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Effects of predation stress and food ration
on perch gut microbiota
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Abstract

Background: Gut microbiota provide functions of importance to influence hosts’ food digestion, metabolism, and
protection against pathogens. Factors that affect the composition and functions of gut microbial communities are
well studied in humans and other animals; however, we have limited knowledge of how natural food web factors
such as stress from predators and food resource rations could affect hosts’ gut microbiota and how it interacts with
host sex. In this study, we designed a two-factorial experiment exposing perch (Perca fluviatilis) to a predator (pike,
Esox lucius), and different food ratios, to examine the compositional and functional changes of perch gut
microbiota based on 16S rRNA amplicon sequencing. We also investigated if those changes are host sex
dependent.

Results: We showed that overall gut microbiota composition among individual perch significantly responded to
food ration and predator presence. We found that species richness decreased with predator presence, and we
identified 23 taxa from a diverse set of phyla that were over-represented when a predator was present. For
example, Fusobacteria increased both at the lowest food ration and at predation stress conditions, suggesting that
Fusobacteria are favored by stressful situations for the host. In concordance, both food ration and predation stress
seemed to influence the metabolic repertoire of the gut microbiota, such as biosynthesis of other secondary
metabolites, metabolism of cofactors, and vitamins. In addition, the identified interaction between food ration and
sex emphasizes sex-specific responses to diet quantity in gut microbiota.

Conclusions: Collectively, our findings emphasize an alternative state in gut microbiota with responses to changes
in natural food webs depending on host sex. The obtained knowledge from this study provided us with an
important perspective on gut microbiota in a food web context.
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Background
Animal hosts provide associated microorganisms with
suitable ecological niches in their intestines [1]. The
intestine of most animals such as human and fish de-
velops from an initial sterile environment, followed by a
subsequent microbial colonization leading to a matured
intestine inhabited by a diverse microbial community
[2]. These microbiota help the hosts digest food, protect
against pathogens, and influence the host’s metabolisms
[3]. Consequently, the mutual benefits between host and
their gut microbiota may contribute to the host fitness
through metabolites [4].
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Gut microbiota have been shown to be affected by
host genetics [5]. For example, Bolnick et al. [6] have
shown that the variation in gut microbiota in three-
spine stickleback was affected by the major histocom-
patibility class II (MHC) genotypes. In addition, host
sex, another genetic trait, has been linked to gut micro-
bial composition [7, 8], which furthermore, can interact
with other environmental factors in affecting gut micro-
bial composition, e.g., sex-dependent effects of diet on
gut microbiota [9]. Besides host genetics, host diet
choice is also an important determinant of gut micro-
biota composition. Bacteria differ in their substrate use;
thus, niche specialization in gut microbiota causes
changes in bacterial taxa as a consequence of diet choice
of the host [5].
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In natural animal populations, there is a relationship
between gut microbial composition and their host
trophic level in the food web [10]. One important aspect
of trophic level for gut microbiota is that it is associated
with shifts in diet quality and quantity [11, 12]. Ley et al.
[13], Sullam et al. [10], and Liu et al. [14] have shown
that gut microbial composition could change along
trophic levels resulting from diet change in mammals
and fish. Furthermore, trophic interactions can influence
the abundance of organisms along trophic levels through
cascading effects, which are called trophic cascades [15],
which in turn indirectly could influence the gut micro-
biota. Increasing predator density will decrease prey
densities and indirectly increase the food resources
availability for the prey, thus lowering intraspecific com-
petition among the prey [16]. On the other hand, when
predator density is low, competition among the prey will
increase, resulting in less food availability [17, 18]. Low
food ration, i.e., reduced food intake, especially in the
case of starvation and hibernation has been shown to
affect gut microbiota [19–21]. For example, hibernating
brown bear and squirrels show reduced gut microbiota
diversity and reduced levels of certain phyla [21, 22].
Carey et al. [21] have found that the remaining micro-
biota phyla during hibernation mainly consist of taxa
that can use host-derived substrates as a food source.
Besides affecting resource levels for its prey, predation

