6E-02

Proteobacteria Betaproteobacteria Burkholderiales Sutterellaceae 2.0E-02

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc 4.0E-02

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Butyricimonas 4.2E-02

E. Self-cleared—higher only after self-clearing

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae 2.0E-02

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides 8.5E-03

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae 2.7E-02

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 4.6E-02

Synergistetes 3.5E-02

Synergistetes Synergistia 3.5E-02

Synergistetes Synergistia Synergistales 3.5E-02

E. Self-cleared—lower only after self-clearing

Actinobacteria Actinobacteria Coriobacteriales Coriobacteriaceae Olsenella* 1.4E-02

*Also higher among infected individuals at baseline in Indonesia and Liberia (conserved STH-associated taxa)
**Also higher among uninfected individuals at baseline in Indonesia
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following deworming, including Butyricimonas. Overall,
dewormed microbiomes in 2010 were more similar to
the corresponding infected samples in 2008 (average
Bray Curtis beta diversity = 0.630) than they were to un-
infected samples in 2008 (beta diversity 0.642, P = 0.014),
indicating that STH-associated microbiome taxa do not
consistently restore back to baseline uninfected state fol-
lowing deworming.
As a test of whether microbiome state can predict

long-term STH survival, we also compared the baseline
(2008) untreated, infected individuals who remained in-
fected in 2010 (n = 26) to those who were free from the
infection in 2010 without anthelmintic treatment (“self-
cleared”; n = 8; Fig. 1). We identified two taxa higher at
baseline among those who maintained the infection
(Dialister [genus], P = 0.048 and Clostridium XIVa
[genus], P = 0.035) and 12 which were higher at baseline
among those who would later self-clear, including the
genus Subdoligranulum (P = 0.021; Additional file 5:
Table S5). Looking between the 2 years, eight taxa were
significantly differentially abundant among self-cleared
individuals compared to de-wormed individuals and un-
infected individuals (Table 2 (E and F)). The average
between-sample diversity (Bray-Curtis beta diversity)
was lower among the self-clearing individuals at baseline
(2008) compared to individuals who were always in-
fected (0.58 vs 0.61, P = 0.06), and this difference became
higher and significant in 2010, (0.54 vs 0.60, P = 0.008),
suggesting that self-clearing individuals had more alike
microbiome structures compared to individuals who
remained infected. Self-cleared individuals were signifi-
cantly older on average (51.1 vs 21.4 years old; P = 0.012),
and this trend was also significant in individuals in 2008
(P = 0.026), at which time uninfected people were an aver-
age of 30.8 years old and infected individuals were an
average of 23.4 years old. This indicates that older individ-
uals may be less exposed to reinfection or become more
resistant to infection over time, and that specific
microbiome taxa are either associated with or contribute
to this resistance.
For the final differential 16S abundance test, we

compared the pre-treatment microbiomes of treated in-
dividuals in Indonesia who remained infected (N = 11;
non-responders) to those who were dewormed (N = 27;
responders), in order to identify taxa which may facili-
tate or prevent worm clearance (as defined by a 28CT
threshold for infection no detection for deworming).
This test identified 7 taxa which were significantly asso-
ciated with successful clearance following anthelmintic
treatment, including the genera Clostridium_IV, Turici-
bacter, and Collinsella, along with all of its parent phyl-
ogeny (phylum Actinobacteria, class Actinobacter, order
Coriobacteriales, family Coriobacteriaceae). In Liberia
(but not Indonesia), Turicibacter was significantly

negatively associated with baseline infection, suggesting
that it may be preventative for infection and also help to
clear infection (Additional file 5: Table S5). Clostridiu-
m_IV and Collinsella were both positively associated
with infection in Liberia (but not Indonesia), so these
genera are both associated with infection as well as with
worm clearance after treatment. On the other hand,
eight taxa were significantly associated with incomplete
worm clearance or reinfection including the genus
Akkermansia and its parent phylogeny, as well as
Ruminococcus genus (and two of its parent phylogeny),
which comprised and average 2.5% of the total micro-
biome in Indonesia and was significantly positively
associated with infection in Indonesia. This identifies
Ruminococcus as an important taxa both in terms of its
association with infection at baseline and its prevention
of parasite clearance.

