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Abstract

Background: Britain’s native oak species are currently under threat from acute oak decline (AOD), a decline-disease where
stem bleeds overlying necrotic lesions in the inner bark and larval galleries of the bark-boring beetle, Agrilus biguttatus,
represent the primary symptoms. It is known that complex interactions between the plant host and its microbiome, i.e. the
holobiont, significantly influence the health status of the plant. In AOD, necrotic lesions are caused by a microbiome shift to
a pathobiome consisting predominantly of Brenneria goodwinii, Gibbsiella quercinecans, Rahnella victoriana and potentially
other bacteria. However, the specific mechanistic processes of the microbiota causing tissue necrosis, and the host response,
have not been established and represent a barrier to understanding and managing this decline.

Results:We profiled the metagenome, metatranscriptome and metaproteome of inner bark tissue from AOD symptomatic
and non-symptomatic trees to characterise microbiota-host interactions. Active bacterial virulence factors such as plant cell
wall-degrading enzymes, reactive oxygen species defence and flagella in AOD lesions, along with host defence responses
including reactive oxygen species, cell wall modification and defence regulators were identified. B. goodwinii dominated
the lesion microbiome, with significant expression of virulence factors such as the phytopathogen effector avrE. A smaller
proportion of microbiome activity was attributed to G. quercinecans and R. victoriana. In addition, we describe for the first
time the potential role of two previously uncharacterised Gram-positive bacteria predicted from metagenomic binning and
identified as active in the AOD lesion metatranscriptome and metaproteome, implicating them in lesion formation.

Conclusions: This multi-omic study provides novel functional insights into microbiota-host interactions in AOD, a complex
arboreal decline disease where polymicrobial-host interactions result in lesion formation on tree stems. We present the first
descriptions of holobiont function in oak health and disease, specifically, the relative lesion activity of B. goodwinii, G.
quercinecans, Rahnella victoriana and other bacteria. Thus, the research presented here provides evidence of some of the
mechanisms used by members of the lesion microbiome and a template for future multi-omic research into holobiont
characterisation, plant polymicrobial diseases and pathogen defence in trees.
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Background
The current global spread of tree diseases and pests are
threatening the diversity, visual aesthetics and ecological
roles of forests [1]. Oak trees (Quercus robur and Quer-
cus petraea) constitute an iconic and fundamental part
of British forests and are currently under threat from an
episode of acute oak decline (AOD), a complex decline-
disease resulting from a combination of several biotic
and abiotic factors [2]. AOD is potentially lethal to the
trees and has been primarily spreading through southern

and central England, and southern Wales [3]. The
decline-disease shares similarities to oak declines re-
ported in mainland Europe [4]. The primary symptoms
of AOD consist of stem bleeds, cracks in the outer bark
plates, necrotic tissue in the underlying inner bark and
larval galleries of the bark-boring beetle Agrilus bigutta-
tus in close proximity to the lesions [5, 6]. Recently, we
identified several bacterial species, Brenneria goodwinii,
Gibbsiella quercinecans and Rahnella victoriana, as key
members of the AOD lesion microbiome [2, 4] and dem-
onstrated through infectivity studies that B. goodwinii and
G. quercinecans cause tissue maceration in the inner bark,
the primary symptom of AOD [4]. The Enterobacteriaceae,
to which G. quercinecans belongs, Yersiniaceae to which R.
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victoriana belongs and Pectobacteriaceae, to which B. good-
winii belongs, include widespread and well-characterised
plant-associated bacteria, acting either beneficially or as
phytopathogens, with common virulence-associated fea-
tures such as plant cell wall-degrading enzymes (PCWDEs),
protein transport systems, effector proteins, motility and
toxin production [7]. However, the specific functional
mechanisms that underlie and trigger lesion formation by
B. goodwinii and G. quercinecans are unknown and cur-
rently represent a significant barrier to understanding the
aetiology of AOD, and ultimately in managing the decline.
Furthermore, the roles of R. victoriana and other abundant
members of the AOD lesion microbiome, as symbionts or
pathogens, and their interactions with the host or other
members of the microbiota are poorly understood. The
AOD microbiome therefore represents an excellent model
system that provide new insights into plant holobionts.
Here, we performed multi-omic analysis of host-microbiota
interactions in non-symptomatic and AOD symptomatic
oak in order to understand the functional shifts and mech-
anistic processes underlying polybacterial lesion formation
and host defences in AOD. The results will therefore pro-
vide insights into the triggers and functional mechanisms
of lesion formation, allow identification of key causal agents
of the decline, identify candidate markers for rapid field
diagnostic tests and ascertain potential markers for future
breeding of resistant oak, all of which will contribute to
future management of the decline.
The microbiome is increasingly recognised as crucial to

the understanding of plant health [8]. Indeed, microbiomes
have been characterised across the roots, stems and leaves
of model plants, transforming our understanding of
beneficial and deleterious interactions within the holobiont
[9–11]. While the stem microbiome has been generally less
explored than the phylloplane (foliage) or the rhizosphere
in trees, it may perform important functions, for example
nitrogen fixation [9]. Holistic analysis of the microbiome
and its interactions with the host by high-throughput gen-
omics, transcriptomics and proteomics (multi-omics) has
become highlighted as an important area in plant research
[8, 12, 13]. Metagenomics provides gene inventories of en-
vironmental samples that are/can be linked to specific
functions, while metatranscriptomics and metaproteomics
demonstrate gene activity [14–16]. These methods serve
to identify and profile the phenotype of the holobiont, a
term increasingly used to describe the combination of host
and microbiome, across time and space, with metage-
nomics identifying the hologenome of the holobiont [17, 18].
Thus, it is important to obtain information and evidence
showing the mechanisms of functional change as the healthy
microbiome of oak succumbing to AOD shifts into an
AOD microbiome, and where otherwise, benign mi-
crobes may become opportunistic pathobionts and
increase/change in activity [4].

Our study had four aims: (1) to expand upon the
known taxonomic composition of AOD-associated
microbiota by performing bioinformatic genome recon-
struction from metagenomic data of organisms un-
detected by previous taxonomic analyses, in order to
gain further clarity of the composition of the micro-
biome; (2) to identify the functional activity, host-
microbe interactions and relative importance of B. good-
winii, G. quercinecans, R. victoriana and other bacteria
in the AOD microbiome in lesion formation using their
complete genome sequences for mapping of our meta-
omic data; (3) to investigate the possibility of functional
genes belonging to other bacteria of interest identified
by Denman et al. [4] in AOD lesion formation and host
infection dynamics; and (4) to investigate the oak host
response in AOD, in order to understand the aetiology
and host reaction to infection in active AOD lesions. To
achieve these aims, we performed the first parallel multi-
omic analysis of inner bark from non-symptomatic oak
trees (no symptoms of poor health) and lesion tissue from
oaks affected by AOD (clearly visible active stem lesions
and reduced crowns), demonstrating that B. goodwinii is
the most active member of the AOD lesion microbiome,
driving tissue maceration and host defence suppression.
Furthermore, through assembly of draft genomes from
metagenome datasets, we identified at least two bacterial
taxa in the AOD microbiome that had not previously been
identified, belonging to the Clostridioides and Carnobac-
terium genera, but exhibiting virulence-associated tran-
scriptomic and proteomic activity in AOD lesions. This
suggests that the AOD lesion microbiome is even more
complicated than previously thought, and further research
into the Gram-positive component is required.