is also an important food web factor that may cause
stress for individual prey in nature. Chemical cues from
predators have been shown to reduce activities in fish
and subsequently induce morphological changes that
could decrease predation risk [23–25]. Moreover, preda-
tion stress also influences the physiological status of
prey, for example, hormones released from stress could
mediate immunological and behavioral responses in ver-
tebrates [26]. It has been shown that nerve and immune
system can play important roles in regulating gut micro-
biota communities [27–29]. O’Mahony et al. [30]
showed that early life stress from maternal separation in
rats could alter the gut microbiota in the offspring.
Thus, the association between trophic level and gut
microbiota may not only depend on diet shifts along
trophic levels but also on the risk of predation, i.e.,
stress. However, this association of trophic levels and
gut microbiota is less studied despite the prevalence of
predation and its effects on prey.
In this study, we use Eurasian perch (Perca fluviatilis)

as prey and Northern pike (Esox lucius) as predators to
investigate the relative importance of predator presence
and food ration to perch gut microbial communities.
Previous studies have shown that predator cues [31] and
food availability [32] can affect perch behavior and
morphology. As stress has been shown to affect gut
microbiota, we predict that (1) pike predation stress
could alter perch gut microbial community composition
and consequently affect their functions; (2) increasing
the amount of food fed to perch will also influence gut
microbial communities, as it will change competition
within the microbial communities. Furthermore,
previous studies of perch have shown that sex affects
both composition and diversity of gut microbiota as well
as interacts with diet in affecting perch gut microbiota
[9, 33]. Similarly, (3) if microbes that respond to stress
or food ration are also influenced by sex hormones, we
might expect to see stress and food ration effects that
differ between fish sexes.

Methods
Field sampling
We collected 1-year-old perch from Lake Mälaren (N59°
20′, E17° 52′) in Sweden in May 2013 using cast net. We
also collected pike (341.6 ± 49.2 mm, 207.3 ± 76.7 g, mean
fish length and weight ± SD) from Lake Messormen and
Hersjön between May and July in 2013. We acclimated all
perch and pike to lab conditions for 6 weeks before start-
ing the experiment. During the acclimation, we fed perch
with frozen chironomids (Imazo AB, Sweden) daily, and
pike were fed with perch (from the same pool of perch for
the experiment) two times a week.

Experiment setup
To examine how predation stress, food ration, and fish
sex affect gut microbiota of perch, four perch were put
into one aquarium with or without the presence of pike.
The 105 L aquaria (75 × 40 × 35 cm, length × width ×
height) were divided into two parts by a transparent
plastic board to separate pike and perch. The plastic
boards had holes drilled into them to allow for predator
kairomones to freely pass to the other side of the aquar-
ium containing perch. This setup allowed perch to be
affected by predator cues both visually and by olfactory
in each aquarium, but all aquaria were visually isolated
from each other to avoid pikes influencing perch in
predator-free treatments. All aquaria were kept at tem-
peratures ranging between 19 and 20 °C with a thermo-
stat heater in each aquarium under a photoperiod of
12-h light and 12-h dark. Each treatment with four
perch was replicated six times resulting in 36 aquaria.
All perch were fed once a day with frozen chironomids

at three quantity rations, 5, 10, and 15% of the average
perch weight, in which 15% ration is close to the
maximum food conversion at the specific size and
temperature in perch [34]. All pikes were hand-fed with
one juvenile perch two times a week during the experi-
ment. We ran the experiment for 10 weeks to observe
perch growth and morphological changes for an accom-
panying paper from this study [25] as well as to allow
the perch gut microbiome to adapt to the treatments.
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Due to occasional death, 91 perch remained. All perch
were killed with an overdose of benzocaine (ethylene
glycol monophenyl ether, Merck). We recorded final
weight, length, and sex (41 females and 48 males, 2
undetermined) and calculated relative intestine length
(intestine length/fish length) for all fish (Additional file 1:
Table S1). The entire intestine including both intestine
tissue and the gut content from each fish was immedi-
ately frozen and stored at − 80 °C until later analysis of
bacterial composition. To assess bacterial community
composition in the surrounding water, we filtered 50 ml
water through 0.2 μm Supor 200 filters (Pall Corpor-
ation, Port Washington, NY, USA) from each aquarium
at the end of the experiment and stored the filter at −
80 °C. In addition, we took samples from the chirono-
mids to check diet-associated bacteria.