Species level diversity in helminth-associated microbiomes
of newly infected and dewormed individuals
Metagenomic shotgun (MS) sequencing was performed
to obtain the species level resolution of the microbiome
from 24 stool samples (10 individuals, 2008 and 2010,
from the Indonesia dataset and 4 individuals from the
Liberia dataset; Additional file 3: Table S3). An average
of 154 million MS reads were generated per sample and
mapped to the bacterial reference genome database [44],
identifying 618 unique bacterial taxa across the samples
(average 301.4 per sample), with 82 taxa being identified
across all 24 samples (the average taxa was identified in
11.7 of 24 samples). Based on the species-level Bray-
Curtis diversity analysis, individuals who were both in-
fected with any level of any STH infection (n = 19, aver-
age diversity 0.54) and individuals who both had zero
STH infection (n = 5, average diversity 0.52) had more
consistent within-group overall microbiome profiles
than comparisons between the two groups (average
diversity = 0.59; P = 0.011 compared to infected and
P = 0.030 compared to uninfected). These results, with a
relatively small sample set, provide further evidence for a
distinct microbiome associated with helminth infection
and provides (for the first time) strain level accuracy of
the associated taxa.

Helminth-associated genetic and metabolic potential of
the gut microbial community
The genetic potential of the microbial communities was
evaluated by mapping the MS reads to a comprehensive
gut bacteria reference gene catalog database (see
“Methods”; obtained by stool samples from USA,
Europe, and China [45]). In order to perform a direct
comparison to samples from other regions, we used
representative samples from the Indonesia dataset, along
with representative samples from the USA (HMP data
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[44]) and from Liberia (Fig. 7; Additional file 4: Table
S4), down-sampled to 37.8 million reads each. An aver-
age of 67.2 and 72.7% of Indonesia and Liberia reads (re-
spectively) mapped to genes in the reference database,
but this proportion of reads was much higher for the
samples from the USA (86.1%; Fig. 7a), as expected due
to its over-representation in the database. However, the
overlap between Indonesia and Liberia was much higher
(737,397 genes, 23% of all genes) than between either of
these countries and the USA (88,145 genes and 174,802
genes, respectively). Only 46,770 genes (15% of detected
genes) were conserved among the 3 countries (Fig. 7b),
but an average of 45.7% of reads from each sample
mapped to these genes. An average of 69.9% of func-
tional groups per study area (68,038 KEGG OGs for all
study areas) per sample was shared among the three
sample groups (Fig. 7c). These results indicate that dif-
ferent gene sets perform similar functions between the
three study areas.
In a separate analysis, reads from the 20 Indonesia sam-

ples were mapped to the integrated gene catalog (IGC)
database [45]), and abundance values were compared per
orthologous group (OG) before (2008) and after (2010)
deworming using DESeq2 [46] (paired differential
analysis). A total of 114 and 80 OGs were identified as sta-
tistically higher and lower after deworming (respectively)
but not differential over time among consistently infected

individuals (Fig. 7d; Additional file 3: Table S3). In
addition, HUMAnN [47] was used to reconstruct the
metabolic pathways of the 20 Indonesia shotgun metage-
nomic datasets, and pathway enrichment was performed
using LEfSe [36] to compare STH-infected vs uninfected
samples, using the same criteria as the 16S samples (total
12 STH-infected and 5 uninfected, with 3 low-infected
samples excluded; Additional file 3: Table S3). The only
significantly enriched KEGG pathway among the meta-
genomes of STH-infected samples was “arachidonic acid
metabolism” (ko0059; Fig. 7e). The only KEGG Orthology
(KO) category significantly enriched among the micro-
biomes of STH-infected individuals was “thymidylate
synthase” (K00560). A total of 11 KOs were significantly
depleted among STH-infected individuals (Table 3; top
four visualized in Fig. 7f). These included (i) “RNA
Polymerase Sporulation-Specific Sigma Factor” (K03091)
and “Spore Coat Protein JC” (K06334), as well as
“Cysteine Desulfurase” (K04487) and “Ferrous Iron

Transport Protein B” (K04759). Together, these functional
enrichment approaches identify many STH-associated
microbiome functional pathways which offer further
insight into these associations.

