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Abstract

Background: Many metagenome analysis tools are presently available to classify sequences and profile
environmental samples. In particular, taxonomic profiling and binning methods are commonly used for such tasks.
Tools available among these two categories make use of several techniques, e.g., read mapping, k-mer alignment, and
composition analysis. Variations on the construction of the corresponding reference sequence databases are also
common. In addition, different tools provide good results in different datasets and configurations. All this variation
creates a complicated scenario to researchers to decide which methods to use. Installation, configuration and
execution can also be difficult especially when dealing with multiple datasets and tools.

Results: We propose MetaMeta: a pipeline to execute and integrate results from metagenome analysis tools.
MetaMeta provides an easy workflow to runmultiple tools with multiple samples, producing a single enhanced output
profile for each sample. MetaMeta includes a database generation, pre-processing, execution, and integration steps,
allowing easy execution and parallelization. The integration relies on the co-occurrence of organisms from different
methods as the main feature to improve community profiling while accounting for differences in their databases.

Conclusions: In a controlled case with simulated and real data, we show that the integrated profiles of MetaMeta
overcome the best single profile. Using the same input data, it provides more sensitive and reliable results with the
presence of each organism being supported by several methods. MetaMeta uses Snakemake and has six
pre-configured tools, all available at BioConda channel for easy installation (conda install -c bioconda metameta). The
MetaMeta pipeline is open-source and can be downloaded at: https://gitlab.com/rki_bioinformatics.
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Background
A large and increasing number of metagenome analy-
sis tools are presently available aiming to characterize
environmental samples [1–4]. Motivated by the large
amounts of data produced from whole metagenome
shotgun (WMS) sequencing technologies, profiling of
metagenomes has become more accessible, faster and
applicable in real scenarios and tends to become the
standard method for metagenomics analysis [5–7]. Tools
which perform sequence classification based on WMS
sequencing data come in different flavors. One basic
approach is the de novo sequence assembly [8–10], which
aims to reconstruct complete or near complete genomes
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from fragmented short sequences without any reference
or prior knowledge. It is the method which provides the
best resolution to assess the community composition.
However, it is very difficult to produce meaningful assem-
blies from metagenomics data due to short read length,
insufficient coverage, similar DNA sequences, and low
abundant strains [11].
More commonly, methods use the WMS reads directly

without assembly and are in general reference-based,
meaning that they rely on previously obtained genome
sequences to perform their analysis. In this category of
applications, two standard definitions are employed: taxo-
nomic profiling and binning tools. Profilers aim to analyze
WMS sequences as a whole, predicting organisms and
their relative abundances based on a given set of reference
sequences. Binning tools aim to classify each sequence in a
given sample individually, linking each one of them to the
most probable organism of the reference set. Regardless of
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their conceptual differences, both groups of tools could be
used to characterize microbial communities. Yet binning
tools produce individual classification for each sequence
and should be converted and normalized to be used as a
taxonomic profiler.
Methods available among these two categories make use

of several techniques, e.g. readmapping, k-mer alignment,
and composition analysis. Variations on the construc-
tion of the reference databases, e.g., complete genome
sequences, marker genes, protein sequences, are also
common. Many of those techniques were developed to
overcome the computational cost of dealing with the
high throughput of modern sequencing technologies as
well as the large number of reference genome sequences
available.
The availability of several options for tools, parame-

ters, databases, and techniques create a complicated sce-
nario to researchers to decide which methods to use.
Different tools provide good results in different scenarios,
being more or less precise or sensitive in multiple con-
figurations. It is hard to rely on their output for every
study or sample variation. In addition, when more than
one method is used, inconsistent results between tools
using different reference sets are difficult to be integrated.
Furthermore, installation, parameterization, and database
creation as well as the lack of standard outputs are chal-
lenges not easily overcome.
We propose MetaMeta, a new pipeline for the joint

execution and integration of metagenomic sequence clas-
sification tools. MetaMeta has several strengths: easy
installation and set-up, support for multiple tools, samples
and databases, improved final profile combining multiple
results, out-of-the-box parallelization and high perfor-
mance computing (HPC) integration, automated database
download and set-up, custom database creation, inte-
grated pre-processing step (read trimming, error correc-
tion, and sub-sampling) as well as standardized rules for
integration of new tools. MetaMeta achieves more sen-
sitive profiling results than single tools alone by merging
their correct identifications and properly filtering out false
identifications. MetaMeta was built with SnakeMake [12]
and is open-source. The pipeline has six pre-configured
tools that are automatically installed using Conda through
the BioConda channel (https://bioconda.github.io). We
encourage the integration of new tools, making it available
to the community through a participative Git repository
(via pull request). MetaMeta source-code is available at:
https://github.com/pirovc/metameta.

