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Abstract

Background: Pathogenic and allergenic bacteria and fungi within the indoors can bring detrimental health effects
on the occupants. We previously studied the bacterial communities found in households located throughout Hong
Kong as well as the skin surfaces of the occupants. As a complementary study, here, we investigated the fungal
communities (mycobiome) in the same residences and occupants and identified factors that are important in
shaping their diversity, composition, distribution, and dispersal patterns.

Results: We observed that common skin and environmental fungal taxa dominated air, surface, and skin samples.
Individual and touch frequency strongly and respectively shaped the fungal community structure on occupant skin
and residential surfaces. Cross-domain analysis revealed positive correlations between bacterial and fungal community
diversity and composition, especially for skin samples. SourceTracker prediction suggested that some fungi can be
transferred bidirectionally between surfaces and skin sites, but bacteria showed a stronger dispersal potential. In
addition, we detected a modest but significant association between indoor airborne bacterial composition and
geographic distance on a city-wide scale, a pattern not observed for fungi. However, the distance-decay effects were
more pronounced at shorter local scale for both communities, and airflow might play a prominent role in driving the
spatial variation of the indoor airborne mycobiome.

Conclusions: Our study suggests that occupants exert a weaker influence on surface fungal communities compared to
bacterial communities, and local environmental factors, including air currents, appear to be stronger determinants of
indoor airborne mycobiome than ventilation strategy, human occupancy, and room type.
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Background
Individuals in urban societies spend most of their time
indoors [1]. The indoor environment (also referred to as
the built environment, BE) is also the habitat for micro-
organisms and represents a major interface of contact
between humans and microbes [2]. In recent years, in-
door microbiome has received much research interest,
as organisms detected within BEs can be detrimental to
human health [2–6]. Therefore, understanding factors
that shape the indoor microbiome and its dispersal has
great importance for occupants’ health and well-being.
Human skin itself is home to a diverse community of

commensal microbiota, consisting of bacteria, fungi,
archaea, and viruses [7–9]. Since the advent of high-
throughput sequencing, bacteria, as the predominant

skin colonizers, have thus far garnered tremendous at-
tention in microbiome work [8, 10–12]. The diversity
and composition of skin bacterial community are highly
personalized [13] and site-specific [14]. Direct contact
between human skin and indoor surfaces is a major
route for microbial dispersal, and residential surfaces
harbor unique skin bacterial signatures [15, 16]. In
addition, occupants release particles into the surround-
ing environment and leave the indoor air with distinctive
human-associated microbial fingerprints [17, 18].
While bacterial communities on skin are better under-

stood, cutaneous microbial assemblages are not limited to
bacteria, with fungi also occupying a wide range of skin
niches [7]. Within fungal communities (mycobiome),
Malassezia, Rhodotorula, Debaromyces, Cryptococcus, and
Candida are among the most prevalent cutaneous taxa
across different individuals and population groups [19, 20].
Direct shedding of fungal microbes from occupant clothing
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may exert an influence on the indoor mycobiome [21].
Furthermore, human occupancy and behavior appear to
affect fungal richness and diversity within the BEs [18, 22].
In agreement with this, common skin fungal taxa, possibly
originating from human occupants, are widely detected in
indoor dust [2, 23–26], air [21, 27], or surfaces [22, 28] of
different BEs.
In addition to the host-associated factors, indoor

mycobiome also tends to be highly influenced by fungi
from the outdoors [15, 22, 29, 30]. Outdoor microorgan-
isms rarely cross significant geographic barriers through
active dispersal [31], but the small size of microbes can
facilitate their long-distance passive dispersal potentially
with the help of air, water, and/or animals [31, 32]. The
outdoor spatial variation in microbial diversity with geo-
graphic distance generates the distance-decay biogeo-
graphic pattern [32, 33], which is also encountered in
indoor environments at different spatial scales [3, 21] as
a function of outdoor dispersal [34].
To date, most indoor mycobiome studies have been

largely limited to the western world, with only a few
exploring the dispersals of mycobiome within the BEs
[21, 34]. Furthermore, the reported fungal distance-
decay pattern is either on a short geographic distance
(400 m) within a housing complex [34] or in residences
located across continents [3], with no information on a
city-wide scale with different levels of urbanization and
the associated factors driving the indoor biogeographic
pattern. The mechanism(s) by which fungi disperse
within BEs, and whether endemic fungal taxa exist in
Asian households, are also unknown. In this study, the
air, skin, and surface mycobiomes of 19 households dis-
tributed throughout Hong Kong (HK) were analyzed
and compared with our previous bacterial work in the
same households [15]. The objective is to determine
whether, like bacteria, fungi can be transferred between
surface and skin and, therefore, whether household
surfaces harbor the human skin “fungal fingerprint.”
Also, we aim to determine whether the indoor airborne
mycobiome is strongly influenced by the local outdoor
environment and whether households that are nearby
share more taxa than those farther apart regardless of
ventilation type and building design (i.e., demonstra-
tion of distance-decay relationships in the indoor
airborne mycobiome).