Discussion
We focused on identifying and validating biologically
meaningful associations between STH infections and the

Fig. 7 MS mapping rates per geographical region. a The proportion of reads mapped in each of four representative MS samples per country. b Distribution
of genes identified among the four samples per country. c Distribution of functional KEGG OGs (KOGs) among the four samples per country. Although fewer
genes are shared among the three regions, there was a much higher overlap in terms of functional potential. d Orthologous group differential expression
between 2008 and 2010 for the four dewormed individuals from the Indonesia MS dataset. e–f Pathway and KOG abundance values between highly
infected (red, n= 12) and uninfected (green, n= 5) individuals from the Indonesia MS dataset
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gut microbiota and its functional potential by (a) com-
paring the fecal microbiome of moderately/heavily
STH- infected individuals to uninfected individuals
(detected by qPCR for increased sensitivity), (b) validating
the findings using subjects from a distinct geographical
cohort, (c) identifying conserved STH-associated and
STH-discriminatory taxa, (d) delineating microbiome as-
semblage changes as a result of de-worming/self-clearing,
and (e) identifying microbiome-encoded biological func-
tions associated with STH-infected individuals. While
answering these questions using several comparisons
between multiple cohorts (Fig. 1), technical aspects were
also considered to understand how study design, diagnos-
tic accuracy, precise STH burden estimation, and depth of
coverage affect optimal profiling of the microbiome.
Compared to Liberia which was dominated by Prevo-

tella, the microbiomes from Indonesia individuals were
comparatively highly variable and diverse, providing a
distinct microbiome background for cross-cohort com-
parison. Comparisons of the specific taxa significantly
associated with STHs in both countries (Fig. 6c) showed
that Lachnospiraceae incertae sedis was the only consist-
ently negatively associated genus, and the most signifi-
cant positively associated genera were Olsenella
(previously associated with reduced gut inflammation
and multiple sclerosis symptoms when administered as a
probiotic [48] and associated with lean individuals
compared to obese individuals [49]), Flavonifractor
(increased in the gut microbiome with systemic lupus er-
ythematosus [50]), and Enterococcus (previously found
to be increased in cats infected with Toxocara cati [51]).

Another significant positively associated genus,
Allobaculum, has been previously associated with gut in-
flammation [52] (with an elimination of this genera in
mouse gut models with high inflammation [53]), and has
been associated with weight reduction and negatively
correlated with leptin and the inflammation marker
Slc25a25 in mice, suggesting an important role in host
energy balance and intestinal responses [54].
Altogether, 7 of the 12 taxa increased with infection in

both countries belonged to the Firmicutes phylum, in-
cluding four genera from the Clostridales order. In our
independent analysis of the previously published
Ecuador dataset [27], all 7 individual taxa positively as-
sociated with STH infection in Ecuador belonged to the
phylum Firmicutes, highlighting the association of this
phylum with helminth infection. Most notably, the fam-
ily Lachnospiraceae was significantly lower in infected
samples in Ecuador (P = 0.037), and this was also one of
just two taxa significantly lower in infected individuals
in both Liberia and Indonesia (Fig. 4b). Lachnospiraceae,
a common gut bacteria, has previously been linked to
obesity and protection from cancer (due to its produc-
tion of butyric acid, important for both microbial and
host epithelial cell growth [55]) and was previously
associated with modulating inflammation during the
blood-feeding nematode Haemonchus contortus infec-
tions [24]. Thus, we identify the robust existence of
STH-associated taxa that are consistent across broad
geographical regions representing Africa, Asia, and
America. In future research, the results may be further
improved by using consistent techniques/parameters for

Table 3 KEGG pathways and Kos enriched among infected and uninfected MS samples

Category Description Identifier Effect
size

P
value

Relative abundance

Infected Uninfected

Higher among STH-infected individuals

KEGG pathway Arachidonic acid metabolism ko00590 2.384 0.044 499.4 130.1

KEGG Orthology Thymidylate synthase K00560 2.286 0.035 25.0 13.7

Lower among STH-infected individuals

KEGG pathway (None)

KEGG Orthology Abc-2 type transport system ATP-binding protein K01990 2.595 0.027 37.6 55.8