Implementation
MetaMeta executes and integrates metagenomic
sequence classification tools. The integration is based
on several tools’ output profiles and aims to improve
organism identification and quantification. An optional

pre-processing and sub-sampling step is included. The
pipeline is generalized for binning and profiling tools,
categories that were previously described in the CAMI
(Critical Assessment of Metagenome Interpretation)
challenge (http://www.cami-challenge.org). MetaMeta
provides a pre-defined set of standardized rules to facil-
itate the integration of tools, easy parallelization and
execution in high performance computing infrastructure.
The pre-configured tools are available at the BioConda
channel to facilitate download and installation, avoiding
set-up problems and broken dependencies.
The pipeline accepts one or multiple WMS samples as

well as one or more databases and the output is an inte-
grated taxonomic profile for each sample per database
(as well as a separated output from each executed tool).
TheMetaMeta pipeline can be described in four modules:
database generation, pre-processing, tool execution, and
integration (Fig. 1).

Database generation
On the first run, the pipeline downloads and builds the
databases for each of the configured tools. Pre-configured
databases (Additional file 1: Table S1) are provided as well
as a custom database creation option based on reference
sequences. Since each tool has its own database with a
specific version of reference sequences, database profiles
are generated, collecting which taxonomic groups each
tool can identify. Given a list of accession version iden-
tifiers for each sequence on the reference set, MetaMeta
automatically generates a taxonomic profile for each tool’s
database.

Pre-processing
An optional pre-processing step is provided to remove
errors and improve sequence classification: Trimommatic
[13] for read trimming and BayesHammer [14] for error
correction. A sub-sampling step is also included, allow-
ing the sub division of large read sets among several tools
by equally dividing them or by taking smaller random
samples with or without replacement, to reduce overall
run-time.

Tool execution
In this step, the pre-processed reads are analyzed
by the configured tools. Tools can be added to the
pipeline if they follow a minimum set of requirements.
They should output their results based on the NCBI
Taxonomy database [15] (by name or taxonomic id).
Profiling tools should output a rank separated taxo-
nomic profile with relative abundances while binning
tools should provide an output with sequence id, length
used in the assignment and taxon. The BioBoxes [16]
data format for binning and profiling (https://github.
com/bioboxes/rfc/tree/master/data-format) is directly
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Fig. 1MetaMeta Pipeline. The MetaMeta Pipeline: one or more WMS read samples and a configuration file are the input. The pipeline consists of
four main modules: Database Generation (only on the first run), Pre-processing (optional), Tool Execution and Integration. The output is a unified
taxonomic profile integrating the results from all configured tools for each sample, generated by the MetaMetaMerge module

accepted. Tools which provide non-standard output
should be configured with an additional step converting
their output to be correctly integrated into the pipeline
(More details are given in the Additional file 1: File
Formats).

Integration
The integration step will merge identified taxonomic
groups and abundances and provide a unified profile for
each sample. MetaMeta aims to improve the final results
based on the assumption that the more identifications
of the same taxon by different tools are reported, the
higher its chance to be correct. This task is performed
by the MetaMetaMerge module. This module accepts
binning and profiling results and relies on previously
generated database profiles. Taxonomic classification can
change over time and each tool can use a different ver-
sion/definition of it. For that reason, a recent taxonomy
database version is used to solve name and rank conflicts
(e.g., changing name specification, species turning into
sub-species, etc.).

Abundance estimation - binning tools
Binning tools provide a single classification for each
sequence in the dataset instead of relative abundances for
taxons. An abundance estimation step is necessary for a
correct interpretation of such data and posterior integra-
tion. The lengths of the binned sequences are summed
up for each identified taxonomic group and normalized
by the length of their respective reference sequences,

estimating the abundance for each identified taxon
n as:

abundancen =
r∑

i=1

∑ti
j=1 bj
li

(1)

where r is the number of reference sequences belonging to
the taxonomic group n, ti is the total of reads classified to
the reference i, bj is the number of aligned bases of a read
j and li is the length of the reference i. The abundance of
the parent nodes is based on the cumulative sum of their
children nodes’ abundance.

