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Abstract

Background: Microbial communities in our built environments have great influence on human health and disease.
A variety of built environments have been characterized using a metagenomics-based approach, including some
healthcare settings. However, there has been no study to date that has used this approach in pre-hospital settings,
such as ambulances, an important first point-of-contact between patients and hospitals.

Results: We sequenced 398 samples from 137 ambulances across the USA using shotgun sequencing. We analyzed
these data to explore the microbial ecology of ambulances including characterizing microbial community composition,
nosocomial pathogens, patterns of diversity, presence of functional pathways and antimicrobial resistance, and potential
spatial and environmental factors that may contribute to community composition.
We found that the top 10 most abundant species are either common built environment microbes, microbes associated
with the human microbiome (e.g., skin), or are species associated with nosocomial infections. We also found widespread
evidence of antimicrobial resistance markers (hits ~ 90% samples). We identified six factors that may influence the
microbial ecology of ambulances including ambulance surfaces, geographical-related factors (including region,
longitude, and latitude), and weather-related factors (including temperature and precipitation).

Conclusions: While the vast majority of microbial species classified were beneficial, we also found widespread
evidence of species associated with nosocomial infections and antimicrobial resistance markers. This study indicates
that metagenomics may be useful to characterize the microbial ecology of pre-hospital ambulance settings and that
more rigorous testing and cleaning of ambulances may be warranted.

Keywords: Ambulance, Classification, Taxonomy, Pre-hospital setting, Hospital-acquired infections, Nosocomial
pathogens, Antimicrobial resistance, Microbial ecology, Metagenomics, Whole-genome sequencing

Background
The vast diversity of microbial communities in our
environment are shaped by many factors and have
important implications for human health and disease.
Recent advances in next-generation sequencing (NGS)
and metagenomic analysis now enable us to map,
quantify, and characterize environmental microbiomes
and understand some of the factors shaping community
composition and microbial population dynamics [1–3].

Microbial communities in the environment especially
influence human health and disease in healthcare set-
tings where patients often have increased susceptibility
due to illness, invasive procedures, immunosuppression,
or injuries [4, 5]. While metagenomics and other
culture-independent research has been conducted in the
healthcare environment [6–9], shotgun-based metage-
nomic sequence characterization of the ambulance pre-
hospital setting is still an unexplored research area. The
aim of this study is to use metagenomic techniques to
profile the microbiome of ambulance surfaces across the
country.
Ambulances and other pre-hospital settings are an

important first point-of-contact between patients and
hospitals. They also represent a vector for transmission
of hospital-acquired infections (HAIs) to patients and
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healthcare workers and can conceivably represent a
vector for transmission into hospitals [10]. Given the
high rate of HAIs, with one in 25 hospital patients con-
tracting infections [11], and increases in antimicrobial
resistant (AMR) infections, there is an urgent need to
characterize microbial populations in healthcare,
hospital, and pre-hospital settings. There are multiple
sources of nosocomial pathogens: important sources
include patient’s endogenous microbiota and contam-
ination from healthcare worker’s hands. Although
more complex, over the last decade, the role of the
surface environment as a source of nosocomial patho-
gens has also been increasingly acknowledged [12].
Targeted analyses of surface environments of ambu-
lances are important because maintaining a sterile en-
vironment in this setting is challenging; furthermore,
the cleaning regimen for ambulances is not as clearly
defined or regulated as it is for other healthcare set-
tings, such as in hospitals [13]. In fact, studies using
culturing-based methods have found high incidence of
Staphylococcus aureus and other potential nosocomial
pathogens on ambulance surfaces [10, 14–18].
In addition to infectious disease and public health

implications, studying the built environment using
metagenomics also enables us to contribute to the
field of microbial ecology. Elucidation of factors dri-
ving species diversity and distribution has historically
been, and continues to be, a major focus of study in
the field of ecology [19, 20]. With currently available
sequencing technology and analysis tools, we are now
able to explore these patterns at the microorganismal
level in new ways, uncovering undiscovered levels of
diversity and identifying novel microbial ecology
dynamics [21, 22]. Metagenomics has been used to
study the microbial ecology of a growing number of
diverse environments including urban environments
such as subways [2, 23], healthcare settings such as
hospitals [7–9], built environments such as homes [1],
and natural environments such as oceans [3]. Findings
include evidence of overabundance of particular
microbial populations associated with specific envi-
ronments and taxa being driven by a myriad of
factors such as surface-type, humidity, temperature,
and cleaning regimens. Studies in built environments
have shown characteristic microbial profiles often
shaped by the unnatural environment and displaying
evidence of selection by factors such as artificial
chemicals and materials [22]. The metagenomics of
ambulances may be of interest because ambulances
nationwide can have divergent materials, design, and
usage [13]; these mobile, built environments are
distributed throughout the nation and thus allow for
exploration of spatial and abiotic factors that may
influence species diversity and distribution.

In this study, we used shotgun NGS sequencing
(125 × 125 paired-end Illumina reads with > 99% base-
level accuracy), on 398 surface samples collected from
137 ambulances in 19 cities in six states across the USA.
Using a metagenomics analysis approach, we explored
the following questions: (1) What is the microbial com-
position of ambulances and potential factors shaping this
composition? (2) What is the functional characterization
of these microbial communities (e.g., pathogenicity, and
AMR markers) and what factors could be shaping this
functionality? (3) What patterns of diversity are we
seeing in these communities and what factors could be
shaping this diversity? Overall, the aim of this study was
to characterize the microbial ecology of ambulances
across the USA using metagenomics.

Results
Samples were collected by swabbing multiple surfaces
using the international MetaSUB urban metagenomics
protocol [24] within each ambulance including 3 min
swab-based collections of computers, steering wheels,
keyboards, medical equipment (stethoscopes, pulse O2

probes, blood pressure cuffs and bulbs, control panels,
automated external defibrillators [AEDs], and monitors),
stretchers, handles, rails, and cabinets. Samples were
processed to extract DNA and 398 of the 1407 samples
collected were sequenced. Samples sequenced were
chosen to include all surfaces and breadth of locations
(137 ambulances in 19 cities and six states; Fig. 1).
Complementary classification tools Metagenomic Phylo-
genetic Analysis Tool (MetaPhlAn v2.0) [25] and
CLARK [26] were used to classify samples and existing
bioinformatics tools and custom scripts were used to
further analyze these data (see Methods; Fig. 1). Statis-
tical approaches including generalized linear models
(GLMM) and random forest (RF) analysis were used to
explore variables potentially shaping the microbial pat-
terns observed. Finally, conducting a preliminary analysis
using CLARK and default settings against a database of
bacterial, viral and human genomes, we found that 2.6%
(+/−6.5) of the reads per sample were human.

Microbial identification and potential contributors
While several sequence classification methods are avail-
able to identify microorganisms in a sequenced sample,
there is no computational method capable of absolute
accuracy (i.e., no false positives and no false negatives).
In the context of the healthcare environment, it is
crucial to limit false positives/negatives in order to avoid
reporting pathogens that are not present and missing
pathogens that are truly present. To increase our abso-
lute accuracy, we used classification tools MetaPhlAn2
and CLARK on the full dataset as well as an integrated
multi-tool approach that generated the overlapping
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results of the two tools. MetaPhlAn2 performs better
than many other state-of-the-art abundance estima-
tion programs and can achieve zero false positives,
and CLARK is one of most accurate read-based
classifiers and is the only tool in studies showing the
capacity for zero false negatives [27]. We tested this
multi-tool approach by using synthetic datasets (see
Methods) and found that combining results from both
of these tools by taking the overlapping results (i.e.,
organisms that are identified by both tools for a given
sample) can increase the detection accuracy of
microorganisms (See Additional file 1: Table S1) in
agreement with other studies (McIntyre et al. in
press). We report and analyze both the individual
MetaPhlAn2, CLARK, and overlap results as indicated

in the methods and results and as outlined in
Additional file 2: Table S2.
MetaPhlAn2 made 5119 species calls in total summing

across all samples with 12.8 species/sample on average,
while CLARK made a total of 39,015 species calls
summing across all samples with 97.8 species/sample on
average (Table 1; Additional file 3: Figure S1; Additional
file 4: Table S3 all MetaPhlAn2 results; Additional file
5: Table S4 all CLARK results).
This resulted in an overlapping dataset of 2644 species

calls total, which represented 52.7% of the species calls
by MetaPhlan2 and 6.8% of the species calls by CLARK.
At the genus level, the overlap represents 79.0% of the
genera calls by MetaPhlan2 and 16.3% of the genera calls
by CLARK (Additional file 6: Figure S2). In agreement

Fig. 1 Sample collection and workflow. a Map of sample collection areas across the USA (cities not specified to protect privacy). Darker orange
signifies a greater number of samples were collected as indicated in key. Sample collection was clustered in five regions labeled East, West, West
Coast, Southwest/West Coast, and Southeast. b Workflow figure including laboratory and computational approaches used

Table 1 MetaPhlAn2, CLARK, and MetaPhlAn2/CLARK overlap results. Count includes each time taxa was classified. Total count refers
to counts summed across all samples

Tool Total genera count Total species count Average genera count
per sample (±SE)

Average species count per
sample (±SE)

MetaPhlan2 5374 5119 13.47 (±0.46) 12.83 (±0.60)

CLARK 26,128 39,015 65.48 (±1.09) 97.78 (±1.65)

MetaPhlan2 and CLARK 4246 2644 10.64 (±0.35) 6.63 (±0.28)
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with other studies, CLARK had greater sensitivity and
made more calls than MetaPhlan2 and there were some
differences in taxa called due to variation in tool data-
bases (McIntyre et al. in press). There were 127 unique
species classified by both tools and the top 10 most
abundant overlapping species were Stenotrophomonas
maltophilia, Pseudomonas stutzeri, Micrococcus luteus,
Propionibacterium acnes, Enterobacter cloacae, Kocuria
rhizophila, Pseudomonas putida, Bacillus cereus, Entero-
coccus faecalis, and Staphylococcus epidermidis. Notably,
this list includes species commonly associated with
hospital-acquired infections or known to cause infec-
tions in immunocompromised hosts (Table 2). Despite
these findings and associations, further analysis is neces-
sary to elucidate whether these hits are in fact infectious
agents. For the overlap species, the total relative abun-
dance, average relative abundance, and standard error of
the relative abundance are listed for all species identified
by both tools with relative abundance determined by
MetaPhlAn2 (Additional file 7: Table S5). There was
variation in abundance and identification of species
across cities, regions, and surfaces (Additional file 8:

Figure S3). These overlapping species have been character-
ized further when data was retrievable (Additional file 9:
Table S6) using sources including MicrobeWiki (https://
microbewiki.kenyon.edu/index.php/MicrobeWiki) and the
Human Microbiome Project (http://www.hmpdacc.org/).