Results
Functional potential of the AOD lesion microbiome and
identification of two abundant Gram-positive bacteria
through metagenome binning
We have previously described the taxonomic composition
of the AOD microbiome and the shift from the micro-
biome of healthy trees [4]. However, in order to identify
the specific mechanistic processes that mediate lesion for-
mation, a deeper functional analysis comparing the AOD
microbiome and healthy microbiome was required. Thus,
we aimed to identify categories of genes associated with
AOD virulence and highlight the dramatic shifts taking
place on a functional level. Samples were taken from three
non-symptomatic Q. robur trees in Attingham Park, along
with two symptomatic AOD Q. robur trees with drier le-
sions, and two symptomatic Q. petraea trees at Hill court
park with fresher lesions where fluid was actively seeping
from the lesions. As host (oak) DNA would dominate the
sequencing libraries obtained using DNA extracted from
host tissue, significantly reducing the microbiome signal,
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the host DNA was depleted using an NEB Next Micro-
biome enrichment kit in order to focus on the microbiota
for this stage of the analysis. The functional potential of
the microbiome was initially identified using MG-RAST
[19] (Additional file 1: Table S1, Additional file 2: Table
S2, Additional file 3: Table S3, Additional file 4: Table
S4, Additional file 5: Table S5, Additional file 6: Table
S6, Additional file 7: Table S7 and Additional file 8: Table
S8), revealing that approximately 67–95% of the predicted
genes in AOD lesion microbiomes were bacterial, whereas
only 0.6–6% of genes in non-symptomatic samples were
derived from bacteria. Functional microbiome analysis of
SEED subsystem gene category abundances (functional
gene categories) demonstrated a clear distinction between
symptomatic and non-symptomatic samples, corroborat-
ing previous investigations of the AOD microbiome shift,
and providing a genetic database for our holistic multi-
omic analysis (Fig. 1a) [2–4, 6]. Specifically, the MG-
RAST analysis demonstrated that functional SEED subsys-
tem gene category abundances, associated with normal
plant activity were significantly more abundant in non-
symptomatic tree samples, while those associated with

bacterial activity, bacteriophage activity and plant defence
were more abundant in symptomatic trees (Additional file 9:
Table S9, Fig. 1b).
The metagenome databases of annotated genes were

combined revealing 627 distinct genes identified in all
symptomatic samples, but undetected and thus considered
absent in the non-symptomatic samples (Additional file 10:
Table S10). These genes were 99% bacterial and included
proteins involved in virulence (membrane transport,
PCWDEs, iron scavenging, motility and chemotaxis,
stress responses and regulation). In contrast, 223 dis-
tinct genes (80% plant associated, 20% fungal), in-
volved mainly in general metabolism, were identified
in all non-symptomatic samples, but in none of the
symptomatic samples (Additional file 11: Table S11).
Although several new species of bacteria have been

isolated from AOD lesions, it was important to attempt
to identify any as-yet uncultivated microorganisms in
the AOD lesion microbiome that may play an important
role in lesion formation. Using metagenomic binning,
we generated two draft genomes belonging to the genera
Clostridioides and Carnobacterium, and other bacteria

Fig. 1 Metagenomics reveals distinct microbiomes and functional genes between symptomatic and non-symptomatic samples. a Shift of metagenomic
functional categories relative abundances between symptomatic and non-symptomatic samples. The STAMP software was used to draw a heatmap
comparing the relative abundances of level 2 SEED subsystems associated with bacterial virulence, plant defence and hormone production in the samples.
b A principal component analysis of the samples based on functional SEED subsystem categories. SEED subsystem genesets were found to be statistically
significant using White’s non-parametric t test and Benjamini-Hochberg multiple test correction
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(Additional file 12: Table S12), from metagenomic reads,
thus extending the AOD-associated microbiome of puta-
tively unculturable organisms for further analysis. The
predicted genome sizes were 5.45 and 2.42 Mbp and the
genome completions were 97.5 and 66.7%, respectively
for the Clostridioides and Carnobacterium bacteria, and
both exhibiting < 5% contamination. However, as no
ribosomal RNAs were identified in the Clostridioides
genome, both genomes were determined to be medium
quality drafts as outlined in the guidelines by Bowers et
al. [20]. These genomes were annotated and found to
contain PCWDE, secretion systems, catalases and ROS-
defence associated genes, flagella and other virulence-
associated genes (Additional file 12: Table S12 and
Additional file 13). As a contrast to large public data-
bases such as Swissprot where our newly identified
bacterial species are not yet represented, the annotated
genomes were combined into a narrowed-down database
for specified bioinformatic analysis, containing the anno-
tated oak transcriptome from NCBI (Additional file 14:
Table S13), the annotated genomes of AOD-associated
bacteria B. goodwinii, G. quercinecans, R. victoriana and
other bacteria whose genomes had homology to AOD
lesion metagenome coding domains; Escherichia coli,
Dickeya dadantii, Pectobacterium carotovorum, Erwinia
billingae, Serratia marcescens and Clavibacter michiga-
nensis (Additional file 13). This database allowed us to
specifically clarify the activity of each bacterial organism
of interest in the AOD microbiome, as well as specify
which host genes and proteins are active.

Metatranscriptome analysis reveals active host defences
and the primary active pathogens of the AOD
microbiome
We performed metatranscriptome analysis of symptomatic
and non-symptomatic inner bark tissue to identify the func-
tional activity of the host and its microbiota and to specific-
ally determine the function and relative role of B. goodwinii,
G. quercinecans, R. victoriana and other bacteria in the
AOD lesion microbiome. The metatranscriptomes were
profiled and compared across samples (Additional file 15:
Table S14, Additional file 16: Table S15, Additional file 17:
Table S16, Additional file 18: Table S17, Additional file 19:
Table S18, Additional file 20: Table S19 and Additional file 21:
Table S20). In symptomatic tissue, 11–21% of anno-
tated predicted transcripts were bacterial (2–3% in
non-symptomatic tissue) (Additional file 15: Table S14,
Additional file 16: Table S15, Additional file 17: Table S16,
Additional file 18: Table S17, Additional file 19: Table S18,
Additional file 20: Table S19 and Additional file 21:
Table S20). These data demonstrate that the genetic
shift in the metagenome also translates into an
enhanced functional activity of bacteria.