RNA polymerase sporulation-specific sigma factor K03091 2.582 0.045 35.0 50.9

Cysteine desulfurase K04487 2.206 0.045 21.8 28.1

Ferrous iron transport protein B K04759 2.199 0.035 29.2 35.6

Putative hydrolases of HD superfamily K07023 2.153 0.035 11.0 17.1

Uncharacterized protein K06950 2.146 0.045 32.2 38.2

Aminotransferase K10907 2.115 0.020 12.9 18.4

Nad-dependent deacetylase K12410 2.107 0.045 21.6 27.6

mRNA interferase K07171 2.081 0.011 15.5 20.8

Spore coat protein JC K06334 2.065 0.045 5.5 10.7

Tryptophan synthase beta chain K06001 2.048 0.020 5.8 11.1
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infection quantification, cut-offs for infection level,
matching controls, hypervariable rRNA gene region, and
sequencing platform.
The LEfSe and RF approaches identify many of the

same microbiota members as being significantly
positively associated with STH infection in both geo-
graphical regions and with being discriminatory in the
RF analysis, including: Olsenella, Allobaculum, and other
members of Allobaculum’s family Erysipelotrichaceae,
including positive associations with Solobacterium
(negatively correlated with the production of connexin-
43, involved in intestinal repair). This family has been
found to be negatively associated with the flatworm
Opisthorchis viverrini infection in hamsters [56], but
here we identify both positive and negative associations
with different genera from the family. Both Olsenella
and Allobaculum have been previously associated with a
reduction in gut inflammation [44, 53], suggesting that
their association with STH infection may potentially
have positive side effects on the host gut health. In the
present study, for the first time, we demonstrate consist-
ent STH-associated microbiome taxa across distinct geo-
graphical regions that helped us to successfully predict
infectious status based on microbiome structure. In fu-
ture studies, the predictive value of this model can be
improved by increasing power obtained via sampling
larger cohorts with a higher number of individuals
harboring single-species infections and multiple-species
infections. In addition, the existence of potentially func-
tionally related taxa associated with STH infection
(Fig. 6e, f ) provides a precedent for further efforts
focused on experimental testing synthetic communities
of limited size.
Three taxa were higher as a result of deworming in-

cluding Clostridium_XVIII (genus), which was also sig-
nificantly less abundant in infected individuals at the
2008 baseline in Indonesia (P = 0.03) and less abundant,
but not significantly (P = 0.08), in Liberia, indicating that
this genus is both higher in infected individuals and re-
duced after deworming (Additional file 5: Table S5),
making it an interesting candidate for future study. Four
additional taxa were lower following deworming,
including Butyricimonas, which is a butyrate-producing
bacteria and butyrate is a potential inhibitor of inflam-
mation, as discussed in the previous H. contortus micro-
biome study in goats [24]. Overall, microbiome
assemblages of dewormed individuals still more closely
resemble their corresponding infected status than the
microbiome assemblages of the uninfected individuals.
This is in contrast with the mice whipworm T. suis stud-
ies where clearance of infection resulted in gradual
transitioning of the microbiome in an uninfected state
[57]. Among self-cleared individuals (i.e., “dewormed”
but without anthelmintic treatment), 8 taxa were

significantly differentially abundant compared to
de-wormed individuals and uninfected individuals
(Table 2(E and F)), most notably Olsenella, which was
significantly reduced over time in individuals who self-
cleared (P = 0.014) and was the most significantly posi-
tively associated with infection in both Liberia and
Indonesia, providing further evidence of this genus’
important association with STH infection.
Metagenomic shotgun (MS) sequencing was

performed to obtain the species level resolution of the
microbiome from 24 stool samples and provides (for the
first time) strain level accuracy of the associated taxa.
Genetic potential of the microbial communities was evalu-
ated by mapping the MS reads to a comprehensive gut
bacteria reference gene catalog database for representative
samples from Liberia, Indonesia, and the USA (Fig. 7b),
and this analysis suggested that different gene sets per-
form similar functions between the three countries, with a
stronger conservation between Liberia and Indonesia. The
read sequence data generated by this study provides a
valuable resource for characterizing novel bacterial strains
and biological functions unique to these resource-poor
and under-sampled regions of the world.
In a separate analysis of the MS data against the