DNA extraction and bacterial 16S rRNA genes Illumina
sequencing
The entire intestine from perch, water filter samples,
and 0.25 g chironomids were processed to extract
bacterial DNA using PowerSoil® DNA Isolation Kit (MO
BIO Laboratories, Inc., Carlsbad, CA, USA) with a modi-
fication from the manufacture protocol in which we
incubated the samples at 65 °C for 10 min after adding
the C1 solution.
The variable region V4 of the 16S rRNA gene was

amplified by using bacterial primers (515F and 806R)
[35]. Polymerase chain reaction was done with two steps
[36]. Triplicates of 20 μl reaction for each sample were
done in the first step PCR with 515F (5’-GTGCCA
GCMGCCGCGGTAA-3′) and 806R (5′-GGACTACHV
GGGTWTCTAAT-3′). Each reaction contained 10 μM
of forward and reverse primers, 1× reaction buffer,
200 μM of dNTPs and 0.02 U/μl Q5 HF DNA polymer-
ase, and 1 μl of DNA template. The reaction started with
initial denaturation at 98 °C for 30 s, and then 30 cycles
of denaturation at 98 °C for 10 s, annealing at 58 °C for
30 s, and extension at 72 °C for 30 s. It was finished with
a final extension at 72 °C for 2 min. Triplicate PCRs for
each sample were pooled and purified with Agencourt®
AMPure® XP (Beckman Coulter). The purified sample
was used as the template for the second step PCR to at-
tach the Illumina handles and index primers. Triplicates
of PCR product for each sample were prepared. Each
reaction contained 1.25 μM of forward and reverse
primers, 5 × reaction buffer, 2 mM of dNTPs and 2 U/μl
Q5 HF DNA polymerase, and 1 μl of DNA template.
Each reaction started with initial denaturation at 98 °C
for 30 s and then continued with 20 cycles of denatur-
ation at 98 °C for 10 s, annealing at 65 °C for 30 s and
extension at 72 °C for 30 s. A final extension was done
at 72 °C for 2 min. Each sample was purified with Agen-
court® AMPure® XP (Beckman Coulter) and quantified
with Quant-iT™ PicoGreen® dsDNAReagent Kit (Invitro-
gen). Equal amounts of DNA were mixed in one pool
with a final concentration of 2.7 ng/μl. Samples were
sent for Illumina Miseq sequencing at National Genom-
ics Infrastructure by ScilifeLab, Uppsala, in Sweden.

Sequencing data analysis
The raw amplicon sequencing data was demultiplexed,
and sequence pairs were assembled using a pipeline
developed by Sinclair et al. [36]. The pipeline further
removed sequences with missing primers and un-
assigned base pairs. Resulting quality-filtered assembled
reads were clustered into operational taxonomical units
(OTUs) using UPARSE (cutoff of 3% sequence dissimi-
larity) [37]. Taxonomy was assigned using CREST [38]
and the ribosomal sequence database SilvaMod.
We used PICRUSt (Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States,
version 1.1.1) [39] to obtain the relative abundance of
gene families (gene ontology categories or GO) [40]
within individual perch. A closed reference OTUs were
prepared at 97% level against the gg_13_5_otus.tar.gz
from Greengenes using Macqiime (1.9.1 20150604)
before using PICRUSt. The newly picked OTUs were
then used as input for PICRUSt following the workflow
suggested by the developers, including normalization by
dividing each OTU by the known/predicted 16S copy
number abundance, and then calculated the final meta-
genome functional predictions. The predicted functions
were then categorized with KEGG pathways on level 2.
Quality control steps for PICRUSt were also performed,
which gave the percentage of successful reads that were
mapped to Greengenes when using the closed reference
OTU picking (Additional file 2: Table S2), and the calcu-
lations of the reference genome coverage for each fish
sample presented as NSTI scores (Additional file 3:
Table S3). While PICRUSt provide some first predictions
on metabolic pathway direct methodologies such as
shotgun metagenomics can be used to confirm the meta-
bolic pathways predictions by PICRUSt.