We identified 216 transcripts present in all AOD symp-
tomatic samples but absent in non-symptomatic trees
(based on annotation, Additional file 22: Table S21). Of the
symptomatic transcripts, 94% were associated with bacteria,
partly involved in virulence (regulation, membrane trans-
port, signalling, biofilm, sporulation and PCWDEs), the
remaining 6% were associated partly with plant defence
and cell wall synthesis, revealing increased bacterial phyto-
pathogenic activity in symptomatic tissue. Conversely, 263
transcripts were identified across all non-symptomatic
samples, but not in any symptomatic sample (97%
eukaryotic, 3% bacterial, Additional file 23: Table S22).
In order to generally assess quantitative differences

between non-symptomatic and symptomatic metatran-
scriptomes, we performed a gene expression analysis,
identifying 6419 differentially expressed genes in symp-
tomatic tissue (Additional file 24: Table S23). The 3064
downregulated genes in symptomatic tissue mainly
displayed homology to plants (69%), fungi (16%), animals
(9%) and bacteria (5%), while the 3355 upregulated (up-
regulated is used generally here to include bacterial
genes that may for example be unrepresented in non-
symptomatic tissue) displayed homology to bacteria
(61%), plants (32%), animals (4%) and fungi (2%). Many
of the upregulated bacterial genes were associated with
virulence, for example, biofilm formation, chemotaxis
and motility, effectors, efflux pumps, PCWDEs, viru-
lence regulation, reactive oxygen species (ROS) defence,
protein secretion systems and toxin production (Fig. 2a).
Upregulated plant genes associated with symptomatic
trees included calmodulin binding and production,
disease resistance, hormonal signalling, PCWDEs, mem-
brane receptors, ROS production and protection and the
WRKY superfamily stress response transcription factors
(Fig. 2b). Furthermore, 31 downregulated and 66 upregu-
lated genes were identified as originating from viruses.
The majority of downregulated viral genes belonged to
plant viruses, while the majority of upregulated viral genes
belonged to bacteriophages (Additional file 24: Table S23).
To further clarify the host response in the symptom-

atic tissue, we performed a geneset enrichment analysis
(GSEA) on the expression data homologous to Arabi-
dopsis genes (Fig. 2c) [21, 22]. GSEA demonstrated up-
regulation of 190 genesets and downregulation of 276
genesets (Additional file 25: Table S24). Upregulated
genesets were partly associated with defence and wound-
ing response, ROS burst, cell wall modification and cell
death. Downregulated genesets were partly associated
with organelle organisation, circadian rhythm, protein
transport, cell-cell signalling, photoperiodism and regu-
lation of development, demonstrating a redistribution of
resources in the host from growth to defence.
We developed a narrowed-down database containing

bacteria identified as abundant and important in AOD
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lesion formation in our previous study [4], along with
bacterial draft genomes extracted from the metagenomic
data, and the Q. robur transcriptome available in the
NCBI database, which we annotated (Additional file 14:
Table S13) [23]. The narrowed-down database allowed for
specifying the representation of all bacteria of interest and
the oak host in AOD lesions the metatranscriptomes and
metaproteomes, and comparing symptomatic against non-
symptomatic field samples (Additional file 26: Table S25,
Additional file 27: Table S26, Additional file 28: Table S27,
Additional file 29: Table S28, Additional file 30: Table S29,
Additional file 31: Table S30 and Additional file 32:

Table S31). We could significantly detect (FDR < 0.05,
fold change > 2) 499 upregulated genes in symptomatic
samples and 92 downregulated genes. Of the 499 upregu-
lated genes, 295 were B. goodwinii genes, 198 were oak genes
and 6 belonged to the predicted bacterium of the genus
Clostridioides (Additional file 33: Table S32). However,
studying the identified gene transcripts of each sample, we
could detect PCWDEs (for example oligogalacturonate
lyases, proteases, pectate lyases, pectate disaccharide lyases
and cellulases), toxins (for example toxin A, toxin RTX,
HigB-2 and Colicin V) and other virulence-associated genes
(for example effectors HopM1, YopJ, flagella and pathogenicity

Fig. 2 Metatranscriptomics reveals distinct gene expression profiles between symptomatic and non-symptomatic samples. a Bacterial virulence-associated
genes significantly upregulated in symptomatic samples compared to non-symptomatic samples. Genes were determined to be significantly different in
expression by using the limma package in R (statistical cutoff at FDR < 0.05, and log2 cutoff at < − 2 and > 2). Genes were separated into
different colour-coded categories. b Oak tree defence-associated genes, based on the Swissprot database, upregulated in symptomatic
samples compared to non-symptomatic samples. Genes were identified the same way as in a and separated into different categories as
colour coded in the figure. Circles in light grey outgoing from the centre indicate the different log2 fold changes, with respective numbers (5, 8, 11 in
a and 5, 7, 9 in b) indicated to the side of the plots. c Geneset Enrichment Analysis highlights the global impact on genesets of infected oak tree cells.
Genes with closest homology to Arabidopsis, determined to be statistically significantly altered in expression in symptomatic samples compared to
non-symptomatic samples, were used in a geneset enrichment analysis (GSEA). Depicted in the figure are genesets found in the GO and KEGG databases.
The figure was made using the GSEA results in the Enrichment Map plugin (Bader Lab) for the Cytoscape software (version 3.2). Red
circles signify upregulated genesets, and blue circles signify downregulated genesets
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factors) as active (Additional file 26: Table S25,
Additional file 27: Table S26, Additional file 28: Table S27,
Additional file 29: Table S28, Additional file 30: Table S29,
Additional file 31: Table S30, Additional file 32: Table S31
and Additional file 33: Table S32). The genes of interest to
virulence and survival were mainly identified as belonging to
B. goodwinii (Additional file 34: Figure S1A) but also to the
putative Clostridioides and Carnobacterium. Using our
narrowed-down database, the percentage of bacterial reads
in the metatranscriptome of AOD symptomatic samples
ranged between 1.1 and 3.3%, with B. goodwinii correspond-
ing to 33–82% of those reads. In non-symptomatic samples,
the percentage of bacterial reads was only 0.02–0.07%, with
no clear difference between different species. For the host,
we could identify genes covering similar categories as for the
Swissprot analysis (Additional file 34: Figure S1B), with sev-
eral defence-associated regulators and genes activated, such
as mitogen-activated protein kinase, kinase AtM2K9,
suggesting activation of the mitogen-activated protein
kinase stress response cascade. Furthermore, the
defence-associated genes AtNDR/HIN1-like protein 3
and 13 were significantly upregulated suggesting en-
hanced defence, along with genes for toxin and ROS
resistance such as AtGSTU8 and AtDTX29.