Surface and region classification
To explore how variables including surfaces, cities, and
region may contribute to the variation in microbial com-
munities observed, we used a machine learning approach
to analyze these data. First, 20% of the data were
randomly sampled and set aside for testing to assess
generalizability. The remaining 80% were used as a
training-validation test for repeated (10×) 10-fold cross
validation. Using cross validation on the training-
validation data, we performed parameters sweeps on an
array of classifiers. We maximized classification per-
formance of the taxonomic dataset by evaluating an
array of classifiers on the training-validation set and
found that random forest (RF) performed the best (mean
ROC score across classes: surface = 0.618, region = 0.774).
When using RF, our classification performance of surface

Table 2 Top 10 most abundant species identified by MetaPhlan2 and CLARK (abundance from MetaPhlan2)

Species Summed relative abundance
across ambulances (average
relative abundance ± SE)

NCBI
Tax ID

Annotations

Stenotrophomonas
maltophilia

2783.7 (7.0 ± 17.6) 40,324 A ubiquitous, aerobic, gram-negative bacterium. A common cause of
nosocomial infections.

Pseudomonas stutzeri 2641.0 (6.63 ± 16.9) 316 A gram-negative soil bacterium found in almost all environments, it has
diverse metabolic function, can fix nitrogen, and can be used in
bioremediation and waste water treatment. It is an opportunistic pathogen,
though rarely infects people.

Micrococcus luteus 1239.28615 (3.1 ± 13.7) 1270 A gram-positive, obligate aerobe which is part of mammalian skin
microbiota and is also found in water, dust, and soil. Has been found
to cause infections in immunocompromised patients.

Propionibacterium acnes 774.2 (1.9 ± 6.8) 1747 A gram-positive bacterium found on human skin and in the gastrointestinal
tract and is linked to acne. Generally non-pathogenic but may contaminate
bodily fluids and cause infections.

Enterobacter cloacae 400.0 (1.0 ± 6.4) 550 A gram-negative bacterium which is part of the normal gut microbiota
which is an important nosocomial pathogen which causes a range of
infections such as urinary tract and respiratory tract infections. Has been
used as a biological control for plant disease.

Kocuria rhizophila 390.4 (1.0 ± 6.1) 72,000 A gram-positive bacterium with industrial applications in the food industry.
Reclassified from Micrococcus luteus strain.

Pseudomonas putida 321.1 (0.8 ± 3.6) 303 A gram-negative soil bacterium which has a diverse metabolism that can
degrade organic solvents and so has been used in bioremediation. It is
found in soil and water habitats and is a type of rhizobacteria that forms
a symbiotic relationship with host plants.

Bacillus cereus 199.4 (0.5 ± 5.2) 1396 A gram-positive aerobic bacterium found in soil and food. Some strains can
cause food poisoning due to secretion of emetic toxins and enterotoxins. It
is also an opportunistic pathogen.

Enterococcus faecalis 182.4 (0.5 ± 3.1) 1351 A gram-positive bacterium which can survive in harsh environments and is
found in the gastrointestinal tract, in soil, water, and plants. It is a common
cause of nosocomial infections, and harbors high levels of antibiotic
resistance.

Staphylococcus epidermidis 148.4 (0.4 ± 2.2) 1282 A gram-positive bacterium part of the normal human skin microbiota but
may cause infections in immunocompromised patients.
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was weak for both the MetaPhlAn2 (0.6354) and overlap
(0.629) datasets, but we were nonetheless able to effec-
tively classify region of the USA based on these data,
particularly for the MetaPhlAn2 data (0.787) (see
Additional files 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19).
To identify the taxa most influential in distinguishing

between classes, we ranked the taxa based on RF feature
importance. The results for the 10 surfaces are shown in
Additional file 20: Figure S4. Rear Bench Seats, Rear
Lights Control Panel, and Stethoscope are best distin-
guished by E. cloacae, M. luteus, and, to a lesser degree,
Bacillus megaterium, respectively (Fig. 2). Moreover,
presence/absence of E. cloacae and B. megaterium seem-
ingly had more impact on classifier performance than
differences in their relative abundance between samples.
For example, 17/31 Rear Bench Seats samples contained
E. cloacae, compared to 107/365 of samples from other
surfaces; however, of the 17 sites containing this species,
the mean normalized abundance (from MetaPhlAn2)
was only 4.19. The result was similar for B. megaterium
with respect to stethoscope samples, with 9/45
(mean = 1.07) compared to 7/351 non-stethoscope sam-
ples containing the species. M. luteus was similarly
found in a greater proportion of Rear Lights Control
Panel samples (23/31) compared to other surfaces (156/
365), but at much larger abundances (mean = 24.36).
This suggests that the very presence of certain taxa sig-
nificantly influenced classification performance, even if
the abundance of that taxa was low.
The same approach was repeated for region and city

classes. The RF region model performed considerably
well during cross validation with a mean ROC score and
balanced accuracy across classes of 0.8750 and 0.7789,
respectively. Performance was best for the classes with
fewest samples (Southeast and West, 0.7452 combined
accuracy), which were up-sampled during cross
validation. This was likely because we resampled these
minority classes during cross validation to overcome
issues with unbalanced class sample sizes.
To assess generalizability, we adjusted our approach

for creating a test set. Specifically, we split our regions
in terms of city, such that the within-region cities in the
test set were not utilized during training. We believe this
approach should help prevent the classifier from seeing
similar co-occurrence profiles in the test set that may be
from the same ambulance. The test set class sizes were
balanced so 8 samples would be used for each region
class. The average accuracy across all 4 classes was 0.438
([0.263, 0.623], via the Clopper-Pearson CI approach)
(Southeast = 3/8, Southwest/West Coast = 5/8, West = 4/
8, West Coast = 2/8). Mean balanced accuracy, F1, and
AUC were 0.625, 0.448, and 0.698, respectively.
Given our concern with the size of our test set, we

wanted to assess the consistency of test set performance

using different combinations of samples and cities, but
again maintaining the use of cities in the test set that
were not trained on. We performed a Monte Carlo
simulation, sampling without replacement the city and
samples for the test set and then performing classifica-
tion as described above. For each class, we sampled 1%
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Fig. 2 Top ranking features (species) during random forest
classification training (128 trees) when the overlap dataset was used.
Features were identified in terms of random forest importance scores,
indicating their contribution to classification performance for a given
class. The relative abundances (RPK) for each top ranking feature across
all samples were binned (x-axis). The frequency of each feature across
samples falling into these bins is shown (y-axis). Bars shaded red
indicate the highest ranking feature for a given class. High ranking
features with large frequencies at bin 0 suggest that those features are
rare, but if present, highly influence the classifier to classify a sample in
that feature’s corresponding class. a Surface. b Region
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of samples for each class for our test, giving us 40 in
total (Southeast = 4, Southwest West Coast = 13,
West = 10, West Coast = 13). We calculated the overall
testing performance across 1000 runs. There was a drop
in balanced accuracy for each class: Southeast = 0.563,
Southwest/West Coast = 0.559, West = 0.598, West
Coast = 0.541. This suggests that interpretation of the
important features should be performed with caution,
particularly when extrapolating to hypothetical new data.
Still, given our study’s limitations in terms of sample size
(both overall and within-class), our analysis indicates
that we were able to effectively classify region.
When the US’s regions were split into city classes,

performance declined, likely due to smaller sample size
for each class. This performance drop was reflected by
the decrease in the ability of the RF to classify the held
out test set, used after cross validation. This suggested
an inability of the RF to generalize well (mean
ROC = 0.6326, mean balanced accuracy = 0.5857), des-
pite good performance during cross validation (mean
ROC = 0.9212, mean balanced accuracy = 0.7949).
RF importance rankings for region and the frequencies

of these features across samples are shown in Fig. 2 and
Additional file 21: Figure S5. The rankings suggest
multiple species influenced the classification of the RF
for a given class. This is particularly clear with the top
ranking Southwest/West Coast feature being more
abundant in West and West Coast samples. For city, on
the other hand, specific species more intimately associ-
ate with samples as a function of class (Additional file
22: Figure S6 and Additional file 23: Figure S7). Erwinia
billingiae, Klebsiella pneumoniae, and Psychrobacter
arcticus are generally rare except in S004, S006, and
S003 samples, respectively. Also, while S. maltophilia oc-
curs in multiple samples across cities, samples from city
S019 are especially dominated by large abundances of
this species.

Functional characterization of ambulance microbial
communities and potential contributors
Functional analysis using HUManN2
Functional genomic profiles of the full dataset were gener-
ated using HUMAnN2 [version 0.5.0; 28; http://huttenho-
wer.sph.harvard.edu/humann2]. HUManN2 identified 578
pathways from the MetaCyc database across our dataset.
Most of these pathways were associated with bacterial or-
ganisms, further supporting our taxa classification results
by MetaPhlAn2 and CLARK (Fig. 3). Annotations from
the online MetaCyc database revealed that the top
functional pathways superclass include Biosynthesis,
Degradation, Utilization, and Assimilation, and finally,
Generation of Precursor Metabolites and Energy. More
specifically, the top pathways included biosynthesis of co-
factors, prosthetic groups, and electron carriers, as well as

secondary metabolites biosynthesis, and aromatic com-
pound degradation. For a full list of pathways divided into
superclass and categories based on MetaCyc annotations
please see Additional file 24: Table S7.
Using the HUManN2 functional classification results,

we performed a differential functional abundance
analysis between the following classes, chosen based on
adequate sample size and performance during RF classi-
fication with the overlap dataset: Stethoscope, Rear
Lights Control Panel, and Rear Bench Seats for surfaces;
Southeast, Southwest/West Coast, and West Coast for
region; and S005, S003, S002, and S007 for city. Within
each class category, a DESeq2 analysis was performed
for each unique class combination, arbitrarily designa-
ting one of the classes as the reference class.
Additional file 25 Figure S8 shows volcano plots of

surface p values after FDR correction versus log2 fold
change (LFC) of functional pathway abundance. Despite
an even distribution of pathway superclasses, several
were significantly more abundant in Stethoscope com-
pared to Rear Bench Seats, with 25% of the pathways in
the upper LFC 95th percentile involved in aromatic
compound degradation. There were notably few differ-
entially abundant pathways between Stethoscope and
Rear Lights Control Panels, however.
In terms of region (Additional file 26: Figure S9), West-

ern samples tended to have far fewer differentially abun-
dant pathways, which could be attributed to its lower
levels of alpha diversity relative to the other three regions
(Additional file 27: Figure S10) and our observation that
taxonomic prevalence (proportion of taxa present in a
given sample) is positively correlated with functional
prevalence (Additional file 28: Figure S11). When regions
are split into city classes, far fewer differentially abundant
pathways result, likely due to small and unbalanced
sample sizes (Additional file 29: Figure S12). A complete
list of the LFC of functional pathway abundances for the
three aforementioned class categories can be found in the
supplementary material.