Integrated Gene Catalog (IGC) OG differential expres-
sion, 114 and 80 OGs were identified as statistically
higher and lower after deworming, respectively, but not
differential over time among infected individuals (Fig. 7d;
Additional file 3: Table S3). The OGs most significantly
higher after deworming included “monovalent cation H
antiporter subunit F” (possibly involved with drug
transport [58]), and the most significantly lower after
deworming (higher during infection) included
“Macrocin-O-methyltransferase” (involved in the synthe-
sis of an antibiotic that targets gram positive bacteria
[59]). Interestingly, different “Fimbrial protein” OGs
were significantly both higher and lower after curing,
suggesting a consistent change in the types of fimbrial
proteins, rather than an increase or decrease.
Only one previous study [26] has examined the meta-

bolic potential of the fecal microbiome of STH-infected
and uninfected individuals (identifying whipworm a
primary driver of the overall differences), but this was
not based on MS data, but rather on predicted microbial
functions through inference from 16S-based microbiota
profiling (using PICRUSt [60]). Here, HUMAnN [47]
was used to reconstruct the metabolic pathways of the
20 Indonesia MS datasets, and pathway enrichment was
performed. The only significantly enriched KEGG path-
way among the metagenomes of STH-infected samples
was “arachidonic acid metabolism” (ko0059; Fig. 7e).
Arachidonic acid is the precursor for pro-inflammatory
leukotrienes that threaten helminth survival, and previ-
ous studies have shown that a wide range of helminth
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species secrete products to modulate arachidonic acid
and leukotriene activity [61], and arachidonic acid has
also been successful as an anthelmintic treatment for
Schistosoma infections in mice [62]. Here, we present
the first evidence that some modulation of arachi-
donic acid activity in the STH-infected intestine may
occur through the increase of arachidonic acid metab-
olizing bacteria.
The only KEGG Orthology (KO) category significantly

enriched among the microbiomes of STH-infected indi-
viduals was “thymidylate synthase” (K00560), an essen-
tial enzyme for DNA synthesis with no clear function
for supporting helminth infection. A total of 11 KOs
were significantly depleted among STH-infected individ-
uals (Table 3; top four visualized in Fig. 7f ). These in-
cluded (i) “RNA Polymerase Sporulation-Specific Sigma
Factor” (K03091) and “spore coat protein JC” (K06334),
suggesting a reduction in spore-forming bacteria in asso-
ciation with STH infections, as well as “cysteine desul-
furase” (K04487) and “ferrous iron transport protein B”
(K04759), both of which are important for cellular iron
homeostasis [63, 64]. These categories may be reduced
due to more readily available iron from blood in the in-
testine, released while the hookworm attaches on the
lining of the intestinal wall to feed on blood. Overall, the
MS analysis offers a more detailed view of specific
microbiome-encoded functions which are associated
with STH infection.

Conclusions
Specific microbiome assemblages are significantly associ-
ated with STH infection, and specific members of the
gut microbiome discriminate between moderately/heav-
ily STH-infected and non-infected states across very
diverse geographical regions using two different statis-
tical methods. Microbiome-encoded biological functions
associated with the STH infections were identified,
which are associated with STH survival strategies and
changes in the host environment. These results provide
a novel insight of the cross-kingdom interactions in the
human gut ecosystem by revealing STH-associated
microbiome assemblages at taxonomic, genetic, and
functional levels, so that advances towards key mechan-
istic studies can be made.

Methods
Study design and cohorts
For samples from Liberia, a single stool sample was col-
lected from individuals living in remote areas of north-
western Liberia (Foya District, Lofa County; N = 68) or
in coastal eastern Liberia (Harper District, Maryland
County; N = 30). Stool samples and demographic infor-
mation were collected as part of a larger survey on the
long-term impact of mass drug administration (MDA) to

eliminate lymphatic filariasis and onchocerciasis. While
Foya was co-endemic for intestinal schistosomiasis,
Harper was not. No previous de-worming was con-
ducted in the study areas for at least 6 to 8 months be-
fore sample collection, but areas had previously received
one or two rounds of MDA with ivermectin plus alben-
dazole. Labeled stool containers were handed out in the
evening and were collected early next morning. Within
6 h of sample collection, Kato-Katz smears were pre-
pared and 1 g of stool was preserved in 4 mL RNAlater
(Ambion) and stored at 4 °C until DNA extraction, or
frozen at − 20 °C for long-term preservation.
The sample collection and processing procedure for the