Metaproteome analysis suggests B. goodwinii is the
dominant pathogen in the AOD lesion microbiome
In order to further confirm the results of the metagenomic
and metatranscriptomic data, by identifying active proteins
of the microbiome members of interest to the AOD disease
aetiology, and the host defence, we performed metaproteo-
mic analysis using mass spectrometry. Using genes
identified via metagenomics and metatranscriptomics as a
reference database, we identified 629 proteins, of which 59
were bacterial and 570 eukaryotic (Additional file 35:
Table S33). As expected, bacterial proteins were detected
in all tissue samples but were generally higher in abun-
dance in symptomatic samples. However, several core pro-
teins of phytopathogenic bacteria were detected only in
symptomatic tree samples, such as FliC, PepB, PotF and
OmpA, along with various plant-associated transketolases,
alcohol dehydrogenases and aldolases (Fig. 3a). In a com-
parative analysis of symptomatic versus non-symptomatic
samples, bacterial proteins PelA (plant cell wall-degrading
enzyme) and OsmC (survival) were significantly increased
in symptomatic tissue (Fig. 3b), along with host-associated
proteins CHI1 (chitinase), CAT2 (catalase), LRX4 (cell
wall formation regulation), HIR1 (hypersensitive reaction)
and GRP1 and TLP1 (lignin formation). Metaproteomics
clearly demonstrates an increased abundance of bacterial
proteins, and a host defence response, in AOD lesions.
Using the narrowed-down database described for the

metatranscriptomics, we re-performed the metapro-
teome analysis (Additional file 36: Table S34). We found

a total of 122 proteins significantly (p < 0.05, fold change
> 2) differently abundant in symptomatic samples com-
pared to non-symptomatic samples using student’s T
test, or undetected in all non-symptomatic samples and
detected in all symptomatic samples (Additional file 37:
Table S35). Additionally, a Benjamini-Hochberg multiple
test correction was performed on the p values, which
yielded significance (FDR < 0.05) for one gene, BG_04787,
a 4-hydroxy-tetrahydrodipicolinate synthase. However, the
identified proteins in general supported the metagenomic
and metatranscriptomic results. Among the proteins with
increased abundance in AOD symptomatic samples were
those of B. goodwinii and G. quercinecans, as well as that
of our predicted Clostridioides. Only one protein, pre-
dicted from oak transcript DN950644.1, homologous to a
vesicle transport protein found in Arabidopsis thaliana,
was increased in abundance in healthy samples; the other
121 proteins were more abundant in symptomatic
samples, of which 23.5% were bacterial. Of those proteins,
18 proteins belonging to B. goodwinii were detected,
including a superoxide dismutase, aldolases, a catalase and
lipoproteins, suggesting survival in the oak host. Several
host pectinesterases, proteases and chitinases were in-
creased in abundance, suggesting PCWDE maceration
taking place and anti-fungal activity. Furthermore, 3
proteins belonging to G. quercinecans were significantly
increased in symptomatic tissue, including a Colicin V
secretion protein, along with a signal recognition protein
and a hypothetical protein of unknown functions, suggest-
ing bacterial competition. The data of the narrowed-down
database here provides a similar but re-focused picture of
bacterial survival and virulence from the most prominent
AOD microbiome member, B. goodwinii, along with host
defence in the AOD lesions (Additional file 38: Figure S2).

Discussion
AOD is a complex and rapidly expanding decline-disease
within the broader oak decline complex, currently repre-
senting a significant threat to native oak in England and
Wales [2]. Although the taxonomic questions regarding
the causes of AOD have been addressed, an in-depth
investigation into the underlying functional mechanisms
that trigger and mediate lesion formation has been lacking
[4]. We aimed to investigate the disease on a molecular
genetic level and present a powerful combination of meth-
odologies to approach plant diseases. Here, our integrated
multi-omic analysis has provided novel insights into stem
microbiome activity and tree defence responses, extending
current research of polymicrobial diseases in plants. The
host DNA was depleted in extracts for microbiome-targeted
analysis, while host transcripts and proteins were retained
in RNA and protein extracts for simultaneous host and
microbiome activity analysis. This approach may explain the
greater overlap of metatranscriptome and metaproteome
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data between different samples (Additional file 39:
Table S36). The detection of predominantly plant-as-
sociated genes in metagenome datasets from the non-
symptomatic samples suggests that the depletion of host
DNA was not complete. However, while the microbiome
enrichment step depletes the host DNA, it does not
completely remove all host DNA. In addition, both
culture-based and molecular studies have suggested a very
low proportion of microbial biomass in healthy tissue,
which makes it reasonable to suggest that even with a
microbiome enrichment step, a large proportion of host
DNA will likely remain [4, 24].
The increased bacterial activity in AOD lesions may

explain an increased bacteriophage activity, as bacterio-
phages capitalise on the abundant presence of hosts (i.e.
bacteria) and stressful conditions, as suggested in
bacteriophage predation studies [25]. We previously
demonstrated in our taxonomic study that fungi, animals
(aside from A. biguttatus) and viruses were not signifi-
cantly associated with AOD [4]. Furthermore, bacterial
and plant-associated genes were detected as present and
consistently active across the -omic datasets presented
here, further corroborating our previous study of the

importance of these aspects. Although A. biguttatus is
still an interesting agent associated with AOD, further
studies are required to determine its role, as proteins
and genes associated with beetles or insects were not
consistently found here across our datasets.
The study was conducted in field conditions, where

we located AOD in two different locations, and in two
different species of oak (Q. robur and Q. petraea). The
samples AT5 and AT8 were from lesions exhibiting
drier, callused later stages of AOD, while the samples
ROW1, ROW1-2 and ROW2 were taken from trees
exhibiting fresh wet lesion areas. The differences in tree
and location may impact statistical analyses, along with
extraction efficiency differences in macerated lesion
tissue and healthy bark. Macerated tissue is already de-
graded to an extent, but it also contains more phenolics,
DNAses, RNAses and proteases and other compounds
inhibiting the extraction efficiency. However, overall the
data collected here across the -omic disciplines exhibits
strong similarities for the symptomatic samples in terms
of microbiome community structure, and transcriptomic
and proteomic analysis results, providing a strong frame-
work for the functional mechanissms of AOD.