Statistical analysis
The 97% OTU table was rarified to 8000 reads per sam-
ple before the statistical analysis. All statistical analyses
were performed in R (version 3.2.2). Alpha diversities
were calculated using observed richness (S. Obs) and
Chao1 by package phyloseq (version 1.12.2). Faith’s
phylogenetic diversity (PD) was estimated using the
picante package (version 1.6-2).
We used generalized linear models (GLMs) with qua-

sibinomial link function to test whether food ration, pike
presence, and sex could affect the relative abundance of
all the functional categories obtained from PICRUSt and
each of the top 10 phyla, which represented more than
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90% of the total relative abundance in the whole microbial
community. For the phyla with significant treatment ef-
fect(s), we re-analyzed to microbiome shifts at the genus
level, also using GLMs with quasibinomial link function.
To observe the overall pattern of microbial community

composition across all the treatments, we used
non-metric multidimensional scaling (NMDS) with
Bray-Curtis (vegan 2.3-5), weighted (w), and unweighted
(uw) UniFrac distance matrices calculated by phyloseq.
Next, we used PERMANOVA to test the effects of all
treatments on Bray-Curtis, weighted and unweighted
UniFrac distance matrix with 10,000 permutations using
vegan. We used the r2 value from PERMANOVA to esti-
mate the relative effect size (% of variation explained) of
our treatments (food ration, pike, sex, and the interac-
tions food ration × pike, food ration × sex, and pike ×
sex) on the gut microbiota.
We identified the OTUs that were over- or under-

represented in each treatment using EdgeR (version
3.10.5) [41]. EdgeR was originally designed for differen-
tial expression analysis of RNA-seq expression profiles
but can be applied to any technology that produces read
counts for genomic features. In our analysis, we adapted
EdgeR to test the OTUs that were significantly over- or
a

b

Fig. 1 Changes of the relative abundance in perch gut microbiota commu
of each top phyla affected by treatments of pike predation and food ration
on Y-axis. The interaction of pike predation (no pike, pike absence; yes pike
b Changes of the relative abundance of Bacteroidetes affected by the intera
male perch). c Changes of the relative abundance of Cyanobacteria affecte
under-represented in response to the three factors (pike
presence, food ration, and sex). We analyzed over- and
under-representative OTUs both for each factor alone
and the interactions between two factors (food ration ×
pike, pike × sex, and food ration × sex). We then
assigned each OTU to their minimum genus level and
used Fisher’s exact test to check at the phyla level which
phylum can be representative for the treatment based on
the contingency table including number of “success
OTUs” (number of significant representative OTU in
one phylum from EdgeR analysis), “failure OTUs” (total
number of OTU within a phylum subtracted with num-
ber of “success” OTUs), and number of “success” and
“failure” OTUs in all phyla. Finally, we calculated the
average relative abundance at both OTU and phyla
levels.

Results
Abundant phyla in perch gut microbiota communities
The relative abundance of the ten most abundant phyla
varied among treatments (Fig. 1a, Additional file 4: Table
S4). Tenericutes was the most abundant phylum, and it
increased with food ration whereas the relative abun-
dances of Fusobacteria and Proteobacteria seemed to
c