Methods
Sample collection, DNA extraction, and sequencing
Full details are provided in the supplementary method
file (Additional file 1: Text S1). Air and surface samples
were collected from 19 households distributed through-
out HK (Fig. 1), and skin samples were sampled from 40
healthy occupants who lived in the residences. A single
biological sample per sample type was collected from

each home (428 in total). Genomic DNA was extracted,
and fungal ITS1 region was amplified with the 18Sfw/
5.8Srv primer pair [14]. Libraries were prepared using
the Illumina MiSeq Reagent Kit v2 and sequenced on a
MiSeq platform to generate 250 bp paired-end reads.

Bioinformatics
Forward and reverse reads were merged, trimmed, and
filtered to a uniform length of 300 bp with an error rate
of less than 0.5 error per read in USEARCH (version
9.0.2132) [35]. Dereplicated reads were clustered into
operational taxonomic units (OTUs) at 97% identity fol-
lowing the UPARSE pipeline [36]. All sequences were
first assigned taxonomy with the UNITE database [37]
using the UCLUST algorithm in QIIME (version 1.9.1)
[38], and a curated dataset [14] was then adopted to
provide taxonomic information for reads that were
unclassified at the genus rank with UNITE. Chimeras,
singletons, and contaminants were discarded, and sam-
ples were rarefied to an even depth of 1058 reads per
sample prior to the downstream analyses.

Data analyses and statistics
Statistical analysis was implemented using the R frame-
work (version 3.3.0). Differences in the relative abun-
dance of a given genus between groups were determined
using the Mann-Whitney (MW) [39] and Kruskal-Wallis
(KW) [40] tests. Indicator species analysis was per-
formed with the “indval” function in the R package
“labdsv” [41]. The significances of different building and
location factors on rarefied alpha- and beta-diversity of
indoor mycobiome were assessed using analysis of vari-
ance (ANOVA) of the linear mixed-effects models in the
R package “lme4” [42] and permutational multivariate
analysis of variance (PERMANOVA) by the “adonis”
function in the R package “vegan” [43], respectively. The
tested metrics include observed number of OTUs,
Chao1 [44], Shannon [45], and Simpson [46] for alpha-
diversity and Bray-Curtis dissimilarity [47] and Binary
Jaccard distance [48] for beta-diversity analyses. The fac-
tors considered above contained customized variables
such as household occupancy and surface properties
(details are provided in Additional file 2: Table S1).
Spearman test was used to investigate the cross-domain
bacterial and fungal alpha- and beta-diversity correla-
tions. Mantel test [49] in the R package “ade4” [50] was
applied to calculate the correlation between the geo-
graphic distance and the indoor bacterial or fungal com-
munity dissimilarity at three spatial scales, with Binary
Jaccard as the community distance metric. Dispersals be-
tween different sample types within the households were
predicted using the SourceTracker algorithm [51].
Indoor and outdoor air source tracking was carried out
with HK indoor air samples as sinks and outdoor air
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samples from Beijing [52] and Berkeley [21] as the
surrogate sources after performing closed-reference and
open-reference OTU picking in QIIME. The sampling
and sequencing information of the three studies used in
source tracking are summarized in Additional file 3:
Table S2.

Results
OTUs distribution
A total of 1501 fungal OTUs were retained after quality
control of the sequencing data. Although some taxa
were ubiquitous, the majority of OTUs (1371) were
found in less than 10% of the samples, and 444 OTUs
appeared only in one sample even after singleton OTU
removal. The OTU rank-abundance curve shows a long
tail of many low-abundance taxa (Additional file 4:
Figure S1), which is also observed in another indoor
mycobiome study [34]. Following rarefaction, skin and
surface samples shared a larger proportion of their
OTUs (145) than air and surface (54) or air and skin
(38) (Additional file 5: Figure S2).