Fig. 3 Metaproteomics reveals protein abundance profiling between symptomatic and non-symptomatic samples. a Bacterial and host defence-associated
proteins detected in AOD symptomatic tissue. Heatmap of MAD-scaled log10 counts for proteins detected in symptomatic samples but not detected in
non-symptomatic samples. The colour key depicts the log10 MAD scale of protein counts in the different symptomatic samples. b Pathogenic and host
defence-associated proteins differently abundant in symptomatic samples, depicting the increase of bacterial virulence-associated proteins in symptomatic
tissue compared to non-symptomatic. Proteins were determined as significant using a t test on MAD normalised proteins of interest. Circles in light grey
going out from the centre indicate the different log2 fold changes, with the numbers indicated to the side of the plots
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The metatranscriptomic data highlights substantial
host-microbiome interactions, demonstrating an increase
in transcripts of phytopathogenic bacteria in stem lesions
along with transcripts involved in host defence. The
redundancy in many of the bacterial transcripts (multiple
differently assembled transcripts annotated as the same
gene, even housekeeping genes) further suggests that
different bacteria are operating as a plant tissue macerat-
ing community. The coincidental up- and downregulation
of plant transcripts classified as the same gene, or within
the same functional category (e.g. defence, regulation and
hormone signalling), demonstrates complex host activity.
This activity is clarified by the GSEA, highlighting a tran-
scription profile in symptomatic oak trees general to
microbial pathogenic infection; the triggering of defence-
associated processes in the plant cells, balanced by the
downregulation of development, internal organisation and
metabolism [26]. Identified bacterial virulence-associated
genes might be co-opted for tree diagnostics and monitor-
ing, whereas beneficial plant regulators and pathogen
defence genes might be used as markers for future oak
breeding and monitoring.
Our results reveal the details of the microbiome activ-

ity in the AOD lesions, on one hand by using a broad-
spectrum public database such as Swissprot (Additional
file 1: Table S1, Additional file 2: Table S2, Additional file 3:
Table S3, Additional file 4: Table S4, Additional file 5:
Table S5, Additional file 6: Table S6, Additional file 7:
Table S7, Additional file 8: Table S8, Additional file 9:
Table S9, Additional file 10: Table S10 and Additional file 11:
Table S11; Additional file 14: Table S13, Additional file 15:
Table S14, Additional file 16: Table S15, Additional file 17:
Table S16, Additional file 18: Table S17, Additional file 19:
Table S18, Additional file 20: Table S19, Additional file 21:
Table S20, Additional file 22: Table S21, Additional file 23:
Table S22, Additional file 24: Table S23, Additional file 25:
Table S24 and Additional file 26: Table S25), and on the
other a narrowed-down database containing bacteria of
interest and gene transcripts identified in oak. Specifically,
we observed the dominance of a B. goodwinii in virulence-
associated activity, aided by Gram-positive and Gram-
negative bacteria of interest and concomitant detection of
host defence responses typical of phytopathogen infection
in oak stems. The analysis confirms an active enterobacterial
and pectobacterial community displaying active virulence
factors not detected in healthy trees. Previous taxonomic
analysis of the AOD microbiome suggested that there is an
AOD microbiome composed of several bacteria in AOD
lesions, where B. goodwinii is the most abundant bacterium
[4]. Our functional metatranscriptomic and metaproteomic
analysis corroborates these data, showing that in numbers of
virulence-associated genes and amount of transcripts
(Additional file 25: Table S24, Additional file 26: Table S25,
Additional file 27: Table S26, Additional file 28: Table S27,

Additional file 29: Table S28, Additional file 30: Table S29,
Additional file 31: Table S30, Additional file 32: Table S31,
Additional file 33: Table S32, Additional file 35: Table S33,
Additional file 36: Table S34 and Additional file 37:
Table S35), B. goodwinii is the most active member of
the AOD microbiome based on our metaproteome
and metatranscriptome data (Fig. 4, Table 1), followed
by G. quercinecans and R. victoriana and drafted genomes
assigned to Gram-positive bacteria Clostridioides and Car-
nobacterium. These Gram-positive bacteria may previously
have evaded interest due to a lack of isolation from lesions,
and because prior to draft genome assembly in this analysis,
they were not represented in public databases. Conse-
quently, these data demonstrate the significant potential of
draft genome assembly from metagenome datasets to iden-
tify candidate microorganisms for targeted analysis.
Taking the metatranscriptomic and metaproteomic

data together, the results demonstrate that at least B.
goodwinii and possibly other bacteria from the AOD

Fig. 4 Multi-omic profiling provides an overview of the different -omics
and models of the interactions between host and pathogens. Using our
in-house narrowed-down database, Brenneria goodwinii was found to be
the most active bacterium and the primary pathogenic agent in the AOD
lesion microbiome based on metatranscriptomics and metaproteomics
(depicted as Bg and yellow colour in the figure). Gibbsiella quercinecans (Gq
and white colour in the figure) and Rahnella victoriana (Rv and blue colour
in the figure) were found to provide some ambiguous activity. Other
Gram-negative species (collectively called G−, with grey colour in the
figure) and two predicted Gram-positive bacterial genomes (collectively
called G+ in the figure and coloured red) provided some virulent activity
as well. The size of each bacterial species/group indicates their relative
abundance in each dataset (not to scale). The colour of active groups of
virulence-associated genes of interest are coloured coded as their
associated bacterial origin. Active plant proteins and genes are
coloured dark green. The depicted shapes correspond to different
virulence-associated functions
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Table 1 List of genes and proteins of interest involved in virulence, bacterial survival and interactions identified in the
metaproteome and metatranscriptome of AOD lesions and their corresponding bacterial species/group of origin