Microbial association with human microbiome
We next annotated our MetaPhlAn2/CLARK overlap-
ping dataset with a Human Microbiome Project (HMP)
dataset collected from healthy individuals (http://
www.hmpdacc.org/HMRGD/healthy/#data, downloaded
August 11 2016) to characterize identified species’
association with specific regions of the human body. We
found that about half the species identified by both
MetaPhlAn2 and CLARK were in the HMP database
with the greatest proportion of these microorganisms
being associated with skin, followed by an unknown pri-
mary site association (but present in the database), and
then by gastrointestinal tract (Fig. 4). As a control, we
found that the proportions of body part categories in the
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HMP database were not driving the proportions we were
seeing in the ambulance (chi-square test of indepen-
dence: X2 = 421.71, Df = 9, P < 2.2 × 10−16). To deter-
mine deviation in ambulance proportions to HMP
database proportions, we took the log2 of observed versus
expected results. After heart, which had the largest differ-
ence between the observed and expected, but had an un-
acceptable sample size in the database (N = 2), we found
that skin associated species were the most abundant in
ambulances and the most overrepresented. After skin,

blood was the third most overrepresented compared to
the database and was also highly abundant. Finally, there
were less gastrointestinal and oral microbes observed than
expected given the database size (Fig. 4).
We used non-parametric tests to explore whether

different variables may be driving the proportions of
body part categories observed. We found that skin asso-
ciated species varied significantly across surfaces
(Kruskal-Wallis X2 = 62.293, Df = 15, P = 1.013 × 10−7).
We did a post hoc Kruskal test (Nemenyi test in R with

A

C

B

Fig. 3 HUMAnN2 functional analysis results. Breakdown of superclasses of pathways identified and their relative proportions across the entire
dataset (a), number of hits for top pathways identified across the entire dataset (b), and number of hits for different taxa across the entire dataset
(c). All results determined from the annotations posted on the MetaCyc database for each identified pathway
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built-in multiple correction) and found that rear handles
rails versus computer (P = 0.034), rear bench seats
versus rear lights control panel (P = 0.004), rear lights
control panel versus rear handles rails (P = 0.010),
stethoscope versus rear bench seats (P = 0.001), stetho-
scope versus rear handles rails (P = 0.003), and stretcher
versus rear lights control panel were all significantly dif-
ferent (P = 0.030)(Fig. 4).

HAI-related pathogen and AMR distribution
In profiling the samples using MetaPhlAn2 and CLARK,
using an a priori approach, many potential HAI-related
pathogens were identified. For this analysis, we designate
HAI-related pathogens as known pathogens previously
characterized as causing greater than 1% of reported
HAIs [28]. Because it is still challenging to resolve some
pathogens at the species or strain level, we annotated at
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both the genus and species levels. Our results showed
many hits for genera that include top nosocomial patho-
genic species, with 341/398 (85.7%) of samples identified
to contain HAI-associated genera identified by both
MetaPhlAn2 and CLARK. Furthermore, we found that
312/398 (78.4%) of samples were identified to contain at
least one nosocomial infection-related species identified
by both MetaPhlAn2/CLARK (Table 3).
Of the 18 top putative nosocomial pathogen species, 10

(56%) were identified in our ambulance samples by
MetaPhlAn2 and 9 (50%) were identified by both MetaPh-
lAn2 and CLARK (Table 3). These include S. aureus, K.

pneumoniae, Klebsiella oxytoca, E. faecalis, Enterococcus
faecium, Enterococcus avium (only identified by MetaPh-
lAn2), Pseudomonas aeruginosa, Streptococcus parasan-
guinis, Acinetobacter baumannii, and S. maltophilia.
While not on the list, Mycobacterium tuberculosis was
also classified in 9 (2.3%) samples. Many of the genera and
species identified commonly harbor antibiotic resistance,
including S. aureus and E. faecalis.
There is widespread interest in the incidence of S.

aureus in hospitals and ambulances. We determined if
sequence coverage across S. aureus was sufficient to
reliably report the potential pathogen and to test for

Table 3 Most common causes of HAIs [Magill 2014 and characterized further [57, 58] and hits in our ambulance samples

Species Types of infections Ambulance hits MetaPhlAn2 Ambulance hits overlap

Clostridium difficile GI 0 0

Staphylococcus aureus Pneumonia, surgical site, bloodstream 15 15

Klebsiella pneumoniae Pneumonia, surgical site, UTIs 12 12

Klebsiella oxytoca Pneumonia, surgical site, UTIs 6 6

Escherichia coli Surgical site, UTIs, bloodstream 0 0

Enterococcus faecalis Surgical site, UTIs, bloodstream 56 56

Enterococcus faecium Surgical site, UTIs, bloodstream 38 38

Enterococcus avium Surgical site, UTIs, bloodstream 1 0

Pseudomonas aeruginosa Pneumonia, surgical site, UTIs 26 26

Candida albicans Pneumonia, UTIs, bloodstream 0 0

Candida parapsilosis Pneumonia, UTIs, bloodstream 0 0

Candida glabrata Pneumonia, UTIs, bloodstream 0 0

Candida dubliniensis Pneumonia, UTIs, bloodstream 0 0

Streptococcus pneumoniae Pneumonia, surgical site, bloodstream 0 0

Streptococcus parasanguinis Pneumonia, surgical site, bloodstream 18 18

Acinetobacter baumannii Pneumonia, surgical site 8 8

Proteus mirabilis Pneumonia, surgical site, UTIs 0 0

Stenotrophomonas maltophilia Pneumonia, UTIs 280 280

Mycobacterium tuberculosis NA 9 6

Genus

Enterococcus Surgical site, UTIs, bloodstream 114 114

Candida Pneumonia, UTIs, bloodstream 0 0

Streptococcus Pneumonia, surgical site, bloodstream 52 52

Enterobacter Surgical site, UTIs, bloodstream 125 125

Aspergillus NA 2 0

Fusarium NA 39 0

Scedosporium NA 0 0

Citrobacter NA 0 0

Serratia NA 8 8

Bacteroides NA 1 1

Haemophilus NA 25 25

Column one is pathogens included that cause at least greater than 1% of HAIs, column two lists types of infections (from Magill 2014 includes up to top three
types of infections due to pathogen), and column three and four list the number of hits identified in ambulance samples for nosocomial taxa (species and genera)
identified by MetaPhlAn2 and identified by both MetaPhlAn2 and CLARK (overlap)
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evidence of methicillin resistance. We explored sequence
coverage (Additional file 30: Table S8, Additional file 31:
Figure S13) across the genome of all 15 samples identi-
fied as S. aureus positive by MetaPhlan2 and CLARK to
check identification and check for antibiotic resistance
by calculating coverage over femA, femB (used to
characterize level of methicillin resistance), and SCCmec
(including mecA), which is commonly used to identify
and characterize methicillin resistant S. aureus (MRSA)
[29, 30]. Using this analysis of coverage, we found evi-
dence to support the identification of S. aureus by
MetaPhlAn2/CLARK with consistent coverage across
the genomes, but a lack of evidence for MRSA, with very
little coverage over mecA (Additional file 30: Table S8,
Additional file 31: Figure S13). However, we did find
evidence of other S. aureus associated AMR markers as
detailed below.
We also analyzed potential presence of AMR

markers in the full dataset by building a custom
CLARK database using the Comprehensive Antibiotic
Resistance Database (CARD) sequence files [31]. We
found that 289 of the 2172 markers in the CARD
database had hits in our samples. The top hits were
associated with known high priority nosocomial patho-
gens including S. maltophilia, S. aureus, P. aeruginosa, E.
coli, and E. cloacea (Additional file 32: Table S9). Evidence
for AMR was commonly found in our samples with 95.7%
of the samples having at least one AMR hit and 89.5% of
samples having at least three AMR hits. In regard to the
high priority S. aureus pathogen, we found a number of
AMR markers with high abundance in the samples. The
top 10 most abundant S. aureus associated AMRs in the
CARD database included mecR1, qacA, blaZ, tetK,
AAC(6′)-le-APH(2″)-la, mecI, sav1866, tet38, mepA, dfrG.
These results provide evidence for possible antimicrobial
resistant S. aureus in these ambulance populations; how-
ever, further studies are warranted to test resistance.
When modeling the total number of AMR hits per

sample using a univariate approach, we found a signifi-
cant difference in AMR counts in different regions of
the country, with Southeastern ambulances having by far
the highest level of AMR hits (ANOVA on log trans-
formed AMR count data with East Coast dropped to
only included regions with N > 10: F3,386 = 14.94,
P = 3.22 × 10−9; Fig. 4). We also saw a marginally signifi-
cant difference in AMR hits across surfaces (ANOVA on
log transformed AMR count data with AED and emer-
gency response bag, monitor, miscellaneous, pulse ox
probe dropped to exclude surfaces with N < 10:
F10,377 = 2.16, P = 0.02). In agreement with our analysis of
the effect of region on AMR, we found an anti-correlation
between latitude and AMR count, with lower, southern
latitudes having a greater AMR count (t = − 4.90, df = 395,
P = 1.43 × 10−6, r = − 0.24) and a positive correlation

between longitude and AMR count with samples collected
further east having a higher AMR count (t = 5.72, df = 395,
P = 2.15 × 10−8, r = 0.27). In regard to potential weather
variables, we saw a positive correlation between
temperature and AMR count with higher mean tempera-
tures having higher AMR counts (t = 4.57, df = 395,
P = 6.45 × 10−6, r = 0.22) and a positive correlation
between precipitation and AMR counts with higher pre-
cipitation being associated with higher AMR counts
(t = 5.67, df = 395, P = 2.81 × 10−8, r = 0.27). Alpha diver-
sity and AMR counts were positively correlated with more
diverse samples having a higher AMR count (t = 4.67,
df = 393, P = 4.18 × 10−6, r = 0.23). We found a strong
positive correlation between AMR count and top HAI-
causing pathogen count (t = 8.18, df = 395, P = 4.00 × 10
−15, r = 0.38). Finally, we found a strong correlation be-
tween AMR count and S. maltophilia abundance, which is
also in agreement with the highest counts being identified
in CARD database as being associated with S. maltophilia
and indicates that our classification is matching up with
the CARD species associated AMR (t = 11.47, df = 395,
P = 2.20 × 10−16, r = 0.50). We also ran a generalized
linear mixed effects model (GLMM) to take into account
how some of these variables may covary (see Methods)
and found that only surface had a significant effect on
AMR in this model (GLMM; surface: χ238,15 = 26.14,
P = 0.04; city: χ2 38,19 = 22.15, P = 0.28; temperature:
χ238,1 = 1.72, P = 0.19); however, our power may have been
limited to detect variation using this nested design.