nity at phyla level. a Stacked bar plot showing the relative abundance
. Relative abundance was shown as percentage with the sum of 100%
, pike presence), and food ration (5, 10, and 15%) was shown on X-axis.
ction of food ration (5, 10, and 15%) and host sex (F female perch, M
d by pike presence (Y) and pike absence (N)
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decrease with increasing food ration. However, the ef-
fects of food ration on Tenericutes and Proteobacteria
were non-significant (p > 0.05), but significantly affected
Fusobacteria (F2, 78 = 5.420, p = 0.006). The relative
abundance of Fusobacteria was also significantly affected
by pike presence (F1, 78 = 6.114, p = 0.016). Pike presence
also significantly affected the relative abundance of
Proteobacteria (F1,78 = 4.833, p = 0.031). The relative
abundance of Bacteroidetes was, however, significantly
influenced by the interaction of food ration and sex
(Fig. 1b, ANOVA, F2, 78 = 3.592, p = 0.032). The relative
abundance of Cyanobacteria decreased significantly
with pike presence (Fig. 1c, ANOVA, F1, 78 = 11.614,
p = 0.001) and was marginally insignificantly influ-
enced by the interaction between food ration and sex
(ANOVA, F2, 78 = 2.730, p = 0.071).
At the genus level, the interaction of food ration and

sex significantly influenced the relative abundance of
Myroides (F2, 82 = 5.852, p = 0.004) and an unknown
Flavobacteriaceae genus (F2, 82 = 4.122, p = 0.020) from
the phylum Bacteriodetes (Additional file 5: Figure S1a).
Pike presence also significantly affected the relative
abundance of Prochiorococcus (F1, 88 = 11.98, p = 0.001)
and Anabaenopsis (F1, 88 = 4.948, p = 0.028) from the
phylum Cyanobacteria (Additional file 5: Figure S1b),
and Cetobacterium (F1, 88 = 5.457, p = 0.021) and an un-
known Fusobacteriaceae genus (F1, 88 = 15.99, p = 0.0001)
(Additional file 5: Figure S1c).

Alpha diversity in perch gut microbiota
Alpha diversity of perch gut microbiota, such as Chao1
(Fig. 2a), PD, and S. Obs (Additional file 6: Figure S2,
p=0.03
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Fig. 2 Changes of alpha diversity (Chao1) in perch gut bacterial commun
(N pike absence, Y pike presence). b Chao1 responding to the interactio
blue male perch). Error bars indicate standard deviation. p values were
Additional file 7: Table S5), significantly decreased in
the presence of pike (Additional file 7: Table S5).
When adding food ration and sex in the model, their
interaction had a significant effect on Chao1 (Fig. 2b,
t = − 2.03, p = 0.046), showing a sex-dependent effect
of increasing food ration. However, this interaction
between sex and food ration could not be observed in
PD and S. Obs. We also added perch relative intes-
tine length as a covariate to our test, but we did not
find significant effects from it on microbiota alpha
diversity (p = 0.765).

Gut microbiota composition among perch individuals
Perch gut microbiota communities were distinctively
separated from water and food samples in terms of
NMDS using Bray-Curtis (Fig. 3a) distance matrix. Un-
weighted and weighted UniFrac distance matrix-based
NMDS also showed similar patterns (Additional file 8:
Figure S3). NMDS for only gut microbial communities
showed that predation stress was the main factor to de-
termine the microbial compositional variations (Fig. 3b).
PERMANOVA on Bray-Curtis, unweighted UniFrac
distances showed that both pike presence and food
ration had significant effects on perch gut microbiota
(Table 1). In contrast, sex, food ration × sex, pike ×
sex, and food ration × pike were all non-significant.
PERMANOVA on the weighted UniFrac distances
corroborated this since food ration significantly af-
fected perch gut microbiota, while pike presence had
a marginally insignificant effect (Table 1). However,
sex, food ration × sex, pike × sex, and food ration ×
pike were all found non-significant.
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ities. a Chao1 significantly differed between pike predation treatment
n of food ration (5, 10, and 15%) and perch sex (red, female perch;
obtained from TukeyHSD test with ANOVA model
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Fig. 3 Two-dimensional non-metric multidimensional scaling (NMDS) plot of bacterial communities. Bray-Curtis distance matrix was used to generate
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Representative OTUs
There were large overlaps in OTUs of gut microbiota
within predation treatments, but perch with pike pres-
ence had fewer unique OTUs compared to perch with
no pike (Fig. 4a). The overlaps were smaller and the
number of unique OTUs was greater among the perch
with different food ration (Fig. 4b). By detailed profiling
of the OTU dynamics in each treatment, we found 23
OTUs belonged to, for example, Cetobacterium and
Fusobacteriaceae in Fusobacteria, Lactococcus and
Clostridium in Firmicutes, that were significantly over-
represented in the pike treatments (Additional file 9:
Table S6). At phylum level, Firmicutes and Fusobacteria
were tested to have more odds to respond to pike
presence/absence than the other phyla (Firmicutes: odds
ratio = 7.64, p < 0.001, Fusobacteria: odds ratio = 25.19,
p = 0.004). When considering the interaction of fac-
tors, we also found that Firmicutes and Fusobacteria
Table 1 PERMANOVA results of the effect of each factor and their in
distance