Gene annotation B. goodwinii G. quercinecans R. victoriana G+ G−

Antitoxin HicB T

Bacterial type II secretion system protein F domain protein T

Protease CtpB T

Catalase PT T T T

Colicin V secretion protein CvaA T P

CRISPR-associated protein Csy3 T

CsrB T T T T

Cysteine protease avirulence protein AvrPphB T

Effector protein HopM1 T

Effector protein YopJ T

Entericidin B membrane lipoprotein P

Flavodoxin PT

Harpin HrpN T

HTH-type transcriptional regulator KdgR T

Iron-binding protein IscA T

Multidrug efflux pump subunit AcrB T T T

Oligoendopeptidase F, plasmid PT

Oligogalacturonate lyase T

Oligopeptidase A T

Pathogenicity factor T

Pectate lyase A precursor T

Peroxiredoxin OsmC PT

Persistence and stress-resistance toxin PasT T

ProP effector T

Protease 2 T

Protease HtpX T

Putative oxidoreductase SadH T

Putative type II secretion system protein E T T

Response regulator UvrY T

Serine protease AprX T

Superoxide dismutase [Mn] PT T

Thermostable beta-glucosidase B T T

Toxin A PT

Toxin B T

Toxin HigB-2 T

Toxin-antitoxin biofilm protein TabA T

Type II secretion system protein D T PT

Type IV secretion system protein VirB T

Virulence factor SrfB T

Virulence regulon transcriptional activator VirF T

Virulence sensor histidine kinase PhoQ T

G+ signifies the two Gram-positive bacteria belonging to the Clostridioides and Carnobacterium, while G− signifies other Gram-negative bacteria excluding B.
goodwinii, G. quercinecans and R. victoriana. P signifies detection of that gene in the proteomic data, while T signifies detection of the gene in the transcriptomic
data from AOD lesions
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microbiome are also present in healthy tissue, although
at very low rates, and without significant virulence-
associated activity. However, the presence of low levels
of B. goodwinii in non-symptomatic trees may represent
another example of the established phenomena that
certain members of the microbiome may represent
pathobionts; temporarily benign microorganisms that
under altered conditions in the host may impart disease
causation, and often, their activity is triggered or regu-
lated by other members of the microbiota [17]. This
phenomenon has also been described for the olive knot
disease where activity of the key pathogen Pseudomonas
savastanoi is regulated by the non-pathogenic Erwinia
oleae, E. toletanta and Pantoea agglomerans [27]. Thus,
B. goodwinii, G. quercinecans, R. victoriana and other
bacteria identified in healthy tissue may perform this
type of role. Comparing the output of metatranscrip-
tomics and metagenomics using a generalised database
such as Swissprot with the narrowed-down databased
created for this study, there was a strong similarity in
the shift in bacterial activity between symptomatic and
non-symptomatic samples. With the narrowed-down
database, we can through proteomic and transcriptomic
analysis speculate that B. goodwinii is primarily acting in
a survivalist manner in mature AOD lesions, utilising
catalases and superoxide dismutases as a way to combat
the host defences, and using entericidin for inhibiting
other bacteria. However, samples ROW1 and ROW1-2,
which were taken from trees with significantly more
active lesions (fresh and wet bleeding, instead of dry
“caked over” scab-like lesions in AT5 and AT8) also
reveal a stronger activity in PCWDE and virulence-
associated genes (regardless of database). The Gram-
positive bacteria of this study were also found to be
active primarily in the fresher lesions, while almost ab-
sent in the older lesions. Consequently, these results
suggest that the Gram-positive bacteria lead a transitory
phase, while B. goodwinii is highly active during maturity
of the AOD lesions. The other Gram-negative bacteria
involved in the AOD lesions were found to perform
mainly interbacterial actions and stress responses. These
results suggest that G. quercinecans, R. victoriana and
other Gram-negative bacteria, at the advanced stages of
the AOD lesions sampled here, are aiding the more viru-
lent activities by B. goodwinii and the Gram-positive
bacteria by supressing the effects of the oxidative and
antimicrobial environment in the lesion while at the
same time competing with each other. The tree host
seems to have several of its own PCWDEs active in the
AOD lesions, which may be of detriment to the host’s
own health. Activity of tree chitinase in AOD may
explain the absence of any fungal organisms in the
AOD microbiome [28, 29]. The results here also dem-
onstrate similar general trends on a metaproteomic

and metatranscriptomic level regardless of type of
bioinformatic tools used. The databases used in future
multi-omic analyses will prove more fine-tuned and reliable
as the publicly available oak genome and general microbe
genome databases are further refined and annotated.

Conclusions
Multi-omic analysis of oak-microbiome interactions in non-
symptomatic and AOD symptomatic trees has provided
important insights into the oak hologenome and its role in
health and disease. This study demonstrates the power of
draft genome reconstruction and multi-omicanalyses for
characterising microbiome activity and interactions and con-
comitant host defences, providing a knowledge base and
conceptual framework that will be increasingly important in
future studies of host-microbiome interactions [13, 30], and
in the management of AOD, that represents a significant
threat to the UK’s iconic oak.

Methods
In-field oak tissue sampling
Collection of inner bark tissue from oak stems was per-
formed in June 2015. The appropriate permissions were
obtained from land owners prior to sampling, and Forest
Research guidelines were followed for sampling. Briefly,
the fully barked panels (approximately 10 × 15 cm WxB)
were removed from the bleeding points of affected trees
including the lesion margin and surrounding visually
unaffected tissue (or in non-symptomatic trees, from po-
sitions of similar above-ground height) using a sterilised
mallet and chisel. The sampled tissue was immediately
flash frozen on dry ice. In total, 8 samples were ex-
tracted from 7 trees; 3 non-symptomatic (samples AT2,
AT3 and AT4) and two symptomatic (samples AT5 and
AT8) from English oak (Q. robur) at Attingham Park,
and two symptomatic (samples ROW1, ROW1-2, each
sampled from different bleeds on the same tree, and
ROW2) from sessile oak (Q. petraea) in Hill Court near
Ross-on-Wye (see Denman et al., [4] for further details
on field sites and sampling methods). In the laboratory
tissue pieces from the frozen, active lesion margin were
removed using a chisel and mallet and homogenised by
grinding with a sterile mortar and pestle. DNA, RNA
and protein were extracted from the homogenised tissue
of each sample (see below), aside from sample ROW2
not providing RNA of sufficient quality and quantity.

DNA extraction
DNA was extracted from approximately 50 mg of
homogenised oak tissue, using the DNeasy Plant Mini
kit (Qiagen) according to the manufacturer’s instruc-
tions. Quality and concentration of samples were deter-
mined using agarose gel electrophoresis and the Qubit
dsDNA HS assay kit (Thermo Fisher) according to the
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manufacturer’s instructions. In order to enrich micro-
biome DNA, the host DNA was depleted from the
sample using the NEBnext microbiome DNA enrich-
ment kit (New England Biolabs) according to the manu-
facturer’s instructions. Subsequently, the DNA was
purified and concentrated using the Genomic DNA
Clean and Concentrator kit (Zymo Research) according
to the manufacturer’s instructions and stored at − 20 °C.

RNA extraction
RNA was extracted from approximately 50 mg of homo-
genised oak tissue using a modified procedure for isolat-
ing RNA from woody plant material [31]. Briefly, 5 ml of
extraction buffer (4 M guanidine thiocyanate, 0.2 M
sodium acetate pH 5.0, 25 mM EDTA, 2.5% (w/v) poly-
vinylpyrrolidone and 1% (v/v) β-mercaptoethanol) was
added to oak tissue kept frozen in a sterilised mortar
using liquid nitrogen. The frozen tissue in extraction
buffer was further ground until thawed. Subsequently,
an additional 2.5 ml of extraction buffer and 500 μl of
20% sodium lauroyl sarcosinate were mixed into the
sample. The sample mixture was shaken vigorously at
room temperature for 15 min and further processed
using the RNeasy Plant Mini kit (Qiagen). After centrifu-
gation in the QIAShredder column, 350 μl of the super-
natant was mixed with 0.9 volumes of ethanol and
subsequently centrifuged in the RNeasy Mini column.
After this centrifugation step, the manufacturer’s in-
structions for the RNeasy Plant Mini kit were followed.
The extracted RNA was treated with DNase I (Qiagen)
and further concentrated and purified using the RNeasy
MinElute Cleanup kit (Qiagen) following the manufac-
turer’s instructions. The purified RNA was checked for
quality using 1% agarose gel electrophoresis and a Nano-
Drop spectrophotometer (LabTech), and the concentration
determined using the Qubit RNA HS assay kit (Thermo
Fisher) following the manufacturer’s instructions. Subse-
quently, rRNA was depleted from RNA extracts using a 1:1
combination of the Ribo-Zero rRNA Removal kits for plant
seed/root and for bacteria (Illumina) according to the
manufacturer’s instructions. The rRNA-depleted samples
were again purified using the RNeasy MinElute Cleanup kit
(Qiagen) again and stored at − 80 °C.