samples from Indonesia have been previously described
[65]. In short, stool samples were collected before and
after anthelminthic treatment. T. Trichiura infection was
detected by microscopy using the formol ether concentra-
tion method, while a multiplex real-time PCR was used
for detection of hookworm (Ancylostoma duodenale,
Necator americanus), Ascaris lumbricoides and Strongy-
loides stercoralis DNA. For the current study, paired DNA
samples before and after treatment (21 months) from 152
inhabitants in Nangapanda were selected based on the an-
thelmintic treatment allocation and infection status, as
well as the availability of complete stool data at both pre
and post-treatment time points.
No subjects with acute infections or other acute ill-

nesses were included in the study as they would be not
eligible for anthelminthic mass drug administration. This
excludes also subjects with acute malaria. In these rural
settings, the HIV prevalence is generally low. Further-
more, mapping of our shotgun metagenomic reads to a
database of lower eukaryotes did not show presence of
specific non-worm infections. While we have not tested
all subjects for specific protozoan, viral, or bacterial in-
fections, we control for this by doing a randomized trial.
For this study we postulated that any subclinical infec-
tions were evenly distributed between the study groups
and did not affect clustering.

Helminth detection using the Kato-Katz procedure and
qPCR analysis
In Liberia, duplicate Kato-Katz smears were prepared to
estimate the number of helminth eggs per gram of stool
as recommended by WHO [66]. Each smear contained
41 mg of fresh stool and was examined 30 to 90 min
after preparation to ensure the integrity of the hook-
worm eggs. For detection of helminth DNA by qPCR,
DNA was extracted from 300 μl of stool/RNAlater sus-
pension containing approximately 60 mg of feces.
RNAlater was removed by high-speed centrifugation,
and the sample’s pellet was homogenized in ASL buffer
(Qiagen, Hilden Germany) using a Precellys 24
homogenizer (Bertin Technologies, France) and the
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Precellys Lysing Kit for soil grinding (Bertin Technolo-
gies, France). Then, the homogenate was boiled for
10 min and DNA was extracted using the DNeasy Blood
and Tissue Kit (Qiagen, Hilden, Germany) according to
the instructions of the manufacturer. The DNA content
of the extractions was measured using a Qubit
fluorometer (Invitrogen, Carlsbad, CA). Usually, a DNA
concentration between 200 and 500 ng/μl was achieved
per extraction and was required for the samples to be
suitable for further study.
The collection and processing procedures for the sam-

ples from Indonesia have been previously described [67].
Parallel qPCR reactions to detect DNA of Ascaris,
Necator, Trichuris, A. duodenale, and S. mansoni were
performed using 5 ng total DNA template per 10 μl
reaction volume and a QuantStudioFlex6 thermocycler
(Applied Biosystems; Additional file 4: Table S4). No A.
duodenale DNA was detected in either of the study sites,
while S. mansoni was only detected in three samples in
Foya (considered STH-positive in the analysis). Although
samples from Indonesia and Liberia were tested using
different types of thermocyclers and slightly different
qPCR assays, the sensitivity of qPCR for both countries
was similar. In this study, for both countries, qPCR de-
tection at a CT value of 28 or lower was used to identify
“moderately/heavily” STH-infected samples. Samples
with a positive qPCR identification, but with greater
than 28CT detection were identified as “low”-level infec-
tions (and not included in the analysis), and those with
no detection by qPCR were considered uninfected. As
shown in Fig. 2a, the Ascaris line of best fit (between
egg count and qPCR CT) cross the WHO threshold of
5000 EPG at a value of 26.8, and the Necator line of best
fit (Fig. 2b) crosses its 2000 EPG threshold at a value of
29. The average of these two values 27.9, which was
rounded up to 28, and is consistent with the median
detectable value in the previous study for Necator [32].

16S rRNA gene sequencing and microbial community
characterization
The V1–V3 hypervariable region of the 16S rRNA gene
was amplified by PCR using the 27F and 534R primers
“AGAGTTTGATCMTGGCTCAG” and “ATTACCGCGG
CTGCTGG.” The PCR products from the Liberia samples
were purified and sequenced on the MiSeq Genome
Sequencer generating, on average, 24,000 reads per sample
(Illumina, San Diego, CA). The Indonesia PCR products
were sequenced on the Genome Sequencer Titanium FLX
(Roche Diagnostics, Indianapolis, IN), generating an aver-
age of 6000 reads per sample (differences in the depth of
coverage are likely to partially affect the cross-cohort
comparisons). Raw sample reads are accessible for down-
load from NCBI’s Sequence Read Archive (SRA, BioProject
#PRJNA407815; Upload in progress) and from