Taxonomy and indicator species analysis
Malassezia was the most prevalent genus across all three
sample types, with a wide range of mean relative abun-
dances from 6% to 83% (Fig. 2). Although Malassezia
was more abundant on skin (KW post hoc test, p < 0.05
for comparisons between skin and air/surface), it also
accounted for a large number of reads in the air and
surface samples. Within surface samples, the relative
abundance of Malassezia was significantly higher on
those that were more frequently touched (MW test,
p < 0.001, Additional file 6: Figure S3). No significant
difference in the relative abundance of Malassezia was
observed in air samples when considering the presence
or absence of occupants (MW test, p = 0.955). Other
less dominant taxa such as Aspergillus and Cladospor-
ium, which are commonly found indoors, were especially
abundant in air (KW post hoc test, p < 0.05 for compari-
sons between air and skin/surface, Fig. 2). At the species
rank, several taxa uniquely associated with human activ-
ities in Asia were identified. These include Aspergillus
oryzae, a filamentous fungus which is widely used in

Fig. 1 City-wide geographical locations of the 19 households. Households are separated into East-West (red markers, eight households) and North-South
transects (blue markers, seven households), while the four households colored with green markers outside the two clusters were excluded from the
directionality analysis. The locations of the households were plotted using Google Maps, and the household code names are indicated
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China and other Asian countries for fermentation [53]; Cor-
dyceps militaris, a traditional Chinese medicine and folk
tonic food in East Asia [54]; and Auricularia polytricha
(cloud ear fungus) and Lentinula edodes (shiitake), com-
mercially important mushrooms that are mainly distributed
in the temperate and subtropical zones of Asia [55, 56].
Indicator species analysis identified some taxa that

were noticeably more abundant in certain types of
samples. For example, three OTUs of the mold genera
Cladosporium and Paecilomyces served as unique
indicator taxa of air samples. A small number of OTUs
deriving from the common skin fungal members of
Malassezia, Penicillium, and Pichia as well as an envir-
onmental species Aspergillus niger were the indicator
taxa for skin samples. However, no indicator species was
found for surface samples (Additional file 7: Table S3).

Factors influencing fungal community diversity and
composition
ANOVA was adopted to infer the influence of different
factors on community alpha-diversity (Additional file 8:
Table S4). After rarefaction, community richness (observed

number of OTUs and Chao1) and diversity (Shannon and
Simpson) metrics differed significantly by sample types,
with skin showing the highest alpha-diversity among the
three types of samples (p < 0.001 for all metrics). Specific-
ally, air samples were significantly affected by household
and relative humidity for all metrics except for Simpson
when considering humidity as a factor, while room only
showed influence on community richness. Factors (area,
household, and individual) considered for skin samples all
displayed significant effects regardless of the metric used.
Area and room differed significantly for all metrics in
surface samples except for Simpson when area was
considered, and human occupancy did not affect the rich-
ness of surface community.
PERMANOVA was performed on rarefied Bray-Curtis

dissimilarities (abundance-weighted community dissimi-
larity metric) and Binary Jaccard distances (membership-
weighted community distance metric) between samples
to estimate the effect of building and location factors on
fungal community structure and composition. For the
abundance-based dissimilarity metric (Table 1), house-
hold showed significant effects on all three sample types.
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Also, the community clustering effects on skin samples
by individual (p = 0.001, t = 4.298) and surface samples
by touch frequency (p = 0.001, t = 5.374) were the stron-
gest among the factors considered within the same sam-
ple type. Furthermore, skin samples differed significantly
when grouped by area, and surface samples by area and
room. When only considering OTU presence/absence,
factors including room on air community and deposition
potential and human occupancy on surface community
were significant, although the strength of clustering
remained low (Additional file 9: Table S5). However, no
significant difference was found in air communities be-
tween households with different ventilation systems
(natural/mechanical) regardless of metrics used, suggest-
ing that ventilation strategy played a lesser role in shap-
ing the air mycobiome in the residences sampled.