Merging approach
The first step on the merging approach is to normalize
estimated abundances to 100% for each taxonomic level.
That is necessary because some tools do account for the
unclassified reads and others do not. MetaMetaMerge
only considers classified reads. Once normalized, all pro-
files are then integrated to a single profile. In this step,
MetaMetaMerge saves the number of occurrences of each
taxon among all profiles. This occurrence count is used to
better select taxons that are more often identified, assum-
ing that they have higher chances of being a correct iden-
tification. MetaMetaMerge also calculates an integrated
value for the relative abundance estimation, defined as the
harmonic mean of all normalized abundances for each
taxon, avoiding outliers and obtaining a general trend
among the estimated abundances. All steps taken in the
merging process are performed for each taxonomic level
independently, from super kingdom to species by default.
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Since tools use different databases of reference
sequences it is necessary to account for this bias. Previ-
ously generated database profiles provide which taxons
are available for each tool. By merging all database pro-
files, it is possible to anticipate how many times each
taxon could be identified among all tools used. The
number of occurrences of each taxon from the tools’
output and the database presence number are integrated
to generate a score S for each taxon, defined as:

Sij = (i + 1)2

j + 1
(2)

where i is the number of times the taxon was identi-
fied and j the number of times it is contained in the
databases. This score calculation accounts for the pres-
ence/absence of taxonomic groups on different databases.
It gives higher scores to the most identified taxons present
in more databases. At the same time, lower scores are
assigned to taxons present in many databases but not
identified too many times. The score calculation is pur-
posely biased for higher scores when i = j (Additional
file 1: Figure S1), given the benefit of the doubt for tax-
ons with low identification that are available only in few
databases.
Commonly, metagenome analysis methods have to deal

with a moderate to high number of false positive iden-
tifications at lower taxonomic levels. That occurs mainly
because metagenomes can contain very low abundant
organisms with similar genome sequences. This problem
is even extended in our merged profile by collecting all
false positives from different methods, generating a long
tail of false positives with lower scores mixed together
with true identifications. A filtering step is therefore nec-
essary to avoid wrong assignments. This step is usually
performed by an abundance cutoff value. Setting up this
value is subject to uncertainty since the real abundances
are usually not known and the separation between low
abundant organisms and false identifications is not clear
[17]. A simple cutoff would not provide a good separation
between true and false results in this scenario.
To overcome this problem, MetaMetaMerge classifies

each taxon in a set of bins (four by default) based on
the calculated score (Eq. 2). Bins are defined by equally
dividing the range of scores in the numbers of bins
selected. Now each taxon has a score and a bin assigned
to it. Taxons with higher scores are more likely to be true
identifications and are going to be grouped together in the
same bin. With this strategy it is possible to obtain a gen-
eral separation among taxons which are prone to be true
or false identifications.
Within each taxon grouped in a bin (sorted by relative

abundance) a cutoff is applied to remove possible false

identifications with low abundance. Here, the cutoff value
is a percentile relative to the number of taxons on each
bin and it is selected based on predefined functions, which
can achieve more sensitive or precise results (Additional
file 1: Mode functions). Each bin will have a different
cutoff value depending on the chosen function.
If precision is chosen, a gradually more stringent cut-

off will be used, selecting only the most abundant taxa for
each bin. If sensitivity is selected, cutoffs will be set higher,
allowing more identifications to be kept. Sensitive results
have an increased chance of containing more true posi-
tives but at the same time they will likely have more false
identifications due to less strict cutoffs.
Based on this percentile cutoff, MetaMetaMerge keeps

only the top abundant taxa on each bin and removes tax-
ons below it. After this step, the remaining taxons on each
bin are re-grouped and sorted by relative abundance to
generate the final profile.
At the end, MetaMeta will provide a final taxonomic

profile, integrating all tools results, a detailed profile with
co-occurrence and individual abundances, an interactive
Krona pie chart [18] to easily compare taxonomic abun-
dances among the tools as well as single profiles for each
executed tool.