Nematode.net (Nematode.net/Microbiome.html). A subset
of the Liberia samples were also sequenced using the 454/
Roche sequencer (using the same variable region), to facili-
tate a comparison of the sequencing platforms. The degree
of overlap for the genera captured by the MiSeq and the
Titanium FLX are shown in Additional file 8: Figure S3A.
The average reads per taxa obtained with the V1–V3
primers are provided in Additional file 8: Figure S3A.
Sample sequences were binned based on Illumina

index sequences and by removing their tags in flow
space (Roche Diagnostics), with one mismatch allowed.
Paired end fastq files were generated and the primers
were removed from the 3′ end of the sequence using
Trimmomatic [68] and Flexbar [69], allowing 1 mis-
match in addition to primer degeneracies. Low quality
bases were removed using Mothur software [70] with
the parameter “trim.seqs” (qaverage = 35). Illumina
paired reads were assembled using FLASH [71] and then
assembled. For the Roche Diagnostics sequences less
than 200 bases were removed. Taxonomic calls were
generated for each assembly and Roche Diagnostics
reads using the Ribosomal Database Project Naïve
Bayesian Classifier (version 2.5 with training set 9 [72],
as previously performed; e.g., [73]). Chimeric sequences
were identified and removed using ChimeraSlayer, with
default parameters [74]. To analyze the diversity at
various taxonomic levels, RDP-generated taxonomic
calls were analyzed to generate sample vs. taxonomy
matrices, where a 0.5 confidence level was required to
accept a call at each taxonomic level. For example, reads
with < 0.5 confidence at the genus level were considered
“unclassified” at the family level.

Shotgun metagenomic sequencing and microbiome
genetic potential profiling
Shotgun metagenomic libraries were generated and se-
quenced on the Illumina HiSeq2000 platform. Raw sample
reads are accessible for download from NCBI’s Sequence
Read Archive (SRA, BioProject #PRJNA407815; Upload in
progress). An average of 154 million whole genome shot-
gun reads were captured from metagenomic DNA col-
lected from Indonesia fecal samples (n = 20) from 10
individuals (sampled in both 2008 and 2010), as well as
four Liberia individuals. Illumina genomic DNA sequence
for the 24 samples were retrieved from the Laboratory
Information Management System database and subject to
human contaminant screening using BMTagger (version
1.0) as previously described. The non-human reads were
then filtered to remove redundancy (using the Picard’s
Estimate Library Complexity method, release 1.27), low
quality reads were trimmed using the TrimBWAStyle.pl
script (which applies the quality trimming logic used by
Burrows-Wheeler Aligner) and low complexity reads (as
detected by the DUST program) were removed. DUST
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masks low quality sequence that it identifies and reads
were discarded anytime fewer than 60 unmasked bases
remained after applying DUST. MS RNA-Seq reads were
mapped to the HMP bacterial database).
Cleaned reads from the 20 Indonesia samples were

downsampled to ~ 142 million reads (~ 69 paired end +
~ 3.8 M orphans) for equal comparisons between sample
sets. These were then mapped to the integrated gene
catalog (IGC) database) using bowtie2.2.5 (default pa-
rameters). Coverage was calculated using the bedtools
coverage utility (v2.17.0). For functional comparisons,
IGC genes were annotated using eggnog. Genes were
considered “identified” if they had a minimum of five
reads mapped from a minimum of three of samples.
Gene length-normalized abundance values were then av-
eraged per orthologous group (OG). OG abundance
values (multiplied by 1000 to account for normalization)
were then used as input for DESeq2 differential expres-
sion analysis (default settings), to identify genes more
highly abundant before (2008) and after (2010) deworm-
ing among the four individuals who were successfully
dewormed of heavy infections (paired differential ana-
lysis; Additional file 3: Table S3).
The cleaned reads were also mapped to the Kyoto

Encyclopedia of Genes and Genomes (KEGG) genes
database (v58) [75, 76] using the MBLASTX program
with default parameters [77]. Results of this mapping
were used as input to The Human Microbiome Project
Unified Metabolic Analysis Network program
(HUMAnN) [47] to obtain pathway and KEGG identi-
fier abundances. These abundances were finally fed
into the LEfSe [36] and were used to calculate
enriched pathways and/or KEGG identifiers between
samples infected with each of three STH species for
which there was a sufficient number of infected and
uninfected samples (Necator and Trichuris). The qPCR
identifications of helminth abundance were used to
classify the infection status of samples to be consistent
with other analyses.