Patterns and potential factors shaping diversity
We explored both alpha diversity (diversity within
sample) and beta diversity (diversity between samples) to
map patterns and explore factors that may be driving
community dynamics. We quantified alpha diversity for
the full dataset using the Shannon Index, where a higher
Shannon Index indicates greater richness with a more
even representation. Overall, we found an average diver-
sity of 1.42 (SD 0.86). We modeled factors contributing
to alpha diversity including surface, latitude, longitude,
and weather-nested within region using a GLMM, linear
regression, and univariate ANOVAs.
Using a univariate approach, we found that region had

a significant effect on diversity (ANOVA with East Coast
dropped to only included regions with N > 10:
F3,396 = 5.4, P = 0.001) with the Southwest/West Coast
area having the highest diversity and the West having
the lowest (Fig. 5). We found that surface did not have a
significant effect on alpha diversity (ANOVA with AED
and emergency response bag, monitor, miscellaneous,
pulse O2 probe dropped to exclude surfaces with N < 10:
F10,378 = 0.73, P = 0.70; Additional file 33: Figure S14).
Although not significantly different in this model, some
of the surfaces with the highest diversity include the
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stethoscopes and the rear bench seats. We found no
correlation between diversity and longitude, but did see
evidence of a positive significant correlation between
species diversity and temperature (for all mean max,
mean min, or mean temperatures; for mean max t = 3.6,
df = 393, P = 0.0004, r = 0.18; Fig. 5), while finding no
correlation between precipitation and diversity. Interes-
tingly, we saw evidence that species diversity follows the
“latitudinal diversity gradient (LDG)” with higher diver-
sity found at lower latitudes (t = − 3.6, df = 395,
P = 0.0003, r − 0.18; Fig. 5). We found that alpha diver-
sity was significantly correlated with nosocomial patho-
gen hits (t = 12.66, df = 395, r = 0.54, P < 2.2 × 10−16),
possibly due to increased diversity increasing one’s
chance of identifying a nosocomial pathogen. We also
ran a GLMM to take into account how some of these
variables may covary (see Methods) and found that no
variables had a significant effect on alpha diversity, how-
ever, similarly to the GLMM used to model AMR, our
power may have been limited to detect variation using
this nested design.
Beta diversity indicates the overall variation between sites

[32]. We explored beta diversity using the Bray-Curtis
distance dissimilarity and partitioned the matrix with re-
spect to regions and surface types. We found that there
were significant but weak associations between surfaces
and beta diversity as well as regions and beta diversity
(surface type: r = 0.24, F = 1.5, P = 0.0005; region: r = 0.15,
F = 2.34, P = 0.0005; Additional file 34: Figure S15; Table 4).
To further explore the microbial ecology of ambulances,

we tested for the co-occurrence of microorganisms to gain
insight into the ecology of these communities and because
the presence of some species may facilitate or prevent the
colonization of other species. We did an exploratory ana-
lysis on inter-organism relationships using Spearman’s
rank coefficient among pairs of species (Additional file 34:

Figure S15). We found that the pair that had the highest
correlation (r = 0.81, p < 0.01) was Rothia mucilaginosa
and Streptococcus mitis, bacteria species that inhabit the
mouth. R. mucilaginosa has been implicated in infections
associated with prosthetics. The species that were found
in the most pairs and that had the highest rho (r > 0.5)
were P. acnes, S. mitis, and S. epidermis; each showed up
in pairs 4 times. P. syringae was found in 10 pairs with a
weak but significant association (r between − 0.1 and 0.1,
p < 0.05) suggesting an adaptation strategy that is more
independent of other species.

Discussion
This is the first study using metagenomics to characterize
the microbiome of ambulances across a country. It was
conducted on a national scale in order to explore regional
factors that may be influencing the microbial ecology of
ambulances. Characterization of pre-hospital as well as
hospital microbial ecology is important as it may inform
public health policy and healthcare practices. We found
considerable variation as well as consistent patterns across
samples in microbial diversity, species present, nosocomial
pathogens, functional pathways, and AMR markers. We
found that the majority of the microorganisms identified
in ambulances were not known to be harmful, or are
classified as beneficial, but we also identified species

b ca

Fig. 5 Potential factors driving variation in alpha diversity (calculated using MetaPhlAn2 results). a Region had a significant effect on alpha
diversity (univariate ANOVA: p = 0.001; east removed due to small sample size). b Apha diversity increases with mean temperature (bivariate
regression: p = 0.001; r = 0.161). c Alpha diversity decreases with latitude (bivariate regression: p = 0.0003; r = −0.179). Interesting because follows
latitudinal diversity gradient (LDG)

Table 4 Results of beta diversity for MetaPhlAn2/CLARK overlap

Sum of squares F r Pr(>F)

Region 4.00 2.34 0.15 5 × 10−4

Region residuals 161.37

Surface 9.84 1.55 0.24 5 × 10−4

Surface residuals 155.53

PERMANOVA from the VEGAN package in R was used. Both region and surface
had significant but weak effects (4000 permutations, Bray-Curtis
dissimilarity matrix)
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associated with nosocomial pathogens. While this is the
first study to characterize the ambulance microbiome
using metagenomic methods, we found concordance with
other ambulance studies which used complementary
methods such as culturing that found clinically relevant
bacterial contamination and that more rigorous testing
and cleaning of ambulances is warranted [14]. With the
drastic decrease in the cost of sequencing and the ability
to analyze large amounts of metagenomic data, we antici-
pate the growing utility and application of metagenomics
in clinical environments. Furthermore, metagenomics
combined with other approaches, such as RNA sequen-
cing, culturing, or propidium monoazide (PMA) testing
allow for both microbial identification and viability testing.
In this study, we focus on identification of microorgan-
isms, not viability, and provide a metagenomics baseline
for ambulances, establishing a context for future studies.

Factors shaping the microbial composition of ambulances
We found that the top 10 most abundant species are
species that are either common built environment
microbes (e.g., S. maltophilia, P. stutzeri), are microbes
associated with the human microbiome (e.g., P. acnes)
or those known to be associated with healthcare envi-
ronments and hospital acquired infections (e.g., E.
cloacea, E. faecalis) (Table 2). Many of these top 10
abundant taxa including Pseudomonas spp., Propionibac-
terium spp., Enterobacter spp., Staphylococcus epidermis,
Micrococcus luteus, and Kocuria rhizophila have been
identified as “signature microbes” of healthcare settings,
including the neonatal intensive care unit and hospital
air samples [22]. Additionally, a recent large-scale meta-
genomics hospital study, has also found an abundance of
Staphylococcus and Propionibacterium and has similarly
found a preponderance of skin associated microbes on
surfaces [9].
We used a machine learning approach to explore vari-

ables that contribute to the distribution of microbial
populations, and we found that surfaces including rear
bench seats, rear lights control panel and stethoscopes
were distinguished by the abundance of three species E.
cloacea, M. luteus, and B. megaterium (Fig. 2). Notably,
these species are health- and HAI-relevant species, and
may serve as a reservoir for acquiring AMR or other
genetic markers. In contrast, for cities and regions, a
greater number of species influenced the classification of
the RF for a given class.

Factors shaping microbial functional composition of
ambulances
We used a variety of approaches for functional
characterization of our samples. Using HUMAnN2, we
found that the majority of pathways identified were asso-
ciated with bacteria pathways for Biosynthesis,

Degradation, Utilization, and Assimilation, and finally,
Generation of Precursor Metabolites and Energy, which
supports our taxonomic classification results. Using an
RF approach, we found that several pathways were sig-
nificantly more abundant on stethoscopes compared to
rear bench seats, with a notable proportion of these
pathways involved in aromatic compound degradation.
This is interesting because aromatic compounds are
common in cleaning products, such as those used in
ambulances. This overabundance could indicate poten-
tial selection by the healthcare environment similarly to
other studies which have shown “unnatural selection” by
built environments [22]. In regard to region, we found
that the west had fewer differentially abundant pathways
which could be attributed to its lower levels of alpha di-
versity and the positive correlation we observed between
the proportion of taxa present in a given sample and
functional prevalence.
Using the HMP database to characterize these data

further, we found an overabundance of microorganisms
associated with the skin and blood. Surfaces varied sig-
nificantly in the abundance of skin-associated microbes
identified, with the highest levels found on surfaces that
commonly come into contact with skin including rear
lights/control panels and stethoscopes. High levels of
skin-associated microbes have also been found on high-
touch surfaces in other studies [2, 23]. An overabun-
dance of blood-associated microbes could indicate iden-
tification of bloodborne pathogens or molecules which
have been found in blood. This has been explored in
studies which have identified a diversity of microbial
species using cell free DNA since blood circulates
through the body and collects molecules from an array
of body tissue [33].
Using an a priori approach to characterize the inci-

dence of nosocomial pathogens in the samples [28], we
found widespread incidence of pathogens with the cap-
acity to cause the majority of HAIs (78.4% of samples
contained at least one nosocomial pathogen identified by
the more rigorous overlap classification approach).
Furthermore, over 50% of the top nosocomial pathogens
on the high priority CDC list were identified in the am-
bulances sampled (also in overlap data). These include S.
aureus, K. pneumoniae, K. oxytoca, E. faecalis, E. fae-
cium, P. aeruginosa, S. parasanguinis, A. baumannii,
and S. maltophilia. Many of the taxa identified
commonly harbor antibiotic resistance. Our findings are
in agreement with other studies which have cultured
ambulances. The majority of these studies have focused
on S. aureus identification and have found similar levels
of contamination [13, 34–36].
High levels of AMR markers were identified in our

samples (~ 90% of samples had hits for at least three
AMR markers). A high level of AMR markers has
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similarly been found on surfaces in other healthcare
environments, such as in hospitals [9]. These levels indi-
cate a potential risk to patients, and EMS workers, and a
pathway for AMR into hospitals. AMR are a major glo-
bal health problem and are widespread, with resistance
to “last line” drugs even identified in hospitals [37]. We
found evidence that AMR levels may be associated with
the surface and region of the country from which a sam-
ple is collected with areas with lower latitude, further
east having higher levels of AMR. We also found that
greater temperature, greater precipitation, and greater
microbial diversity were all correlated with higher AMR
levels. Finally, we found that higher levels of nosocomial
pathogens were correlated with higher levels of AMR.
While variation in these variables may explain variation
in AMR, it is important to note that many of these vari-
ables co-vary. Taking this into account by running a
GLMM, the data indicated that surface was the only
variable to independently have a significant effect on
AMR.