Results
Tool selection
MetaMeta was evaluated with a set of six tools: CLARK
[19], DUDes [20], GOTTCHA [21], Kraken [22], Kaiju
[23], and mOTUs [24]. The choice was partially moti-
vated by recent publications comparing the performance
of such tools [3, 4, 25]. CLARK, GOTTCHA, Kraken, and
mOTUs achieved very low false positive numbers accord-
ing to [4]. DUDes was an in-house developed tool which
achieves good trade-off between precision and sensitiv-
ity according to [25]. Kaiju uses a translated database,
bringing diversity to the current whole genome-based
methods. We also considered the amount of data/run
time performance for each tool, selecting only the ones
that can handle large amounts of data as commonly
used today in metagenomics analysis in an acceptable
time (less than 1 day for our largest CAMI dataset −7.4
Gbp). MetaPhlAn [26] a widely used metagenomics tool
could not be included due to taxonomic incompatibil-
ity. Any other sequence classification tool could be con-
figured and used in MetaMeta, as long as it fits with
our pipeline requirements described in the Methods -
Tool execution section. We selected an equal number of
tools for each category: DUDes, GOTTCHA, andmOTUs
are taxonomic profiling tools, while CLARK, Kraken,
and Kaiju are binning tools. Databases were created fol-
lowing the default guidelines for each tool, considering
only bacteria and archaea as targets (Additional file 1:
Table S1).
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Datasets and evaluation
The pipeline was evaluated with a set of simulated and
real samples (Table 1). The simulated data were provided
as part of the CAMI Challenge (toy samples) and the
real samples were obtained from the Human Microbiome
Project (HMP) [27, 28]. MetaMeta was compared to each
single result from each tool configured in the pipeline.
Although the pipeline can work on the strain level, we
evaluate the results until species levels since most of the
tools still do not provide strain level identifications. We
compare the results to the ground truth in a binary (true
and false positives, sensitivity, and precision) and quanti-
tative way with the L1 norm, which is the sum of absolute
differences between predicted and real abundances, when
abundance profiles are available. Computer specifications
and parameters can be found on the Additional file 1.

CAMI data
The CAMI challenge provided three toy datasets of dif-
ferent complexity (Table 1) with known composition and
abundances. From low to high complexity, they provide an
increasing number of organisms and samples. The sam-
ples within a complexity group contain the same organ-
isms with variable abundances among samples. The sets
contain real and simulated strains from complete and
draft bacterial and archaeal genome sequences. The simu-
lated CAMI datasets, especially those of medium and high
complexity, provide a very challenging and realistic data
in terms of complexity and size.
In Fig. 2, it is possible to observe the tools perfor-

mance in terms of true and false positives for the CAMI
high complexity set. All configured tools perform simi-
larly in the true positive identifications but vary among
the false positives. Binning tools have a higher number of
false positive identifications due to the fact that even sin-
gle classified reads are considered. The MetaMetaMerge
profile surpassed all other methods in true positive identi-
fications while keeping the false positive number low. The
same trend occurs in the other complexity sets (Additional
file 1: Figures S3–S8). Figure 3 shows the trade-off
between precision and sensitivity for all high complex-
ity samples. MetaMetaMerge achieved the best sensitivity
while GOTTCHA the best precision among the compared

tools with default parameters. Those results show how
the merging module of the MetaMeta pipeline is capable
of better selecting and identifying true positives based on
the co-occurrence information. MetaMetaMerge also has
the flexibility to provide more precise or sensitive results
(Fig. 3) just by changing the mode parameter (details are
given in the Additional file 1: Mode functions). In the very
precise mode, the merged profile outperformed all tools
in terms of precision, but with the cost of losing sensitiv-
ity. In the very sensitive mode, the merged profile could
improve the sensitivity compared to the run with default
parameters, with some loss of precision. It is important to
notice that the trade-off between precision and sensitiv-
ity could also be explored by the cutoff parameter (default
0.0001), depending on what is expected to be the lowest
abundant organism in the sample. The MetaMetaMerge
mode parameter will give more precise or sensitive results
based on this cutoff value.
In terms of relative abundance, MetaMetaMerge pro-

vides the most reliable predictions with smaller difference
from the real abundances, as shown in Fig. 4 with regard
to the L1 normmeasure. By taking the harmonic mean, we
succeed in reducing the effect of outliers that occur among
the tools and capture the trend of the estimated rela-
tive abundances, providing a new, more robust estimate
(Additional file 2).

Pre-processing and sub-sampling effects
We explore here the effects of pre-processing and sub-
sampling on the CAMI toy sets. Results shown in this
section were trimmed and sub-sampled in several sizes,
with and without replacement and executed five times for
each sub-sample. Trimming effects were small on this set,
slightly increasing precision (data not shown). Figure 5
shows the effects of sub-sampling in terms of sensitivity
and run-time (wall time for the full pipeline) for one of the
high complexity CAMI sets. Sub-sampling provides a high
decrease on run-time for every tool and consequently for
the whole pipeline. However, only below 5% it is possible
to see a significant but still small decrease on sensitivity.
All tools behave similarly on the sub-sampled sets, with
GOTTCHA and mOTUs having a high decrease of sen-
sitivity when using only 1% of the data. With the same