Cross-domain comparison of bacterial and fungal
communities
To explore the correlation between bacterial and fungal
communities within each sample type, we combined the
current fungal data with our previous work that analyzed
indoor bacterial communities [15] of the same households
and occupants. After rarefying to the respective sequen-
cing depths, skin bacterial and fungal alpha-diversity cor-
related significantly and positively for both observed
number of OTUs and Chao1 (Spearman, p < 0.001,
rho = 0.290 for observed number of OTUs; p < 0.001,
rho = 0.289 for Chao1, Additional file 10: Table S6), indi-
cating that samples with a higher bacterial richness also
tended to have a higher fungal richness. For surface sam-
ples, only the estimated total number of bacterial and fun-
gal OTUs was significantly and positively correlated
(Spearman, p < 0.001, rho = 0.301 for Chao1). However,
no significant cross-domain alpha-diversity correlation
was observed for air samples (Spearman, p = 0.252 for
observed number of OTUs, p = 0.849 for Chao1).
The cross-domain beta-diversity correlation was

performed based on the rarefied Bray-Curtis dis-
similarities and Binary Jaccard distances, respectively

(Additional file 11: Table S7). For both metrics, signifi-
cant and positive bacterial-fungal community compos-
ition correlations were identified for all three sample
types. Remarkably, skin samples (Spearman, p < 0.001,
rho = 0.315, effect-size r = 0.291 for Bray-Curtis dissimi-
larity) showed the greatest positive correlations between
bacterial and fungal community composition dis-
similarities, and the effect size even doubled (Spearman,
p < 0.001, rho = 0.237, effect-size r = 0.601 for Binary
Jaccard distance) when only considering OTU presence/
absence. However, regardless of the metric used, the
effect size remained low for air and surface samples
where the bacterial and fungal communities were mod-
erately correlated.

Distance-decay pattern
Our previous bacterial study [15] and current fungal work
jointly revealed that household was the strongest factor
that significantly shaped the composition and structure of
the indoor airborne communities. Given that the house-
holds are distributed spatially across the city, here, we
studied the correlation between the community dissimi-
larity (Binary Jaccard distance metric) and geographic dis-
tance for the two domains. On an overall city-wide scale
without considering directionality (the longest point-to-
point straight-line distance between households is 30 km),
a weak but significant correlation was observed for the
bacterial community (Additional file 12: Figure S4A),
suggesting that households within close proximity of each
other tended to share more bacterial taxa than households
located further apart (p = 0.001, r = 0.033, Mantel test).
However, this pattern was not observed for fungi
(Additional file 12: Figure S4B), such that households
closer together in geographical distance did not necessar-
ily have a more similar indoor air mycobiome (p = 0.400,
r = 0.002, Mantel test).
Given that the majority of households (15 of 19) are

distributed along two directions (Fig. 1), we further sepa-
rated these households into two subgroups, one from
North to South (farthest apart is 15 km) which captures

Table 1 Bray-Curtis-based PERMANOVA test on factors affecting the indoor mycobiome

Factor Air Skin Surface All

Area p = 0.003, t = 1.781 p = 0.001, t = 2.227

Deposition p = 0.054, t = 1.654

Household p = 0.001, t = 1.727 p = 0.001, t = 3.845 p = 0.001, t = 1.552

Individual p = 0.001, t = 4.298

Occupancy p = 0.287, t = 1.104 p = 0.081, t = 1.453

Room p = 0.396, t = 1.055 p = 0.001, t = 2.489

Touch p = 0.001, t = 5.374

Type p = 0.001, t = 12.790

Ventilation p = 0.138, t = 1.448
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a large gradient of geographic landscape in HK (from
dense city to rural area), and the other from East to
West (farthest apart is 11 km) which has less variation
in the level of urbanization. For air bacterial community,
we observed significant positive correlations between
community dissimilarity and geographic distance in both
directions (p < 0.001, r = 0.170 for North-South transect;
p < 0.001, r = 0.163 for East-West transect; Mantel test)
(Fig. 3a, b). However, for air fungal community,
significant result was only obtained for the North-South
transect (p < 0.001, r = 0.120, Mantel test) and the
community along the East-West transect (p = 0.055,
r = 0.028, Mantel test) appeared to be more homoge-
neous (Fig. 3c, d).