Patterns and dynamics of microbial diversity
Due to the growing availability of molecular data for
microbial species, it is now possible to test many long
standing ecological theories in the realm of microbial
ecology [21]. Ambulances, as well as other healthcare
settings tend to be cleaned regularly creating a “dis-
turbed” microbial ecosystem which is constantly being
recolonized from patient, healthcare workers, visitors,
and the environment [38, 39]. Disturbed environments
have lower diversity which has been shown to be more
conducive to invasive species at the macroscopic level
[40] and for pathogens at the microscopic level, a prop-
erty referred to as colonization resistance for microbes
[41–43]. We found a positive correlation between alpha
diversity and nosocomial pathogens, so in broad terms,
our data do not support this theory, however this is not
taking into account how combinations of microorgan-
isms may facilitate colonization. We found evidence of
co-occurrence of specific species, and further studies are
warranted to explore the role of these co-occurrences
(such as R. mucilaginosa and S. mitis) in the
colonization resistance and microbial ecology of health-
care environments.
Exploring the relationship between microbial diversity

and a number of local variables, we found that region
had a significant effect on diversity with the Southwest/
West Coast having the highest alpha and beta diversity.
Interestingly, latitude was found to be inversely related
to diversity with lower latitudes having higher diversity.
The “latitudinal diversity gradient (LDG)” is a common
pattern in which species diversity/richness is higher at
lower latitudes. This pattern is largely accepted in the

field of ecology but has rarely been studied in microor-
ganisms. Our findings support the hypothesis that mi-
crobial species diversity may follow the LDG in
agreement with at least one prior study [44].
We found that surface did not have an effect on

alpha diversity, but it did have an effect on beta di-
versity as well as many other microbial variables
(AMR, RF classification, and functional results) indi-
cating that surface may play a role in shaping
microbial communities and differentiation between
microbial communities, but potentially not diversity
within sample. In regard to weather-related variables,
temperature (but not precipitation) was found to be
positively correlated with alpha diversity. This finding
is in agreement with some studies which have found
that temperature is one of the driving factors deter-
mining microbial composition [45].

Limitations and future work
Due to the high rate of false positives and the challenges
associated with metagenomic analysis [46], we took a
conservative approach to increase our confidence in spe-
cies identification and report taxa classified by multiple
published tools including commonly used MetaPhlan2
and CLARK as well as their overlap. By generating syn-
thetic data to test our workflow, we found that working
with the overlap data was a trade-off that increased our
precision but decreased our sensitivity.
An additional challenge in characterizing pathogens

using metagenomic data is that genus and species level
identification may group pathogenic and non-pathogenic
species and/or strains, but resolutions to the strain level
are still computationally challenging. We addressed this
by using a multi-tool approach, comparing results and
by examining coverage across genomes for species of
interest. Future work includes metagenomic assembly
and exploration of pathogenicity using targeted PCR-
based assays.
A limitation of this study was that we used the

approach of swabbing and DNA sequencing but did not
use the complementary approach of culturing so our re-
sults indicate that DNA collected and sequenced had
best matches to the databases used but species reported
might have been misidentified (due to high sequence
similarity among some species or database limitations),
or not viable or presenting an infection risk. We worked
to ameliorate misclassification by using multiple classifi-
cation tools and reporting overlapping results. Future
ambulance work would benefit from culturing, comple-
mentary sequencing approaches, collection of additional
metadata, and sampling both ambulances and healthcare
environments to better characterize the role ambulances
play as a vector for HAIs and AMRs.
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Conclusions
To the best of our knowledge, this is the only metage-
nomic study of ambulances to date and our findings in-
dicate that this approach is a useful way to characterize
microbial communities in pre-hospital environments.
Our methods demonstrate a multipronged approach of
analysis, using complementary approaches, including
using multiple classifiers, taking the overlap of these
classification tools, and using a classification and func-
tional approach, which provides for a more rigorous and
reliable analysis.
Overall we found at least six factors influence the

microbial ecology of ambulances including ambulance
surfaces, geographical-related factors (including region,
longitude, and latitude), and weather-related factors (in-
cluding temperature and precipitation). We also found
evidence of microbes associated with hospital-acquired
infections and AMR markers in ambulances, presenting
a possible source for HAIs and AMR. Our findings indi-
cate additional, or targeted, testing and cleaning may be
warranted in ambulances. These data represent the first
baseline metagenomic characterization of ambulances,
which will be a useful guide for future studies and more
adaptive surveillance.

Methods
Sample collection
From 2013 to 2014, we collected 1407 samples from
ambulances across the USA and sequenced a subset
of 398 of these samples to include a breadth of loca-
tions from 137 ambulances in 19 cities (de-identified
to protect ambulance privacy) in 6 states (Fig. 1). All
samples were collected using Copan Liquid Amies
Elution Swabs 481C, which are nylon-flocked swabs
that we have found optimize the amount of sample
collected from the environment [2]. These swabs in-
clude 1 mL transport medium, with a pH-neutral buf-
fer that preserves RNA and DNA. The surfaces
swabbed included computers, steering wheels, key-
boards, medical equipment (stethoscopes, pulse ox
probes, blood pressure cuffs and bulbs, control
panels, AEDs, and monitors), stretchers, handles, rails,
and cabinets for each ambulance. Surfaces were chosen to
include high-touch surfaces and medical equipment that
came in close contact with patients and healthcare
workers and could act as a source or sink for microbiota.
All surfaces swabbed were inside ambulances, except for
handles and rails which included surfaces external to am-
bulances and were included because they were frequently
touched by healthcare workers. To ensure the highest
yield, swabs were dipped in the elution buffer before col-
lection and surfaces were swabbed for 3 min. Samples
were stored at − 80 °C until they were processed.

Laboratory sample processing
To process these samples, we followed established
protocols for sequencing and analysis [2], including
MoBio Powersoil DNA extraction, Qubit 2.0
fluorometer quantification, paired end (125 bp × 125 bp)
sequencing on the Illumina HiSeq2500 machine with
an insert size of 600.9 bp (SE ± 88.7), generating
14.3 M (SE ± 0.4 M) reads per sample. On average
12.6 M (SE ± 0.3 M) reads passed an initial filter and
were used in all further analyses. These data were an-
alyzed using a combination of existing bioinformatics
tools and custom scripts using a custom workflow
(Fig. 1).

Negative and positive controls
Negative control samples were collected in each ambu-
lance by opening the swab, exposing it to the air for 1 s,
and placing it in the media. These swabs were handled
and stored in the same manner as other samples col-
lected. DNA was extracted from these samples and
quantified following the same protocol as other samples.
DNA extracted from control samples was verified to be
negligible (< 0.05 ng/μL compared to 138.89 ng/μL for
non-control samples).
In this study, we present and further analyze results

from multiple commonly used published classification
tools MetaPhlAn2 and CLARK. In addition to presen-
ting results from these individual classification tools, in
our overlap results, we also present a set of higher confi-
dence results based on classification by both MetaPh-
lAn2 and CLARK. Our goal in generating and analyzing
overlap data was to maximize accuracy even at the
expense of sacrificing some sensitivity. Positive control
datasets were generated synthetically to estimate the ac-
curacy and precision of using MetaPhlAn2, CLARK, and
the two tools combined (their overlap). Synthetic data-
sets were created using the simulation tool ART, which
allows for generation of synthetic sequence reads inclu-
ding platform-specific error simulation [47]. Three data-
sets (DS1, DS2, and DS3) were created based on
experimental ambulance data to include the top seven
species of interest which cause hospital acquired infec-
tions, as well as an additional 10 species which were
found to have the highest abundance in ambulances.
The other synthetic datasets used (SimBA-525, Buc12,
CParMed48, Gut20, Hou21, Hou31, and Soi50) are
published unambiguous datasets [48]. The overlapping
classifications (those made by both MetaPhlAN2 and
CLARK) had the greatest precision at the cost of a
slightly lower sensitivity (Additional file 1: Table S1).
Further analyses were conducted on either MetaPhlAn2,
CLARK, or overlap data as deemed appropriate as
indicated in Additional file 2: Table S2.
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Sequence analysis
Processing and classification
Sequences were trimmed for quality using FASTX-
Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) based
on a Q20 cutoff and adaptors were trimmed using
CutAdapt [49]. We have compared identification tools
by analyzing metagenomic samples of known compos-
ition (titrated mixtures of bacteria and synthetic
DNAs) and found a multi-tool approach to be most
reliable [27, McIntyre et al. in press]. Therefore, proc-
essed reads were analyzed using MetaPhlAn v2.0 and
CLARK to identify and determine relative abundance
of species. These tools use probabilistic matching
approaches, comparing DNA to curated databases of
species-specific sequence fragments. In previous work,
we found MetaPhlAn2 has the highest positive
predictive value (PPV), while CLARK scores lower on
PPV but higher on sensitivity. Here we report the classifi-
cation results for each classification tool (Additional file 3:
Figure S1, Additional file 4: Table S3, Additional file 5: Table
S4) as well as the species identified by both tools, the over-
lap (Additional file 6: Figure S2, Additional file 7: Table S5).
Further analyses were conducted on this MetaPhlAn2/
CLARK overlapping dataset to increase our confidence in
species classified.