Bray-Curtis U

df R2 F p

Food ration 2 0.05 2.58 0.01 0

Pike 1 0.05 4.76 0.002 0

Sex 2 0.02 1.18 0.27 0

Food ration × pike 2 0.01 0.39 0.99 0

Food ration × sex 3 0.04 1.15 0.31 0

Pike × sex 1 0.01 0.58 0.75 0

Significant treatment effects are highlighted in italics
had significantly more odds to respond than other
phyla in the 10% food ration and pike presence inter-
actions (Firmicutes: odds ratio = 6.27, p < 0.001, Fuso-
bacteria: odds ratio = 20.68, p = 0.005). However, the
sum of all responding OTUs only made up a small
proportion of the total relative abundance of all phyla
(Additional file 10: Figure S4).

Functional predictions
PICRUSt gave 44 predicted functional categories that rep-
resented 7 pathway maps in the KEGG level 2 functional
modules. Each functional category showed variations in
their average relative abundance (Additional file 11: Table
S7). We did not find any treatment effects in an overall
model including all 2-way interactions. However, when
analyzing the effects of food ration and pike presence
separately, we found that food ration and pike presence
had significant effects on several functional categories,
teractions on Bray-Curtis, unweighted and weighted UniFrac

nweighted UniFrac Weighted UniFrac

R2 F p R2 F p

.03 1.47 0.045 0.05 2.33 0.02

.03 2.71 0.002 0.03 2.34 0.06

.02 0.86 0.70 0.03 1.31 0.23

.02 0.82 0.78 0.01 0.30 0.98

.04 1.15 0.20 0.02 0.72 0.73

.01 1.04 0.33 0.01 0.77 0.52



Fig. 4 Profiling of OTUs in perch gut microbial communities. Venn diagrams showing a number of OTUs in pike absence (pink) and pike
presence (light blue) treatments. b Number of OTUs in food ration treatment (5% light blue, 10% pink, and 15% purple)
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corresponding to 5 pathway maps (Additional file 11:
Table S7). Food ration had a significant effect on meta-
bolic pathways, involved in biosynthesis of other second-
ary metabolites, metabolism of cofactors and vitamins,
and digestive system (Fig. 5a). Pike presence influenced
the functional categories membrane transport, signaling
molecules and interaction as well as environmental adap-
tation (Fig. 5b).
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Perch intestine length
Besides the effect on microbial communities, we found
that pike presence and food ration had a significant
impact on perch relative intestine length (ANOVA:
pike, F1, 85 = 16.18, p = 0.0001; food ration, F2, 85 =
11.09, p < 0.0001). Perch intestine length decreased in
the presence of pike and increased with increased
food ration (Fig. 6). Despite strong effects of
0.15

ys (%)

*

**

**

0.00 0.05 0.10 0.15

The relative abundance value of KEGG pathways (%)

No
Yes

b

in KEGG pathways (level 2). a Relative abundance of each predicted
een). b Relative abundance of each predicted functional category
reatment. Error bars indicate standard deviation. ANOVA test results
< 0.01, *p < 0.05