Dispersal pattern predictions
The Bayesian SourceTracker technique [51] was used to
assess dispersals between sample types within households.
The highest prediction accuracy (~ 40%) was identified for

the skin-to-surface route (Fig. 4), suggesting that two-
fifths of household surfaces were imprinted with their cor-
responding occupant skin-associated fungal communities.
In contrast, the prediction accuracy for the opposite direc-
tion (surface-to-skin route) was lower (~ 30%). However,
all routes involving air either as a sink or source showed
less than 12% accuracy, with the exception being dispersal
from skin to air in households with low occupancy. Not-
ably, no successful prediction (0%) was made for the air-
to-skin route. Compared to our previous bacterial work,
which used the same method to predict dispersal poten-
tials [15], fungi appeared to be harder to disperse between
skin and surface routes, where the average prediction ac-
curacy for the bacterial community was ~ 70%.
In order to further determine which OTUs could be

transferred between sample types, and the extent to
which the OTUs contributed to shaping the sink com-
munity, the relative contribution rates of the contributor
OTUs to the correct sink communities were assessed for
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all households. The majority of contributor OTUs
(genera) were identified to be the reciprocal sources
between the two sample types analyzed (Fig. 5,
Additional files 13 and 14: Figures S5 and S6), suggest-
ing a large extent of bidirectional exchanges between the
source and sink communities. However, a few contribu-
tor OTUs were identified to be the unique sources for
either skin or surface community (Additional file 15:
Table S8), suggesting that the dispersal of some OTUs
only occurred in specific one-way routes.

Comparison of HK indoor air mycobiome to outdoor air
mycobiome of selected locations
To test the hypothesis that outdoor airborne fungal
community was the major source for the indoor air
mycobiome, outdoor air samples from Beijing [52] and
Berkeley [21] were used as surrogate sources (Additional
file 3: Table S2). Sequences in the three datasets were
clustered into OTUs using two different approaches
(closed-reference and open-reference workflows). Source-
Tracker was used to determine the proportion of outdoor

mycobiome that made up the HK residential mycobiome.
Although biases could be introduced as OTUs were more
likely to cluster within its own dataset, the contribution of
the surrogate sources on HK indoor air mycobiome
remained high regardless of the OTU picking strategy
(especially Beijing outdoor air samples with an aver-
age of ~ 50% contribution) (Additional file 16: Figure S7),
supporting the hypothesis that the fungal communities in
the outdoor air dominated the indoor airborne mycobiome.

Discussion
Dispersal between occupant skin and residential surfaces
Human skin is widely colonized with mycobionts including
Candida, Cryptococcus, Debaryomyces, Malassezia, Peni-
cillium, and Rhodotorula [14]. The interaction between
skin and residential surfaces leads to close resemblance
between the two respective microbial communities, and
the surfaces can also be imprinted with human-
associated microbiome signatures [15, 16, 57, 58]. In
this study, skin fungal commensals dominated the skin
samples, with many being unique indicator species of

Fig. 4 Heatmap based on SourceTracker prediction accuracy for the different dispersal routes. The color intensity of the heatmap indicates a
scale from 0 to 40%. A prediction is considered successful only if the source community that contributes largest to the sink community is from
the same household. The accuracy rate in percentage is the ratio between the number of successful predictions and total predictions. As an
example, skin-to-surface indicates the dispersal route where skin samples act as the sources and surface samples are the sinks. For dispersal routes
involving air or surface, occupancy level was tested. For routes involving surface either as a source or sink, the transfer was further evaluated
based on high/low deposition potential and high/low touch frequency
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skin (Additional file 7: Table S3). Skin and surface sam-
ples exclusively shared a larger number of Malassezia-
associated OTUs than those that were specific to
surface (Additional file 5: Figure S2). In SourceTracker
analysis (Fig. 4), the surface communities can be cor-
rectly matched to the corresponding occupant skin in
over 40% of the households. Malassezia, comprising
over one third of contributor OTUs (39/94), was not
only a major source for surface communities in these
correctly matched households, but also contributed to
shaping the surface communities in households where
predictions were incorrect (Fig. 5a), suggesting that the
dispersal of skin fungi occurred in majority of the
households. On the other hand, the surfaces in

household KT appeared to be the vector rather than the
recipient with Candida- and Cladosporium-associated
OTUs on skin being identified as sourced exclusively
from the surface community (Fig. 5 and Additional file 14:
Figure S6). In addition, a small number of contributor
OTUs identified on surfaces were the unique sources
for skin communities (Additional file 15: Table S8).
Therefore, fungi on occupant skin and household sur-
faces can be transferred bidirectionally. Given the
relatively high abundance of Malassezia on frequently
touched surfaces (Additional file 6: Figure S3), as well
as the relatively high accuracy in predicting the dis-
persal from frequently touched surfaces to the occu-
pant skin (Fig. 4), we contend that human contact is
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Fig. 5 Contribution of the source genera to the corresponding sink community for each household. a The contribution of skin community to
each residential surface (x-axis) within each household (households ADMB and HHB without skin samples were excluded from the analysis).
Correct prediction indicates that SourceTracker is capable to correctly match the surface community to the corresponding occupant of the
households, while false prediction indicates an incorrect match between the surface community and the occupant. The percentage refers to the
total contribution of each genus on the five skin sites to each surface community. b The contribution of the surface community to each skin site
(right y-axis) of the occupants (x-axis) within each household. The percentage refers to the total contribution of each genus on the eight different
types of surfaces to each skin site
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a major route for fungal dispersal between skin and
household surfaces.