Functional analysis
HUMAnN2
Functional genomic profiles of the dataset were gener-
ated using HUMAnN2 version 0.5.0. HUMAnN2 utilizes
the MetaCyc, UniPathway, and KEGG databases as well
as the UniRef gene family catalog to characterize the mi-
crobial pathways present in samples. HUMAnN2 was
run under default parameters (see Additional file 35 for
code and scripts). HUMAnN2 generates three outputs:
(1) gene families based on UniRef proteins and their
abundances reported in reads per kilobase, (2) MetaCyc
pathways and their coverage, (3) MetaCyc pathways and
their abundances reported in reads per kilobase. We fo-
cused our follow-up analysis and interpretation based on
the third output as we wanted to study the functional
pathways present in our samples and wanted to perform
analyses based on abundance and not coverage, which
only tells you if the pathway was found to be present or
absent.
For follow-up analysis, we manually curated and anno-

tated our results based on metadata on the MetaCyc
database (http://metacyc.org/). For many of these path-
ways, further information on their taxonomic range,
superclass, category, and molecules involved are posted
on the MetaCyc database. Note that not all pathways
had information posted on the MetaCyc database for
further analysis.

Human Microbiome Project annotation
We annotated our MetaPhlAn2/CLARK overlapping
dataset using the healthy Human Microbiome Project
(HMP) dataset (downloadable from http://www.hmpdac-
c.org/HMRGD/healthy/#data, downloaded August 11
2016), which includes additional sites including blood
and heart, to identify the regions of the human body
highly associated with species we identified. To deter-
mine whether the ambulance proportions identified were
due to what is available in the HMP database, we tested
the proportions using a chi-square test and took the log2
of the observed versus expected counts.

Nosocomial pathogens and AMR
As a preliminary exploration of nosocomial pathogens
and AMR, we conducted an a priori search of our overlap
data for pathogens which are identified as causing the ma-
jority of nosocomial infections [28]. For samples with hits
for nosocomial pathogens of interest such as S. aureus, we
conducted further analyses including alignments to refer-
ence genomes using BWA (v7.10) [50]. For S. aureus, the
reference genome we used was USA300 strain
(USA300_FPR3757 GCA_000013465.1_ASM1346v1), a
methicillin-resistant S. aureus (MRSA) strain which is
documented to cause both community and hospital ac-
quired infection. We generated multi pileup files using
Samtools (v1.19), and analysis of coverage over virulence,
phylogenetic, and AMR markers compiled from RefSeq
databases using Bedtools (v2.18) [51], and then visualized
in the Integrative Genome Viewer (IGV) [52] and a cus-
tom R script (Additional file 35).
To explore AMR, a CLARK database of AMR markers

produced from the Comprehensive Antibiotic Resistance
Database (CARD) was constructed using a combination
of custom scripts (see Additional file 35), and the
CLARK built-in custom database function. The CARD
database was selected because it is the most current,
manually curated AMR database. It includes sequence
data for all AMR drug classes and resistance mecha-
nisms (e.g., mutation-based, or acquired resistance). An
exact k-mer match to the database sequence was re-
quired to report an AMR marker. The final abundance
estimation of antibiotic markers was generated using a
custom script with a CLARK positive identification hit
threshold of 150. Further analysis and characterization
of pathogens are ongoing.

Alpha and beta diversity
To explore diversity, we calculated both alpha and beta
diversity and explored factors contributing to the diver-
sity observed. Shannon diversity index was calculated
from the MetaPhlan2 data using R package Vegan with
default parameters [53]. Metaphlan2 results were used
instead of overlap data to calculate alpha diversity
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because Shannon index relies on both the species diver-
sity and evenness across species, so subsetting is not
appropriate. Bray-Curtis dissimilarity was calculated to
estimate beta diversity using the overlap data and the
Vegan R package.
Since weather, including temperature and humidity have

shown to play a prominent role in microbial diversity [45],
weather data was downloaded and used in modeling alpha
and beta diversity. Weather data including average
maximum temperature, average minimum temperature,
average temperature, and total precipitation for the month
previous to and the month of the collection were
downloaded for the weather station closest to the
collection location from National Oceanic and Atmos-
pheric Administration (NOAA; http://www.ncdc.noaa.-
gov/cdo-web/).

Modeling and statistical analysis
A variety of machine learning classifiers including
random forest (RF), regularized random forest, support
vector machine (linear, rbf, and polynomial kernels), gra-
dient boosting, partial least squares, k nearest neighbors,
and decision trees (C5.0) were explored to maximize
and assess the ability of microbial and functional com-
position at predicting sample surface, city, region, and
front versus rear ambulance surfaces. Surfaces, city, re-
gions, and taxa with fewer than 20, 10, 10, and 3 samples
were excluded to improve class balance and ensure the
presence of low prevalence features across cross valid-
ation splits. This resulted in the following class labels:
Computer (95), Front Handles (32), Rear Bench Seats
(31), Rear Cabinets Counters (32), Rear Lights Control
Panel (31), Steering Wheel Driver Controls (27), Stetho-
scope (45), Stretcher (29), and Suction O2 (32) for sam-
ple surface; S005 (49), S006 (49), S010 (13), S019 (24),
S003 (113), S002 (36), S004 (13), S007 (30), S008 (7),
S016 (22), and S013 (11) for deidentified city; Southeast
(35), Southwest Coast (130), West (98), and West Coast
(126) for region; and Front (153) and Rear (243) ambu-
lance. Features were centered and scaled. For training,
20% of the data were randomly sampled and set aside
for testing to assess generalizability. The remaining 80%
were used as a training-validation test for repeated (10×)
10-fold cross validation. Using cross validation on the
training-validation data, we performed parameter sweeps
on an array of classifiers. To overcome issues arising
from class imbalance, down-sampling was performed for
all runs except when classifying region, which instead
underwent up-sampling. Models were evaluated based
on mean ROC score. To then assess prediction perform-
ance as a function of dataset, we performed a parameter
sweep using a RF classifier for microbial composition
data (MetaPhlAn2 and MetaPhlAn2/CLARK overlap
data) and functional data (HUMAnN).

The generalization error of the resulting best-fit RF
(mtry = 8, ntree = 128) was evaluated using the overlap
test set. Importance rankings were assessed to
characterize which taxa had the greatest impact on clas-
sification. Classification performance and ordination of
the RF proximity scores were used to identify classes
with strong classification performance. Each combin-
ation from the identified classes then underwent a
DESeq2 differential abundance analysis with FDR cor-
rection (alpha = .01) using the HUMAnN2 functional
dataset to identify significant differences in functional
content in surfaces and regions with predictive microbial
configurations [54]. These analyses were conducted in R
(V3.2.3) using Vegan, Phyloseq, and Caret packages.
To determine how total AMR count per sample and

alpha diversity was influenced by variables including
surface type, city, latitude, temperature and precipita-
tion, 2 separate generalized linear mixed effects models
(GLMMs) were constructed, one to model AMRs and
one to model alpha diversity. We used mixed models be-
cause our experimental design was hierarchically nested
by region. The model was run in R using the lme4
package [55] with region as a random effect, all other
variables fixed, a Gaussian link function and maximum
likelihood for model estimation (see Additional file 35:
for code). Total AMR count per sample were high (mean
499) so were treated as continuous data, and were log
transformed before analysis to meet model assumptions.
Models were fit with all variables and then variables
were removed one at time and models compared using
ANOVA to estimate test statistics. After fitting full
nested models, we explored the correlation between spe-
cific variables of interest further by conducting bivariate
linear regressions and univariate ANOVAs. In interpret-
ing bivariate linear regression results, many of these var-
iables may potentially explain variance in AMR counts,
but some of these are highly correlated. GLMM is a use-
ful lens to interpret these data but may be limited in
power due to our experimental design. We also analyzed
AMR counts in each sample for each marker and looked
for associations with variables measured using DESeq2,
anosim, and permanova and got very few significant or
zero markers most likely due to a substantial degree of
sparsity (95% of the values were zero).
Non-parametric permutational MANOVA was used

to determine if either region or surface area type had
an effect on AMRs or beta diversity patterns (using
the adonis function in R package Vegan). We
regressed region and surface area type separately
against either the AMR count (for one model) or the
Bray-Curtis dissimilarity matrix (for another model)
and permuted the data 4000 times. Principal coordi-
nates analysis (PCoA) plots were created using the
matrices after standardizing the values of the rows
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between 0 and 1. To balance sample groups, we
randomly sampled (without replacement) from over-
represented groups and excluded regions or surface
types that had fewer than 25 observations per group.
We created the PCoA plots using the ade4 package
in R, which uses a dissimilarity matrix as an input
and performs the eigen-decomposition. The first two
components of the resulting matrix were then plotted.
Correlation analysis was done using the Hmisc pack-

age in R [56]. We included species from the overlap data
that had a relative abundance total of at least 10. We
used the Spearman’s rank correlation coefficient as it is
robust to outliers and skewness. We plotted the coeffi-
cients after filtering the output to include only signifi-
cant (p < 0.05) pairs of species.

Additional files
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Additional file 4: Table S3. Total MetaPhlan2 results. (TSV 1562 kb)
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Additional file 6: Figure S2. Venn diagram of CLARK and MetaPhlan2
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overlap data. (XLSX 61 kb)

Additional file 10: Figure S16. Boxplots of classifier performance over
model specific parameter sweeps during training (80/20 split) on overlap
data for surface class. Classes underwent down sampling and were
optimized in terms of mean ROC score. Shown are kappa and balanced
accuracy, averaged over classes. rf, random forest; gbm, stochastic
gradient boosting; rrf, regularized random forest; c50, c5.0 decision tree,
pls, partial least squares; en, elastic net; knn, k-nearest neighbors; svm
linear, support vector machine with linear kernel; rbf svm, support vector
machine with rbf kernel. (DOCX 92 kb)

Additional file 11: Figure S17. Boxplots of classifier performance over
model specific parameter sweeps during training (80/20 split) on
MetaPhlAn2 data for surface class. Classes underwent down sampling
and were optimized in terms of mean ROC score. Shown are kappa and
balanced accuracy, averaged over classes. rf, random forest; gbm,
stochastic gradient boosting; rrf, regularized random forest; c50, c5.0
decision tree, pls, partial least squares; en, elastic net; knn, k-nearest
neighbors; svm linear, support vector machine with linear kernel; rbf svm,
support vector machine with rbf kernel. (DOCX 96 kb)

Additional file 12: Figure S18. Boxplots of classifier performance over
model specific parameter sweeps during training (80/20 split) on overlap

data for region class. Classes underwent up sampling and were
optimized in terms of mean ROC score. Shown are kappa and balanced
accuracy, averaged over classes. rf, random forest; gbm, stochastic
gradient boosting; rrf, regularized random forest; c50, c5.0 decision tree,
pls, partial least squares; en, elastic net; knn, k-nearest neighbors; svm
linear, support vector machine with linear kernel; rbf svm, support vector
machine with rbf kernel. (DOCX 101 kb)