Table 1 Samples used in this study and run-time (based on the computer specifications on Additional file 1)

Sets # Samples Total bases # Species Cpu time/sample Estimated wall time/sample

CAMI toy low 1 14.8 Gbp 30 31:04:52 02:35:24

CAMI toy medium 4 31.3 Gbp 199 15:18:16 01:16:31

CAMI toy high 5 74.5 Gbp 375 33:20:30 02:46:42

HMP stool 147 1.44 Tbp 299* 19:39:39 01:38:18

cpu time/sample stands for the mean cpu time for each sample without paralellization. Estimated wall time/sample considers a double speed-up by using 12 threads and
concurrently running all six tools (when computational resources are available the pipeline can run all tools/samples/databases at the same time). *expected number of
species from isolated genomes from the gastrointestinal tract
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Fig. 2 True and False Positives - CAMI high complexity set. In blue (left y axis): True Positives. In red (right y axis): False Positives. Results at species
level. Eachmarker represents one out of five samples from the CAMI high complexity set

Fig. 3 Precision and Sensitivity - CAMI high complexity set. Dotted black linemarks the maximum possible sensitivity value (0.57) that could be
achieved with the given tools and databases. Results at species level. Eachmarker represents one out of five samples from the CAMI high
complexity set
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Fig. 4 L1 norm error. Mean of the L1 norm measure at each taxonomic level for five samples from the high complexity CAMI set

sub-sample configuration (1%),MetaMetaMerge achieved
a sensitivity higher than any other tool alone using 100%
of the set. It also runs the whole pipeline approximately 17
times faster than with the full set (from 05 h 41 min 36 s
to 20 min 19 s on average), being faster than the fastest

tool with 100% of the data (kraken 29 min 26 s on average)
and the second best sensitive tool (kaiju 1 h 47 min 44 s
on average). As expected, precision is slightly increased
in small sub-samples due to less data (Additional file 1:
Figure S9).

Fig. 5 Sub-sampling. Sensitivity (left y axis) and run-time (right y axis) at species level for one randomly selected CAMI high complexity sample. Each
sub-sample was executed five times. Lines represent the mean and the area around it the maximum and minimum achieved values. Run-time
stands for the time to execute the MetaMeta pipeline. The evaluated sample sizes are 100, 50, 25, 16.6, 10, 5, and 1%. 16.6% is the exact division
among six tools, using the the whole sample. Sub-samples above that value were taken with replacement and below without replacement. The
plot is limited to a value of 0.57 (left y axis) that is the maximum possible sensitivity value that could be achieved with the given tools and databases
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HumanMicrobiome Project data
The HMP provided several resources to characterize the
microbial communities at different sites of the human
body. MetaMeta was tested on stool samples to eval-
uate the performance of the pipeline on real data. For
evaluation we used a list of reference genome sequences
that were isolated from specific body sites and sequenced
as part of the HMP. They do not represent the com-
plete content of microbial diversity in each commu-
nity but serve as a guide to check how well the tools
are performing. Stool samples were compared against
the isolated genomes obtained from the gastrointestinal
tract.
Figure 6 shows the results for 147 samples. In sensitive

mode, MetaMetaMerge achieved the highest number of
true positive identifications with a moderate number of
false positives, below all binning tools but above all tax-
onomic profilers. mOTUs produced good results in the
selected samples mainly because its database is based on
the isolated genomes from the HMP (the same as the
ground truth used here). Since mOTUs is the only tool
with a distinct set of reference sequences that could clas-
sify this set, the scores (from Eq. 2) attributed to mOTUs’
unique identifications were low. Still, MetaMetaMerge
could improve the true identifications keeping a lower rate

of false positives by incorporating the true identifications
from other methods.

Discussion
MetaMeta is a complete pipeline for classification of
metagenomic datasets. It provides improved profiles over
the tested tools by merging their results. In addition, the
pipeline provides easy configuration, execution and par-
allelization. With simulated and real data, MetaMeta is
capable to achieve higher sensitivity. That is possible due
to the MetaMetaMerge module, which extracts informa-
tion of co-occurrence of taxons on databases and profiles,
collecting complementary results from different methods.
Further, the guided cutoff approach avoids false positives
and keeps most of the true identifications, enhancing final
sensitivity and exploring the complementarity of currently
available methods.
By running several tools, MetaMeta has an apparently

prohibitive execution time. In reality, the parallelization
provided by Snakemake makes the pipeline run in a rea-
sonable time using most of the computational resources
(Table 1). That is possible by the way the rules are chained
and executed among several cores, lasting not more than
the slowest tool plus pre- and post-processing time, which
are very small in comparison to the analysis time. In