Protein extraction
Proteins were extracted from approximately 50 mg of
homogenised oak tissue using a modified method for
protein extraction from woody tissue [32]. Briefly, the oak
tissue was ground in 2-ml solubilisation buffer (50 mM
Tris-HCl, 25 mM EDTA, 500 mM thiourea, 0.5% DTT).
The mixture underwent shaking (150 rpm) for 1 h at
ambient temperature. The samples were subsequently
centrifuged at 20000g for 20 min, and the supernatant was
extracted and stored at 4 °C. The procedure was repeated

using the remaining pellet. The supernatant was extracted
and pooled with the previous supernatant. Ice cold 20% tri-
chloric acid in acetone with 0.5% DTT was added in a 1:1
ratio to the supernatant pool and precipitated at − 20 °C
overnight. After precipitation, the mixture was centrifuged
at 20000g for 60 min and washed with ice cold acetone
(centrifuged at 20000g for 30 min). The pellet was air dried,
re-suspended in 3% SDS solution and stored at − 80 °C.

Metagenomic analysis
DNA samples were sent to the Centre for Genomic Re-
search (CGR) at the University of Liverpool for sequen-
cing. Samples were assayed for quality using a Fragment
Analyzer (Advanced Analytical Technologies). Libraries
were prepared using the Nextera XT Library Preparation
kit (Illumina), and subsequently paired-end sequenced
(2 × 125 bp) on one lane of the Illumina HiSeq platform.
Raw sequences were trimmed using Cutadapt 1.2.1 and
additionally Sickle 1.200 [33–35]. The total size of meta-
genome data was 52 gigabases (Gb).
For functional analysis, the trimmed reads were

assembled de novo using Ray Meta (version 2.3.1) [36].
A k-mer size of 51 was used for the assembly of all sam-
ple datasets (N50 of 896-1116 for non-symptomatic
samples, and N50 of 6154-127666 for symptomatic
samples). Functional analysis was performed on the as-
sembled contigs using the on-line metagenome analysis
platform MG-RAST, which provided abundances in
SEED subsystems for the samples. These subsystems
were compared between symptomatic and non-symptomatic
samples using the STAMP software package (version 2.1.3)
[37]. SEED subsystems with a significant difference (FDR <
0.05) between symptomatic and non-symptomatic samples
were identified using STAMP for performing a White’s non-
parametric t test and Benjamini-Hochberg multiple test
correction.
In order to detect bacteria of potential interest that

may have evaded detection from traditional isolation
methods that have been performed previously in AOD
research, we utilised MetaBAT v0.32.4 to construct puta-
tive genomes from the metagenomic data [38]. The
binned genomes were further analysed using CheckM
v1.0.6 and AMPHORA2 to determine their taxonomy
[39, 40]. Gene prediction and annotation of the binned
genomes was performed using Prokka v1.11 [41].

Metatranscriptomic analysis
RNA samples were sequenced by the CGR, Liverpool.
Samples were further assayed for quality using an
Agilent 2100 Bioanalyzer and the Eukaryote Total RNA
Pico Series II. Libraries were prepared using the strand-
specific ScriptSeq kit (Illumina), and subsequently
paired-end sequenced (2 × 125 bp) on one lane of the
Illumina HiSeq platform. Raw sequences were trimmed
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using Cutadapt 1.2.1 and additionally Sickle 1.200.
The total size of the metatranscriptome sample data
was 54 Gb.
Trimmed high-quality sequences were assembled de

novo using Trinity (version 2.2.0) [42, 43]. The Trino-
nate (version 3.0.0) pipeline combined with bowtie
(version 1.1.2) and RSEM (version 1.2.29) were used to
functionally annotate Trinity contigs using the Swissprot
database (based on simultaneous hits using both
BLAST-P e value < 10− 5 and BLAST-X e value < 10− 20)
and to align reads and quantify transcripts [44, 45]. Pu-
tative rRNA sequences were identified using RNAmmer
(version 1.2) [46].
For differential expression analysis, raw paired reads from

all metatranscriptomes were combined and analysed using
the Trinonate pipeline as described. Predicted bowtie reads
and RSEM-based counts were used in combination with
the voom function of the limma R package to determine
significantly differentially expressed genes between non-
symptomatic and symptomatic samples (cutoff FDR < 0.05
and a minimal log2 fold change < − 2 and > 2) [47, 48].
Geneset enrichment analysis (GSEA) was performed

on Arabidopsis-associated genes demonstrating a statis-
tically significant change in expression as determined by
the voom analysis. Geneset enrichment analysis allows
for an overview of the impact of relative gene expression
on larger processes (genesets). This is based on a
Kolmogorov-Smirnov statistics of highly expressed genes
between two traits, which has been used based on statis-
tically significant expression profiling results of RNA
sequencing data [22, 49, 50]. Genesets used for analysis
were provided in the PlantGSEA platform database [21].
This database incorporates databases from the Gene
Ontology Consortium (GO) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) among others [51–54].
The analysis was performed on the GenePattern server
(Broad Institute). Software parameters included 1000
permutations and a gene set size range from 5 to 1000
[22, 55, 56]. A P value cutoff of < 0.05 using a GSEA
Kolmogorov-Smirnov-based statistics was set to deter-
mine genesets with significantly altered expression.
We previously identified three primary bacterial

species as causal agents of AOD lesion formation, along
with several other bacteria associated with a microbiome
shift. In order to determine which bacteria and bacterial
genes are truly active in lesions, we compiled a
narrowed-down database based on the 10 most abun-
dant bacterial species in AOD lesions as determined by
Kraken analysis and 16 of the most complete predicted
genomes from the metagenomic data. Furthermore, we
added the oak transcriptome based on the NCBI data-
base proposed by Ueno et al. [23], which we annotated
using the Trinotate pipeline with Swissprot as a refer-
ence (Additional file 12: Table S12). The database was

created as the bacterial species we are certain are caus-
ing AOD are poorly represented in databases such as
Swissprot, which on the other hand has the advantage of
containing more data. Thus, this narrowed-down data-
base was used as an alternative reference for read align-
ment of the metatranscriptomes using Bowtie2
v1.1.2 [57], and transcripts were counted for each sam-
ple using eXpress v1.5.1 [58], and a cutoff of at least 3
counted transcripts per sample was used. Expression
profiling between sample groups was performed as pre-
viously described using voom, using a cutoff of FDR <
0.05 and a fold change > 2.