Additional file 13: Figure S19. Boxplots of classifier performance over
model specific parameter sweeps during training (80/20 split) on
MetaPhlAn2 data for region class. Classes underwent up sampling and
were optimized in terms of mean ROC score. Shown are kappa and
balanced accuracy, averaged over classes. rf, random forest; gbm,
stochastic gradient boosting; rrf, regularized random forest; c50, c5.0
decision tree, pls, partial least squares; en, elastic net; knn, k-nearest
neighbors; svm linear, support vector machine with linear kernel; rbf svm,
support vector machine with rbf kernel. (DOCX 141 kb)

Additional file 14: Figure S20. Boxplots of classifier performance over
model specific parameter sweeps during training (80/20 split) on overlap
data for city class. Classes underwent up sampling and were optimized in
terms of mean ROC score. Shown are kappa and balanced accuracy,
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least squares; en, elastic net; knn, k-nearest neighbors; svm linear, support
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Additional file 15: Figure S21. Boxplots of classifier performance over
model specific parameter sweeps during training (80/20 split) on
MetaPhlan data for city class. Classes underwent up sampling and were
optimized in terms of mean ROC score. Shown are kappa and balanced
accuracy, averaged over classes. rf, random forest; gbm, stochastic
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pls, partial least squares; en, elastic net; knn, k-nearest neighbors; svm lin-
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Additional file 16: Figure S22. Boxplots of dataset performance for
random forest training (80/20 split) for surface class. Classes underwent
down sampling and were optimized in terms of mean ROC score. Shown
are kappa and balanced accuracy, averaged over classes. (DOCX 107 kb)

Additional file 17: Figure S23. Boxplots of dataset performance for
random forest training (80/20 split) for region class. Classes underwent
down sampling and were optimized in terms of mean ROC score. Shown
are kappa and balanced accuracy, averaged over classes. (DOCX 115 kb)

Additional file 18: Figure S24. Boxplots of dataset performance for
random forest training (80/20 split) for city class. Classes underwent
down sampling and were optimized in terms of mean ROC score. Shown
are kappa and balanced accuracy, averaged over classes. (DOCX 113 kb)

Additional file 19: Figure S25. ROC curve of random forest test set
performance (80/20 split) on front-rear surface class. Classes underwent
down sampling and were optimized in terms of ROC score. (DOCX 51 kb)

Additional file 20: Figure S4. Normalized feature important for overlap
data during random forest training (80/20 split) for surface class. Classes
underwent down sampling and were optimized in terms of mean ROC
score. Shown are kappa and balanced accuracy, averaged over classes.
(DOCX 566 kb)

Additional file 21: Figure S5. Normalized feature important for overlap
data during random forest training (80/20 split) for region class. Classes
underwent up sampling and were optimized in terms of mean ROC
score. Shown are kappa and balanced accuracy, averaged over classes.
(DOCX 308 kb)

Additional file 22: Figure S6. Normalized feature important for overlap
data during random forest training (80/20 split) for city class. Classes
underwent up sampling and were optimized in terms of mean ROC
score. Shown are kappa and balanced accuracy, averaged over classes.
(DOCX 553 kb)

Additional file 23: Figure S7. Overlap binned abundances (RPK) over
samples for the top 3 ranking species (columns) in terms of feature
importance from random forest classification training (80/20 split, 128
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trees). Red bars correspond to the top ranking feature for that
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Additional file 25: Figure S8. Volcano plot of the p-value versus log2-
fold change (LFC) of HUMAnN2 pathway abundances resulting from a
DESeq2 differential abundance analysis for surface class with FDR
correction (Benjamini-Hochberg correction, α = 0.01). Class combinations
were selected based on overlap data classification performance. Points
vary in color based on pathway superclass and size based on the
proportion of genes in that class with p < α. Genes in the 95th percentile
of absolute LFC are labeled. (PDF 273 kb)

Additional file 26: Figure S9. Volcano plot of the p value versus log2-
fold change (LFC) of HUMAnN2 pathway abundances resulting from a
DESeq2 differential abundance analysis for region class with FDR
correction (Benjamini-Hochberg correction, α = 0.01). Class combinations
were selected based on overlap data classification performance. Points
vary in color based on pathway superclass and size based on the
proportion of genes in that class with p < α. Genes in the 95th percentile
of absolute LFC are labeled. (PDF 381 kb)
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Additional file 28: Figure S11. Scatter plot of HUMAnN2 gene
prevalence (proportion of pathways found in sample i) versus overlap
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represents a sample, with colors representing the sample region.
(DOCX 120 kb)

Additional file 29: Figure S12. Volcano plot of the p-value versus log2-
fold change (LFC) of HUMAnN2 pathway abundances resulting from a
DESeq2 differential abundance analysis for city class with FDR correction
(Benjamini-Hochberg correction, α = 0.01). Class combinations were
selected based on overlap data classification performance. Points vary in
color based on pathway superclass and size based on the proportion of
genes in that class with p < α. Genes in the 95th percentile of absolute
LFC are labeled. (PDF 338 kb)

Additional file 30: Table S8. Sequence coverage over S. aureus
antibiotic and virulence factors femA, femB, and mecA for all samples with
S. aureus hits. (XLSX 10 kb)

Additional file 31: Figure S13. Evidence of non-MRSA S. aureus found
in ambulance samples. (A) Visualization of sequence coverage across gen-
ome of sample with highest relative abundance of S. aureus (AW0974)
shows lack of coverage over mecA and high consistent
coverage over femA and femB (gene locations marked on X-axis) and
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MRSA. (DOCX 3569 kb)
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Additional file 33: Figure S14. Boxplot of alpha diversity across
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did not have a significant effect on alpha diversity (univariate ANOVA
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Additional file 34: Figure S15. Potential factors driving variation in
beta diversity (calculated using MetaPhlAn2/CLARK overlap). Beta
diversity was calculated with relative abundances, using the VEGAN
package in R. Data were standardized [0,1] and balanced through
random sampling (for each region, n = 36; for each surface, n = 25). (A)
By surface, (B) by region, (C) Correlation plot using Spearman’s rank
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Additional file 35: Supplemental Methods. (DOCX 32 kb)

Additional file 36: Table S10. Ambulance study metadata. (TXT 35 kb)

Abbreviations
AMR: Antimicrobial resistance; GLMM: Generalized linear mixed effects
models; HAIs: Hospital-acquired infections; HMP: Human microbiome project;
LFC: log2 fold; ML: Machine learning; NGS: Next-generation sequencing;
NOAA: National Oceanic and Atmospheric Administration; PCoA: Principal
coordinates analysis; RF: Random forest; ROC curve: Receiver operating
characteristic curve

Acknowledgements
We thank the Weill Cornell Epigenomics Core Facility and the following
researchers for their contributions including the ambulance groups who
worked with us, Jorge Gandara for help overseeing sample processing,
Manuela Olivera for annotations for functional analysis, and Sophie
Dornbaum and Benjamin Gotian for taxonomic annotations.

Funding
Funding was provided by the Elisha M. Friedman Postdoctoral Fellowship to
NO, an NSF grant #1120622 to GR, and for CM the Irma T. Hirschl and Monique
Weill-Caulier Charitable Trusts, Bert L and N Kuggie Vallee Foundation, the
WorldQuant Foundation, The Pershing Square Sohn Cancer Research Alliance,
NASA (NNX14AH50G, 15-15Omni2-0063), the National Institutes of Health
(R01AI125416), the Bill and Melinda Gates Foundation (OPP1151054), and the
Alfred P. Sloan Foundation (G-2015-13,964).

Availability of data and materials
The datasets generated and/or analyzed during the current study are
available in the Sequence Read Archive (SRA) repository BioProject:
PRJNA369713. Additional metadata is included in this publication (Additional
file 36: Table S10). The collection cities are coded to protect the privacy of
the ambulance services involved in the study, however region is indicated.

Authors’ contributions
NO managed the project analysis, processed and analyzed the data
including cleaning and formatting, functional HMP annotations, a priori
nosocomial pathogen analysis, sequence coverage analysis and statistical
modeling and co-wrote and edited the manuscript. HR processed data
including cleaning, formatting, and analysis including CLARK and the
CARD AMR analysis. EA helped design the study, coordinated sample
collection and sample processing, conducted data analysis including
MetaPhlan2 and HUMAnN2 analysis, edited the manuscript, and con-
ducted the SRA submission. DH and NC designed sampling, collected
samples and managed laboratory sample processing. GR guided some of
the taxonomic classification analysis and conducted random forest feature
selection. BF conducted data analysis including PCoA, beta diversity analysis,
and species correlation analysis. SW conducted statistical analysis of random
forests and other machine learning approaches. RO conducted the comparison
to the synthetic dataset. SL was in charge of sequencing. EB conducted DNA
extractions. CM designed the study, supervised analysis, co-wrote and edited
the manuscript. All authors have read, edited and approved of the final
manuscript.

Ethics approval and consent to participate
Not applicable for new data collected. HMP data was acquired from their
public database.

Consent for publication
Not applicable

Competing interests
NO, RO, and CM hold shares in a company that builds technology to survey
hospital environments to identify pathogens, however that company’s
technology is not used in this study.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY, USA.
2Department of Physiology and Biophysics, Weill Cornell Medicine, New York,
NY, USA. 3SUNY Downstate Medical Center, State University of New York,

O’Hara et al. Microbiome  (2017) 5:125 Page 18 of 20

dx.doi.org/10.1186/s40168-017-0339-6
dx.doi.org/10.1186/s40168-017-0339-6
dx.doi.org/10.1186/s40168-017-0339-6
dx.doi.org/10.1186/s40168-017-0339-6
dx.doi.org/10.1186/s40168-017-0339-6
dx.doi.org/10.1186/s40168-017-0339-6
dx.doi.org/10.1186/s40168-017-0339-6
dx.doi.org/10.1186/s40168-017-0339-6
dx.doi.org/10.1186/s40168-017-0339-6
dx.doi.org/10.1186/s40168-017-0339-6
dx.doi.org/10.1186/s40168-017-0339-6
dx.doi.org/10.1186/s40168-017-0339-6
dx.doi.org/10.1186/s40168-017-0339-6


Brooklyn, NY, USA. 4Electrical and Computer Engineering, Drexel University,
Philadelphia, PA, USA. 5School of Public Health and Health Sciences,
University of Massachusetts, Amherst, MA, USA. 6Department of Computer
Science and Engineering, University of California, Riverside, CA, USA. 7Hudson
Alpha, Huntsville, AL, USA. 8The HRH Prince Alwaleed Bin Talal Bin Abdulaziz
Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New
York, NY, USA. 9The Feil Family Brain and Mind Research Institute, Weill
Cornell Medicine, New York, NY, USA. 10School of Medicine, New York
Medical College, Valhalla, NY, USA.