0.4

0.5

0.6

0.7

0.8

5%.N 10%.N 15%.N 5%.Y 10%.Y 15%.Y
Food ration and pike

R
el

at
iv

e 
In

te
st

in
e 

le
ng

th

Fig. 6 Changes of perch relative intestine length. Box plot showing the interactive effects of food ration (5, 10, and 15%) and pike predation
(Y pike presence, N pike absence) on perch relative intestine length. Error bars indicate standard deviation

Zha et al. Microbiome  (2018) 6:28 Page 8 of 12
treatments on both intestine length and microbial
diversity, we found no significant correlations be-
tween perch relative intestine length and gut micro-
biota diversity (Chao1: t = 1.016, p = 0.313; PD: t =
0.825, p = 0.411; S. Obs: t = 0.608, p = 0.545).
Discussion
Gut microbiota serve the host with crucial roles in im-
mune function and metabolism. The coupling of gut
microbiota and their host has been attributed to the pro-
duction of vitamins and other metabolites by microbiota
in the gut of aquatic vertebrates, which is similar to what
has been found in terrestrial mammals [42, 43]. For
example, enzymes from gut microbes are important
sources besides the enzymes produced by the fish gut
for food digestion [44]. In this study, we tested the
effects of predation stress, food ration, and host sex on
gut microbiota in perch. We found that gut microbial
diversity, as well as metabolic potential predicted from
16S rRNA, responded to predation stress and food
ration. Furthermore, Bacteroidetes communities showed
sex-dependent responses to food ration. These commu-
nity responses to the treatments coincided with
decreased intestine length in the presence of pike and
increased intestine length with larger food ration. Hence,
it can be suggested that predation stress and food ration
have consequences for fish body condition through
inducing changes in gut microbial communities, and
these changes can be sex-dependent.
Like previous studies on human and laboratory ani-

mals, we have shown that stress can influence and
change the gut microbiota community. Knowles et al.
[45] found significantly lower fecal lactic acid bacterial
levels when students were facing academic stress. Simi-
larly, Bailey et al. [46] showed that social disruption
stressor could impact the gut microbiota community in
mice. In our perch experiment, stress responses were
observed in the relative abundance of Proteobacteria and
Fusobacteria. A well-studied response to predator pres-
ence is that prey will change habitat and diet to reduce
the risk of being captured by the predator [47–49]. To
eliminate the effect of diet type which has been shown
to shape gut microbiota of multiple vertebrate species
[50–54], we only fed perch with one type of food (chi-
ronomids). Hence, our experimental setup allowed us to
show that direct physiological responses of perch to
predation-stress could modify gut microbiota communi-
ties, and thus, in our case, diet shifts could be excluded.
In an accompanying paper from this experiment, we
found that perch reduced their foraging activity and
space use in the presence of predators [25]. Such
responses in behavior emphasize that the perch actually
experienced predation stress in our experiment. Further-
more, predation stress also changed the relative abun-
dance of microbial functional abilities as predicted by
PICRUSt. Predator presence was shown to affect the
presence of signaling molecules including the cytokine-
cytokine receptor interactions, where microbes are
suggested to be necessary for the stressor-induced
increases in circulating cytokine [46].
The stress responses in teleost fish are similar to those

found in terrestrial vertebrates. The primary response is
to release stress hormones into the circulations, for
example, corticosteroids that could combine with gluco-
corticoid to restore the hydromineral homeostasis [55].
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The main purpose of our experiment was not aimed at
measuring hormones. Nevertheless, a primary hormone
response would also start an endocrine response that
has been shown to have a close interactions with fish
immune systems [55]. Both innate and adaptive immune
system were previously suggested to influence gut
microbiota composition and diversity [56, 57]. A recent
study also gave evidence that guppies living in high-
predation and low-predation areas expressed different
gut enzymatic profiles [58]. These differences in gut
enzymatic profiles can result in changes in abundance
and composition of the corresponding microbiota.
Sympathetic nervous system (SNS) activities induced
by stress could be another significant influence on
gut secretion and motility and has been shown to in-
fluence the stability of microbiota communities in
mice [59]. These multiple molecular studies together
with our experimental results thus suggest that the
physiological changes from stress can result in an en-
vironmental disturbance in the gut environment,
which can alter the composition and functioning of
the microbial communities [27].
In an accompanying paper from the experiment of