Origin of the skin-associated fungi in residential air
Similar to surfaces, a high abundance of skin-associated
taxa in the indoor air seems to imply strong dispersals
from occupant skin. However, SourceTracker was less
accurate when attempting to match the indoor airborne
fungal communities to skin or surface samples (Fig. 4).
In addition, only a few air samples contained taxa
derived from skin or surface and no dispersal was ob-
served in over half of the households (Additional file 13:
Figure S5). Therefore, there is only weak evidence of dis-
persal from either skin or surface to air. This observa-
tion could be partly attributed to the fact that the
sampling was conducted during winter, and the thicker
clothes worn by the occupants may reduce the shedding
of microbial particles from skin directly into indoor air
[59]. However, given that a large proportion of skin-
associated taxa, mostly Malassezia, were found in air,
there are likely other sources that cause the indoor air to
resemble the occupant skin community. In our previous
bacterial work [15, 60], skin-associated taxa in the
outdoor air have been identified as a major source of the
indoor air. Here, SourceTracker results suggested that
outdoor air similarly has a high potential to be the source
of the indoor airborne mycobiome (Additional file 16:
Figure S7). Therefore, it is possible that the majority of the
skin-associated taxa in the indoor airborne mycobiome
are sourced from the outdoor environment of HK (which
is densely populated). Given the localization and endem-
ism of the microbiome in the outdoor environment, hav-
ing comparable local outdoor air samples from HK would
be much more effective for source tracking of the indoor
mycobiome [61], and this will be a promising avenue to
pursue for future work.

Contribution of the outdoor environment to the indoor
mycobiome
In addition to the cutaneous fungi, indoor mycobiome
contained relatively high abundance of environmental
taxa. Cladosporium, identified as an indicator species of
indoor air in this study, also accounted for a proportion
of skin and surface communities. Despite this, the envir-
onmental taxa in indoor air community showed minimal
dispersal tendency (Additional file 14: Figure S6), sug-
gesting that indoor air is unlikely to be the major source
of environmental taxa found in skin and surface com-
munities. Furthermore, regionally endemic species such
as Auricularia polytricha and Cordyceps militaris were
only observed in surface and skin samples. Lentinula
edodes, which was scarce in the air community accord-
ing to our findings, was significantly enriched (p = 0.03,
MW test) on surfaces with high deposition potentials.

One reason could be that the relatively large spore size
of these mushroom-forming fungi facilitated their de-
position [62]. In addition, some fungal spores can adhere
to abiotic surfaces without external influence [63], and
the adhesion effect increases with the increasing surface
roughness [64]. Therefore, it is possible that human skin
and residential surfaces are major collectors of large
spores that originated from the outdoors.

The distance-decay biogeographic pattern
Architectural design is important for controlling the in-
fluence of outdoor air on the diversity and composition
of the BE microbiome, with different ventilation strat-
egies and characteristics shown to drive the variation in
the indoor airborne community [65–67]. Here, the ven-
tilation type (natural/mechanical) had no significant ef-
fect on either richness or composition of the indoor
airborne mycobiome. This contrasts a recent study by
Irga and Torpy [65] that showed naturally ventilated of-
fices have a higher fungal diversity compared to those
with mechanical systems. Households in the current
study are chosen from a wide range of buildings spatially
distributed on a city-wide scale, where differences in the
nearby outdoor air have been reported to drive the
variation in the indoor mycobiome of the BEs [34].
Therefore, the local environment could exert stronger in-
fluences on the indoor air mycobiome than building de-
sign when a broader scale is considered, as demonstrated
by previous continental- [3] and global-scale [2] studies,
where local environmental selection is the strongest deter-
minant of household dust-associated mycobiome.
In this study, the geographic location of the households