Fig. 6 True and False Positives - HMP stool samples. In blue (left y axis): True Positives. In red (right y axis): False Positives. Results at species level. Each
marker represents one out of 147 stool samples from the HMP
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addition, sub-sampling allows the reduction of input data
and a high decrease of execution time with small if any
impact on the final result. That is viable due to redun-
dant data contained inmanymetagenomic samples as well
as redundant execution by several tools provided in the
MetaMeta environment. However sub-sampling should
be used with caution, taking in consideration the coverage
of low abundant organisms.
All tools presented here are available at the Bio-

Conda channel and are automatically installed in the first
MetaMeta run, working out-of-the-box for several com-
puter environments and avoiding conflicts and broken
dependencies. MetaMeta can also handle multiple large
samples and databases at the same time, with options to
delete intermediate files and keep only necessary ones,
being well suited to large scale projects. It also reduces
idle computational time by smartly parallelizing sam-
ples among one or more tools (Additional file 1: Figures
S10–S13). The parallelization noticeably decreases the
run time when computational power is available andman-
ages to serialize and control the run when access to com-
putational power is limited. Integration into HPC systems
is also possible and we provide a pre-configured file for
queuing systems (e.g., slurm). As stated by Lee et al. [29],
solid-state drives accelerate the run time ofmany bioinfor-
matics tools. Such drives were used in some evaluations
shown in this paper and are beneficial for the MetaMeta
pipeline.
MetaMeta makes it easier for the user to obtain more

precise or sensitive results by providing a single default
parameter as well as advanced options for more refined
results. This parameter when set towards sensitivity tends
to output an extensive list of taxons, being at the same
time less stringent with the minimum abundance cutoff.
When set towards precision it will apply a more strict
abundance cutoff and provide a smaller but more accurate
list of predicted taxons. Since all tools were used in default
mode, it is possible to obtain problem-centric optimized
results only by changing the way MetaMeta works. That
facilitates and simplifies the task for researchers that are
in search for a specific goal.
MetaMeta supports strain level identification. Never-

theless all evaluations were made at species level due to
lack of support to strain identification in some tools. Also
the lack of standard was a limiting factor. Taxonomic
IDs are no longer assigned to strain levels [30] and tools
output them in different ways. With standard output def-
initions, the use of strain classification on the pipeline is
straight forward.
Related in parts, a method called WEVOTE was devel-

oped in parallel and recently published [31] where five
classification tools were used to generate a merged taxo-
nomic profile. Although the two methods present distinct
ways of achieving better taxonomic profiling, they are not

built for the same use case. WEVOTE relies on BLAST
based tools and thereby is not suited for the large scale
WMS applications, since the dataset sizes practically pro-
hibit analyses via BLAST based approaches. Differently,
MetaMeta was built accounting for high throughput data.
Moreover, we supply an easy way to install tools and
MetaMeta provides a complete pipeline which can con-
figure databases and run classification tools with an inte-
gration module at the end, whereWEVOTE provides only
the integration method. As a result a comparison among
the pipelines is hard to perform and interpret since they
both use a different set of tools and databases.

Conclusion
In conclusion, MetaMeta is an easy way to execute and
generate improved taxonomic profiles for WMS samples
with multiple tool support. We believe the method can be
very useful for researchers that are dealing with multiple
metagenomic samples and want to standardize their anal-
ysis. TheMetaMeta pipeline was built in a way to facilitate
the execution in many computational environments using
Snakemake and BioConda. That diminishes the burden of
installing and configuringmultiple tools. The pipeline also
gives control over the storage of the results and has an easy
set of parameters which makes it possible to obtain more
precise or sensitive results.MetaMeta was coded in a stan-
dardized manner, allowing easy expansion to more tools,
also collectively in the MetaMeta git repository (https://
github.com/pirovc/metameta). We believe that the final
profile could be even further improved with novel tools
configured into the pipeline.

Availability and requirements
Project name:MetaMeta
Project home page: https://github.com/pirovc/metameta
Operating systems: Linux
Programming language: Python
Other requirements: Snakemake
Licence:MIT
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information. (PDF 1024 kb)

Additional file 2: Additional File with interactive charts for all CAMI toy
set results on default, very-precise and very-sensitive mode. File prefix S, M,
and H for low, medium and high complexity, respectively. (TAR 3573 kb)
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