Differential microbiome abundance
LEfSe [36] was used for differential taxa abundance test-
ing, using default recommended settings according to
the author’s instructions, at an adjusted P ≤ 0.05 for sig-
nificance and requiring an LDA effect size of at least 2
for every significant call. LEfSe’s algorithm performs
class comparison tests and validates for biological
consistency, and is able to consider all taxonomic levels
for comparison simultaneously. Many studies have uti-
lized LEfSe for microbiome comparison testing to iden-
tify gut microbiome members associated with
pathogenic infections [78] to identify gut biomarkers for
disease [36] and to track microbiome recovery following
disease [79].

SPARCC correlation network analysis
For Liberia and Indonesia 16S sample sets individually,
abundance values for all taxa identified to the genus
level in a minimum of two samples (normalized to the
total mapped read count per sample) were used as input
for SPARCC correlation analysis [42] (default settings).
SPARCC correlation values were specifically designed
for the challenging task of identifying meaningful signifi-
cant associations among 16S profiling datasets, account-
ing for community diversity and utilizing appropriate
statistics to deal with a high number of zero values [42].
For the final network visualization, a minimum correl-
ation of 0.2 and a minimum significance of association
P ≤ 0.05 was required for inclusion (Fig. 6e, f; Add-
itional file 3: Table S3). Networks were visualized using
Cytoscape [80] (version 3.3.0) using the “edge weighted
force directed layout” based on the correlation values.
Identifications of differentially abundant taxa were based
on identifications from the “differential microbiome
abundance” subsection (above).

Random forest analysis
We used random forest (RF), a supervised machine-
learning technique [40], to identify the bacterial genera
that differentiate STH-infected and STH-uninfected
microbiomes (according to qPCR standards). RF can
identify non-linear relationships from high-dimensional
and dependent data, and it is especially suitable for
microbiome datasets [40]. Using samples from
Indonesia, we built an RF model using 10,000 trees and
default parameters are applied for model construction.
The generalization error of the model was evaluated by
out of bag (OOB) error. To test the prediction accuracy
of the model, Liberia samples with the same 37 genera
served as the validation set. The prediction power of the
model was evaluated using the receiver operating char-
acteristic (ROC) analysis. The genera that are highly pre-
dictive of moderate to heavy infection and non-infection
were identified using importance score. An importance
score of at least 0.001 was considered highly predictive,
as previously reported [1].

Additional file

Additional file 1: Table S1. Metadata and read counts per taxa for the
98 16S samples from Liberia. (XLSX 595 kb)

Additional file 2: Table S2. Metadata and read counts per taxa for the
216 16S samples from Indonesia. (XLSX 1655 kb)

Additional file 3: Table S3. Enrichment results, metadata and depths
of coverage per genome for the 24 MS samples from Indonesia and
Liberia. (XLSX 221 kb)

Additional file 4: Table S4. qPCR primers used to test for STH
presence (XLSX 39 kb)

Additional file 5: Table S5. Enrichment of bacterial taxa among Ascaris
and helminth-infected samples, according to LEfSe results. (XLSX 788 kb)
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Additional file 6: Figure S1. Metadata analysis for Indonesia and
Liberia datasets. (A) Hierarchical All-against-All (HAIIA) significance testing
for metadata. (B–E) Principal component analysis (PCA) plots based on
relative taxa abundance for all taxa identified in three or more samples,
among heavy-infected or non-infected samples, are shown for Indonesia,
with color coding according to (B) comparison cohort and (C) village and
sex metadata, and for Liberia, with color coding according to (D) infected
vs uninfected samples and (E) village and sex metadata. No significant differential
clustering was identified, according to PERMANOVA. (TIFF 429 kb)

Additional file 7: Figure S2. Comparison of MiSeq and 454 sequencing
platforms. (A) MiSeq identifies more unique bacterial taxa to the genus
and family than 454. (B) Identified taxa are supported by more reads with
MiSeq than with 454, improving statistical comparison power. (TIFF 334 kb)

Additional file 8: Figure S3. Relative phylum abundance and taxa
counts for the Ecuador sample set [27]. (TIFF 146 kb)
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