is the sole factor affecting the indoor mycobiome structure
and composition. However, the distance-decay pattern of
indoor airborne mycobiome was only observed in house-
holds located on the North-South transect (Fig. 3c). In
contrast, the indoor bacterial community showed a
weak but significant city-wide distance-decay pattern
(Additional file 12: Figure S4A). These observations raise
three questions: (1) What is driving the distance-decay
pattern of the airborne bacterial and fungal communities?
(2) Why do fungi and bacteria present different dispersal
limitations? (3) If there is a correlation between fungal
community and geographic distance in the North-South
transect, why this pattern is not being observed in the
East-West transect or even on a larger city-wide scale?
Fungi can disperse through sporulation [68], and a

large number of propagules increase the chance for
long-distance passive dispersal [31]. In addition, fungal
spores are usually aerosolized as dry spores, while bac-
teria are generally trapped in liquid droplets before re-
leasing into the air [69]. The relatively cooler and drier
conditions in HK during the winter season [70] when
the study was conducted may favor the dispersal of
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fungal spores relative to bacteria. Furthermore, given
that particle detachment is proportional to the exposed
particle surface area, and the removal force increases
more rapidly than adhesion forces as particle size
increases [71], the generally smaller size of bacteria
compared to fungal propagules [18] is consistent with
the theory that bacteria will detach under a higher
airflow speed compared to fungi. Therefore, the lack of a
city-wide scale distance-decay pattern in the indoor
airborne mycobiome may be attributed to the physical
capability of fungi in dispersing farther than bacteria
during winter. Given that air is an important vector for
the passive dispersal of small organisms [31], and vari-
ation in the landscape might cause spatial heterogeneity
in the outdoor airborne microbial community [3], we
suggest that air currents can promote microbial dispersal
in the outdoor environment and further drive the bio-
geographic distribution of microbes in the adjacent BEs.
The air mass passing through HK in winter is mostly
sourced from the northwest (based on HYSPLIT air tra-
jectory model) [70], and it likely plays a prominent role
in driving the distance-decay pattern in the North-South
transect, which also spans a range of geographic land-
scapes. On the other hand, the more homogenized
mycobiome in the East-West transect might be due to
the more uniform landscape in the air flow path (e.g.,
vegetation conditions, land-use type, and population
density) (Fig. 1).

Summary of the dispersal potentials for bacteria and
fungi in households
Based on our results, we present a summary of the dis-
persal potentials for bacteria and fungi for the different
routes within households (Fig. 6). Microbes can be

transferred between occupant skin and residential sur-
faces via human contact, with bacteria exhibiting a
stronger dispersal potential compared to fungi. Although
abundant cutaneous microbes can be aerosolized into
indoor air, little evidence is found for the dispersal be-
tween indoor air and human skin or residential surfaces
for both bacteria and fungi. Instead, the indoor airborne
microbiome appears to be sourced from outdoor air re-
gardless of ventilation strategy. Notably, indoor airborne
bacterial communities are also significantly shaped by
some household-specific bacteria from gut and oral
cavity of human occupants [15]. In contrast, indoor
airborne fungi are more susceptible to the geographic
location and environmental factors, suggesting a stron-
ger exchange between the indoor and outdoor fungal
communities [72].

Conclusions
In summary, our study provides evidence that occupants
can transfer fungi to household surfaces via contact.
Although almost half of the residential surfaces harbor
occupants’ skin fungal fingerprint, fungi seem to be less
readily transferred than their bacterial counterparts. Our
study also shows that fungi appear to disperse farther in
distance compared to bacteria during winter, and
bacteria show dispersal limitation at a local scale. In
addition, air currents, rather than building factors, ap-
pear to drive the spatial variation in the indoor airborne
mycobiome in winter. This study provides important in-
sights into the indoor transmission route of potential
fungal allergens and pathogens, and the foundation to
further study the complex relationships between indoor
fungal exposure, occupant health, and the influence of
outdoor environment.

Fig. 6 Schematic summary of the bacterial and fungal dispersal potentials for the different routes within households. Double-sided arrow depicts
bidirectional dispersal of microbes. Line thickness is proportional to the strength of dispersal potentials (interpreted according to the SourceTracker
results). Only the dispersal from outdoor air to indoor air (one direction) was considered. The bacterial results are based on our previous study [15].
Individual clip art images were downloaded from the open-source website Iconfont (http://www.iconfont.cn) and further customized
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