this study, we found that perch had lower body con-
dition in the presence of pike even though they were
fed a similar amount of food [25], suggesting that the
microbial change in response to predator presence
could have consequences on perch body condition
and vice versa. In our study, the perch relative intes-
tine length was significantly shorter with pike pres-
ence. Such a decrease in intestine length when facing
predation could be the result of reduced food intake
[60]. However, during the experiment period, we de-
tected no food residuals after feeding the fish. Thus,
other factors than food limitation probably caused the
intestine shortening when pike was present. Dealing
with stress is an energy demanding process for ani-
mals and can have consequences on metabolism. Ani-
mals might need to re-distribute metabolic substrates
to other tissues so that they can handle the increasing
energy needs when facing stress, such as to stimulate
oxygen in gills [55], instead of spending them on a
high-energy intestine [61]. Interestingly, we did not
find a significant correlation between relative intestine
length and the microbial community diversity. This is
surprising, as predation-stress decreased microbial di-
versity as well as intestine length. Our results thus
suggest that the host physiological changes from
stress and/or the food substrates on microbe use in
intestine have bigger effects on gut microbial commu-
nities than intestine length per se.
In natural animals, predators strongly influence

their prey, including changes in prey’s food intake in
terms of both quality and quantity. Food intake from
the host is provided as substrates for gut microbes to
use for their own growth. Meanwhile, gut microbiota
greatly contribute to regulate host energy harvesting
[62], as shown by responses to different diet, and also
in response to calorie intake [13]. This is reflected by
our experiments with one type of food, where food
ration influenced the gut microbiota community in
perch. One possible explanation for the effect of food
ration on gut microbiota is that a high ration of food
favors bacteria that are quick colonizers and fast
growers, as food is not limiting. At lower food ratios
on the other hand, bacteria that are good competitors
will be favored [21]. An extreme situation of lower
food ration is starvation, which has been shown to
change physiological state in fish to meet energy re-
quirements [63], and several studies have shown that
starvation is a stress factor for fish [20, 64, 65].
When comparing the relative abundance of bacterial

phyla among treatments, we found that Fusobacteria
increased both at the lowest food ration and at preda-
tion stress conditions. This suggests that Fusobacteria,
especially Cetobacterium could be used as indicators
for fish experiencing stress. Furthermore, Fusobacteria
have also been suggested to be associated with many
human infections, such as colonic mucosa inflamma-
tion [66, 67], inflammatory bowel disease (IBD),
where IBD often increase with host psychological
stress [68]. In addition, we suggest that changes of
other secondary metabolites as an effect of food ra-
tion could also be important and possibly contribute
to the nutrition absorption, energy obtaining, and
weight gaining of the host [69].
We also found that microbial diversity was affected

by the interaction between food ration and sex. For
example, gut microbiota in perch male and female
responded differently when fed with different
amounts of food. The mechanisms behind this pat-
tern are not clear. One explanation can be that males
and females differ in intestinal tract physiology. For
example in humans, females have a longer transit
time in their intestine compared to males [70], which
could give gut microbial community longer time to
use the substrate. Another explanation can be related
to sex hormones, which have been shown to play im-
portant roles in regulating bacterial metabolism and
growth [70]. Studies in mice have also shown sex-
specific differences in gut microbiota composition at
puberty [8]. Similar to our study, Bolnick et al. [9]
found that gut microbiota responded differently to
diet in male and female stickleback. The role of sex
hormones rests on the assumption that male and fe-
male sex hormones affect bacterial growth differently
at high and low food rations, which requires further
investigations.
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Conclusions
In this study, we showed that perch gut microbiota
communities react to predation stress and food ration,
with parts of the gut community also showing host
sex-specific responses. The observed effects of preda-
tion and food ration call for an assessment of the role
of gut microbiota in food web dynamics and trophic
energy transfer.
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