Metaproteomic analysis
Protein samples were sent to the Proteomics Facility at
the University of Bristol for analysis using mass spec-
trometry. Aliquots of eight samples were digested with
trypsin (2.5 μg trypsin per 100 μg protein; 37 °C, over-
night), labelled with Tandem Mass Tag (TMT) ten plex
reagents according to the manufacturer’s protocol
(Thermo Fisher Scientific) and the labelled samples
pooled. The pooled sample was fractionated by high pH
reversed-phase chromatography using an Ultimate 3000
liquid chromatography system (Thermo Fisher Scientific).
The resulting fractions were evaporated to dryness and re-
suspended in 1% formic acid prior to analysis by nano-LC
MSMS using an Orbitrap Fusion Tribrid mass spectrom-
eter (Thermo Scientific). High pH RP fractions were
further fractionated using an Ultimate 3000 nanoHPLC
system in line with an Orbitrap Fusion Tribrid mass spec-
trometer (Thermo Scientific). Peptides were ionised by
nano-electrospray ionisation at 2.0 kV using a stainless
steel emitter with an internal diameter of 30 μm (Thermo
Scientific) and a capillary temperature of 275 °C.
All spectra were acquired using an Orbitrap Fusion

Tribrid mass spectrometer controlled by Xcalibur 2.0 soft-
ware (Thermo Scientific) and operated in data-dependent
acquisition mode using an SPS-MS3 workflow.
The raw data files were processed and quantified using

Proteome Discoverer software v1.4 (Thermo Scientific) and
searched against a database comprised of proteins predicted
by the metagenome and metatranscriptome datasets, using
SEQUEST [59]. Peptide precursor mass tolerance was set
at 10 ppm, and MS/MS tolerance was set at 0.6 Da. Search
criteria included oxidation of methionine, carbamidometh-
ylation of cysteine and the addition of the TMT mass tag to
peptide N-termini and lysine as fixed modifications. The
reverse database search option was enabled, and all peptide
data was filtered to satisfy false discovery rate (FDR) of 5%.
Peptides were collapsed to protein groups which expres-
sions are represented by their summed peptide median
intensity. Expression values were log10 transformed and
standardised by median centering and median absolute de-
viation (MAD) for scaling [60]. To identify significantly
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differentiated proteins between symptomatic and non-
symptomatic samples, we performed a two-sample moder-
ated t test. Raw peak intensity values of the experiment
were deposited at the PRIDE repository [61].

Additional files

Additional file 1: Table S1. Metagenomic gene annotation of sample
AT2. MG-RAST gene predictions for sample AT2, based on the Swissprot
database. MG-RAST ID 4702452.3. (XLSX 497 kb)

Additional file 2: Table S2. Metagenomic gene annotation of sample
AT3. MG-RAST gene predictions for sample AT3, based on the Swissprot
database. MG-RAST ID 4702456.3. (XLSX 470 kb)

Additional file 3: Table S3. Metagenomic gene annotation of sample
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database. MG-RAST ID 4702454.3. (XLSX 471 kb)

Additional file 4: Table S4. Metagenomic gene annotation of sample
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Based on MG-RAST annotation using Swissprot as reference database.
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symptomatic samples. Genes identified in all non-symptomatic samples
(AT2, AT3 and AT4), and in no symptomatic samples. Based on MG-RAST
annotation using Swissprot as reference database. (XLSX 64 kb)

Additional file 12: Table S12. Constructed bacterial genomes of this
study. List of constructed genomes based on metagenomic read binning
using the MetaBat software, their assigned genera and ID used in this
study, and corresponding CheckM software analysis results. (XLSX 10 kb)

Additional file 13: Narrowed-down database containing all predicted
and annotated genes of all organisms used in the specialised data
analysis of this study. (FASTA 46859 kb)

Additional file 14: Table S13. Metatranscriptomic gene annotation of
sample AT2. Identified unique genes in the metatranscriptome of sample
AT2, using transcripts assembled using Trinity and annotating using the
Trinotate pipeline. Swissprot was used as reference database. (XLSX 8417 kb)

Additional file 15: Table S14. Metatranscriptomic gene annotation of
sample AT3. Identified unique genes in the metatranscriptome of sample
AT3, using transcripts assembled using Trinity and annotating using the
Trinotate pipeline. Swissprot was used as reference database. (XLSX 1326 kb)

Additional file 16: Table S15. Metatranscriptomic gene annotation of
sample AT4. Identified unique genes in the metatranscriptome of sample
AT4, using transcripts assembled using Trinity and annotating using the
Trinotate pipeline. Swissprot was used as reference database. (XLSX 1219 kb)

Additional file 17: Table S16. Metatranscriptomic gene annotation of
sample AT5. Identified unique genes in the metatranscriptome of sample
AT5, using transcripts assembled using Trinity and annotating using the
Trinotate pipeline. Swissprot was used as reference database. (XLSX 1134 kb)
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Additional file 34: Figure S1. Analysis of metatranscriptomes using a
curated database of abundant bacteria in the AOD lesion microbiome
reveals that Brenneria goodwinii is the key pathogen, but assisted by
others. A: Brenneria goodwinii (Bg in the figure) virulence-associated
genes significantly upregulated in symptomatic samples compared to
non-symptomatic samples. Genes were determined to be significantly dif-
ferent in expression by using the limma package in R (statistical cutoff at
FDR < 0.05, and log2 cutoff at > 2). Circles in light grey going out from
the centre indicate log2 fold changes, with the ratio numbers indicated
to the side of the plots. Genes were separated into different colour coded
categories. B: Oak tree defence-associated genes upregulated in symptomatic
samples compared to non-symptomatic samples, based on our in-house
annotated oak transcriptome database. (TIFF 946 kb)

Additional file 35: Table S33. Differentially expressed genes in AOD
symptomatic tissue. List of significant genes resulting from comparative
analysis of the non-symptomatic samples and symptomatic samples using
the voom function of the R-package limma, based on an FDR value < 0.05
and log2-fold change of <− 2 and > 2. These results were generated on read
hits against our narrowed-down database (Additional file 13). (XLSX 860 kb)

Additional file 36: Table S34. Metaproteome analysis of all samples on
protein level using the narrowed-down database. Peptide level read output
from Proteome Discoverer software (Thermo Fisher Scientific) version 2.1 for
each protein, with a confidence FDR < 0.05. (XLSX 668 kb)

Additional file 37: Table S35. Comparative proteome results of genes
of interest. List of all annotated proteins of interest using our narrowed-
down database (Additional file 13). (XLSX 28 kb)

Additional file 38: Figure S2. Metaproteome analysis using a curated
database of abundant bacteria in the AOD lesion microbiome confirms
the dominance of Brenneria goodwinii in AOD. Using our narrowed-down
database, we re-performed comparative metaproteomics of our non-
symptomatic vs. symptomatic samples. Genes were determined to be
significantly different in abundance using a student’s t-test. Gene names
in all capital letters correspond to oak host genes, while belong to B.
goodwinii. Categories of interest are depicted in the colour key. Genes
with an abundance fold change of 15 were not detected in non-
symptomatic tissue. Circles in light grey going out from the centre
indicate the different log2 fold changes, with the numbers indicated to
the side of the plots. (TIFF 435 kb)

Additional file 39: Table S36. List of all identified unique genetic features
based on the Swissprot database in each sample, divided into data derived
from Metagenome, Metatranscriptome and Metaproteome. (XLSX 868 kb)
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