Received: 9 June 2017 Accepted: 7 September 2017

References
1. Lax S, et al. Longitudinal analysis of microbial interaction between humans

and the indoor environment. Science. 2014;345(6200):1048–52.
2. Afshinnekoo E, et al. Geospatial resolution of human and bacterial diversity

with city-scale metagenomics. Cell Systems. 2015;1(1):1–15.
3. Roux S, et al. Ecogenomics and potential biogeochemical impacts of

globally abundant ocean viruses. Nature. 2016;537(7622):689–93.
4. Hartz L, Bradshaw W, Brandon D. Potential NICU environmental influences

on the neonate’s microbiome: a systematic review. Adv Neonatal Care.
2015;15(5):324–35.

5. Freedberg D, et al. Receipt of antibiotics in hospitalized patients and risk for
Clostridium difficile infection in subsequent patients who occupy the same
bed. JAMA Intern Med. 2016;176(12):1801–8.

6. Tong, X., et al., High diversity of airborne fungi in the hospital environment as
revealed by meta-sequencing-based microbiome analysis. Scientific Reports,
2017. 7(39606).

7. Smith D, Alverdy J, An G, et al. The hospital microbiome project: meeting
report for the 1st hospital microbiome project workshop on sampling
design and building science measurements, Chicago, USA, June 7th-8th
2012. Stand Genomic Sci. 2013;8(1):112–7. https://doi.org/10.4056/sigs.
3717348. in Standards in Genomic Sciences. 2012: Chicago, USA. p. 112-117

8. Willmann M, et al. Analysis of a long-term outbreak of XDR Pseudomonas
aeruginosa: a molecular epidemiological study. J Antimicrob Chemother.
2015;70(5):1322–30.

9. Lax S, et al. Bacterial colonization and succession in a newly opened
hospital. Sci Transl Med. 2017;9:eaah6500.

10. Alrazeeni D, Al Sufi M. Nosocomial infections in ambulances and
effectiveness of ambulance fumigation techniques in Saudi Arabia. Saudi
Med J. 2014;35(11):1354–60.

11. Centers for Disease Control and Prevention, 2014 National and State Healtcare-
Associated Infections Progress Report, C.f.D.C.a. Prevention, Editor. 2016.

12. Weber D, Anderson D, Rutala W. The role of the surface environment in
healthcare-associated infections. Curr Opin Infect Dis. 2013;26(4):338–44.

13. Woodside, J., et al., Guide to infeciton prevention in emergency medical
services, A.f.P.i.I.C.a.E. (APIC), Editor. 2013: Washington DC.

14. Varona-Barquin A, et al. Detection and characterization of surface microbial
contamination in emergency ambulances. Am J Infect Control. 2017;45(1):69–71.

15. Noh H, et al. Risk stratification-based surveillance of bacterial contamination
in metropolitan ambulances. J Korean Med Sci. 2011;26(1):124–30.

16. Nigam Y, Cutter J. A preliminary investigation into bacterial contamination
of Welsh emergency ambulances. Emerg Med J. 2003;20:479–82.

17. Alves D, Bissell R. Bacterial pathogens in ambulances: results of
unnannounced sample collection. Prehosp Emerg Care. 2008;12(2):218–24.

18. Wepler M, et al. Prevalence of nosocomial pathogens in German
ambulances: the SEKURE study. Emerg Med J. 2015;32:409–11.

19. Wallace A. The geographical distribution of animals; with a study of the
relations of living and extinct faunas as elucidating the past changes of the
Earth’s surface. London: Macmillan & Co.; 1876.

20. Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol
Syst. 2000;31:343–66.

21. Prosser J, et al. The role of ecological theory in microbial ecology. Nat Rev
Microbiol. 2007;5:384–92.

22. Kelley S, Gilbert J. Studying the microbiology of the indoor environment.
Genome Biol. 2013;14(2):202.

23. Hsu T, et al. Urban transit system microbial communities differ by
surface type and interaction with humans and the environment.
mSystems. 2016;1(3):e00018–6.

24. The MetaSub International Consortium, The Metagenomics and Metadesign
of the Subways and Urban Biomes (MetaSUB) International Consortium
inaugural meeting report. Microbiome, 2016. 4(45).

25. Segata N, et al. Metagenomic microbial community profiling using unique
clade-specific marker genes. Nat Methods. 2012;9:811–4.

26. Ounit R, et al. CLARK: fast and accurate classification of metagenomic
and genomic sequences using discriminative k-mers. BMC Genomics.
2015;16:236.

27. Lindgreen S, Adair K, Gardner P. An evaluation of the accuracy and speed of
metagenome analysis tools. Scientific Reports. 2016;6:19233.

28. Magill SS, et al. Multistate point-prevalence survey of health care–associated
infections. N Engl J Med. 2014;370(13):1198–208.

29. Kobayashi N, et al. Detection of mecA, femA, and femB genes in clinical
strains of staphylococci using polymerase chain reaction. Epidemiol Infect.
1994;113:259–66.

30. David M, Daum R. Community-associated methicillin-resistant
Staphylococcus aureus: epidemiology and clinical consequences of an
emerging epidemic. Clin Microbiol Rev. 2010;23(3):616–87.

31. Jia B, et al. CARD 2017: expansion and model-centric curation of the
comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:
D566–73.

32. Legendre P. Interpreting the replacement and richness difference
components of beta diversity. Glob Ecol Biogeogr. 2014;23:1324–34.

33. Kowarsky, M., et al., Humans are colonized by many uncharacterized and
highly divergent microbes. bioRxiv, 2017.

34. Rago J, et al. Detection and analysis of Staphylococcus aureus isolates found in
ambulances in the Chicago metropolitan area. Am J Infect Control. 2012;40:201–5.

35. Roline C, Crumpecker C, Dunn T. Can methicillin-resistant Staphylococcus
aureus be found in an ambulance fleet? Prehosp Emerg Care. 2007;11:241–4.

36. Brown R, et al. Prevalence of methicillin-resistant Staphylococcus aureus in
ambulances in southern Maine. Prehosp Emerg Care. 2010;2010(14):176–81.

37. Cerqueiraa, G., et al., Multi-institute analysis of carbapenem resistance
reveals remarkable diversity, unexplained mechanisms, and limited clonal
outbreaks. Proceedings of the National Academy of Sciences, 2017.

38. Otter J, Yezli S, French G. The role played by contaminated surfaces in the
transmission of nosocomial pathogens. Infect Control Hosp Epidemiol. 2011;
32(7):687–99.

39. Mole, B., Patients leave a microbial mark on hospitals, in Nature News. 2013.
40. Elton C. The ecology of invasions by animals and plants. London: University

of Chicago Press; 1958.
41. Bhullar K, et al. Antibiotic resistance is prevalent in an isolated cave

microbiome. PLoS One. 2012;7:e34953.
42. Vivant A, et al. Microbial diversity and structure are drivers of the biological barrier

effect against Listeria monocytogenes in soil. PLoS One. 2013;8(10):e76991.
43. Buffie C, Pamer E. Microbiota-mediated colonization resistance against

intestinal pathogens. Nat Rev Immunol. 2013;13:790–801.
44. Fuhrman J, et al. A latitudinal diversity gradient in planktonic marine

bacteria. Proc Natl Acad Sci. 2008;105(22):7774–8.
45. Liu L, et al. Patterns in the composition of microbial communities from a

Subtropical River: effects of environmental, spatial and temporal factors.
PLoS One. 2013;8(11):e81232.

46. Ackelsberg J, et al. Lack of evidence for plague or anthrax on the New York
City subway. Cell Systems. 2015;1(1):4–5.

47. Huang W, et al. ART: a next-generation sequencing read simulator.
Bioinformatics. 2012;28(4):593–4.

48. Ounit R, Lonardi S. Higher classification sensitivity of short metagenomic
reads with CLARK-S. Bioinformatcs. 2016;32(24):3823–5.

49. Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet journal. 2011;17(1):10.

50. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatcs. 2010;25:589–95.

51. Quinlan A, Hall I. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatcs. 2010;26(6):841–2.

52. Thorvaldsdóttir H, Robinson J, Mesirov J. Integrative genomics viewer (IGV):
high-performance genomics data visualization and exploration. Brief
Bioinform. 2013;14(2):178–92.

53. Oksanen, J., et al., Vegan: Community Ecology Package. R Package version 2.
4-0., 2013.

54. McMurdi P, Holmes S. Waste not, want not: why rarefying microbiome data
is inadmissible. PLoS. 2014;10(4):e1003531. https://doi.org/10.1371/journal.
pcbi.1003531.

O’Hara et al. Microbiome  (2017) 5:125 Page 19 of 20

http://dx.doi.org/10.4056/sigs.3717348
http://dx.doi.org/10.4056/sigs.3717348
http://dx.doi.org/10.1371/journal.pcbi.1003531
http://dx.doi.org/10.1371/journal.pcbi.1003531


55. Bates, D., lme4: Mixed-effects modeling with R. 2010.
56. Harrell, F., Harrell Miscellaneous. 2016.
57. Perlroth J, Choi B, Spellberg B. Nosocomial fungal infections: epidemiology,

diagnosis, and treatment. Med Mycol. 2007;45(4):321–46.
58. Agrawal A, Murphy T. Haemophilus influenzae infections in the H. influenzae

type b conjugate vaccine era. J Clin Microbiol. 2011;49(11):3728–32.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

O’Hara et al. Microbiome  (2017) 5:125 Page 20 of 20


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Microbial identification and potential contributors
	Surface and region classification

	Functional characterization of ambulance microbial communities and potential contributors
	Functional analysis using HUManN2
	Microbial association with human microbiome
	HAI-related pathogen and AMR distribution

	Patterns and potential factors shaping diversity

	Discussion
	Factors shaping the microbial composition of ambulances
	Factors shaping microbial functional composition of ambulances
	Patterns and dynamics of microbial diversity
	Limitations and future work

	Conclusions
	Methods
	Sample collection
	Laboratory sample processing
	Negative and positive controls
	Sequence analysis
	Processing and classification

	Functional analysis
	HUMAnN2
	Human Microbiome Project annotation
	Nosocomial pathogens and AMR
	Alpha and beta diversity
	Modeling and statistical analysis


	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

