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Abstract

Background: Advances in next-generation sequencing technologies have allowed for detailed, molecular-based
studies of microbial communities such as the human gut, soil, and ocean waters. Sequencing of the 16S rRNA gene,
specific to prokaryotes, using universal PCR primers has become a common approach to studying the composition of
these microbiota. However, the bioinformatic processing of the resulting millions of DNA sequences can be
challenging, and a standardized protocol would aid in reproducible analyses.

Methods: The short-read library 16S rRNA gene sequencing pipeline (sl1p, pronounced “slip”) was designed with the
purpose of mitigating this lack of reproducibility by combining pre-existing tools into a computational pipeline. This
pipeline automates the processing of raw 16S rRNA gene sequencing data to create human-readable tables, graphs,
and figures to make the collected data more readily accessible.

Results: Data generated from mock communities were compared using eight OTU clustering algorithms, two taxon
assignment approaches, and three 16S rRNA gene reference databases. While all of these algorithms and options are
available to sl1p users, through testing with human-associated mock communities, AbundantOTU+, the RDP
Classifier, and the Greengenes 2011 reference database were chosen as sl1p’s defaults based on their ability to best
represent the known input communities.

Conclusions: sl1p promotes reproducible research by providing a comprehensive log file, and reduces the
computational knowledge needed by the user to process next-generation sequencing data. sl1p is freely available at
https://bitbucket.org/fwhelan/sl1p.
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Background
The recent surge of next-generation sequencing technolo-
gies have allowed the scientific community to use marker
genes, most popular of which being the 16S rRNA gene,
to more thoroughly understand mixed bacterial com-
munities (i.e., microbiomes). However, the adoption of
any new technology requires standards and quality con-
trol. Alongside a plethora of 16S rRNA gene amplicon
studies, quality control efforts have addressed the stan-
dardization of experimental and bioinformatic methods.
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For example, laboratory standards have been proposed
for the preparation and storage of biological samples
[1–3] as well as procedures for the isolation and sequenc-
ing of DNA which mitigate environmental contamina-
tion [4, 5]. Sequencing controls have greatly reduced
variability between laboratories and datasets [5]. Simi-
larly, efforts have been made to standardize the bioin-
formatic processing of amplicon sequencing results
[6, 7]. Next-generation sequencing technologies are sub-
ject to varying levels of sequencing error; traditionally,
processing of amplicon sequencing data has involved
filtering based on input sequence quality, followed by
clustering of sequences into operational taxonomic units
(OTUs) which are given a taxonomic label based on
their similarity to a known database (for e.g. [8–10]).
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Choice of algorithms for quality filtering, OTU clus-
tering, and taxonomic assignment have been shown to
affect the downstream analysis of biologically meaningful
results [11].
OTU clustering, typically computed at 97% sequence

similarity, can be divided by approach. Reference-based
(or phylotyping) approaches, such as BLAST [12] and
UCLUST-reference [13], compare input sequences to a
reference database. In contrast, de novo-based approaches
are independent of a reference set. De novo approaches
include hierarchical clustering methods such as Mothur’s
average linkage algorithm [7], and ESPIRIT [14], as well as
greedy algorithms such as CD-HIT [15, 16], DNACLUST
[17], UPARSE [18], and AbundantOTU+ [19]. Similarly,
choice of taxonomic assignment algorithm and reference
database also vary across 16S rRNA amplicon studies.
Recent benchmark studies have helped identify some of

the most accurate methods in each of these categories.
For example, Kopylova et al. identified a series of cluster-
ing methods, including UPARSE and USEARCH, which
outperformed the widely used UCLUST algorithm [11].
Schloss and colleagues have also presented numerous
comparisons of OTU clustering algorithms to find that
de novo methods out perform reference-based methods
[20, 21] and, more specifically, that the average neigh-
bour algorithm often outperforms all others [20, 22, 23].
Some comparisons of taxonomic methods have also been
performed (for e.g., [24]).
Without a comprehensive workflow, such a surplus of

available methods for 16S rRNA gene data processing
makes it difficult to identify themost accurate approaches.
Further, because each step has been developed indepen-
dently, processing often involves file and command line
manipulations between steps; conducting these manip-
ulations in high-throughput is often inaccessible to a
traditionally trained microbiologist, and makes it diffi-
cult to reproduce or extend data analyses. Widely used
and important tools, such as QIIME [6] and Mothur
[7], have aided in these issues; however, their step-by-
step approach and various parameters represent a sig-
nificant barrier to effective amplicon data processing
and do not fully mitigate issues of reproducibility. To
combat this need for ease-of-use, reproducible data pro-
cessing, and want of a non-biased assessment of pro-
cessing options, we developed the short-read library
16S rRNA gene sequencing pipeline (sl1p, pronounced
“slip”), a 16S rRNA data processing software. sl1p takes
Illumina-generated FASTQ files as input and automates
all data processing to generate a reproducible OTU table
with taxonomic assignments. This pipeline is compati-
ble with any primer set or amplicon gene, and currently
offers access to eight OTU clustering algorithms, two
taxonomic assignment options, three 16S rRNA gene
reference databases, and two phylogenetic outputs. As

presented here, the default processing steps and software
used in sl1p have been determined to be the most accu-
rate available approaches based on their assessment with
synthetic communities generated as part of the Human
Microbiome Project (HMP) [25], and a set of 190 indi-
vidually picked isolates. All steps in data processing are
recorded by sl1p in a log file for future reference and
reproducibility.
sl1p is a tool designed to be accessible to the microbi-

ologist without detailed bioinformatic training; as such,
it is fully automated, needing one line input from the
user upon startup. Further, the output of sl1p includes
an R markdown file with the appropriate code to visual-
ize read counts per sample, taxonomic assignments, α-,
and β-diversity from which the user can begin their own
analyses. sl1p is freely available at https://bitbucket.org/
fwhelan/sl1p.

Methods
The sl1p pipeline
sl1p is a data processing pipeline developed for the auto-
mated, reproducible, and accurate processing of paired-
end amplicon FASTQ data (Fig. 1 and Additional file 1).
Input to sl1p includes (a) FASTQ reads in Illumina’s stan-
dard FASTQ format, and (b) a ‘file of filenames’ file listing
all FASTQ files and their file path. Optionally, the user
can also include a sequencing information file if they
wish to use primer sets outside of the built in defaults
(v3, [26]; v34, [27]; v4 [27–30]). Each step in sl1p’s data
processing approach is recorded in a log file, for future
reproducibility; further, the standard error output of each
step is recorded to an error file to aid in any necessary
de-bugging.
During initialization, the user can use command

line flags to deviate from sl1p’s default functionality
(Additional file 1). By default, quality filtering consists of
cutadapt [31] to trim the PCR primers from the FASTQ
input, PANDAseq (version 2.9) [32] to align paired-end
reads, sickle (https://github.com/najoshi/sickle; version
1.33) to quality trim the resulting pairs, and USEARCH
[13], as implemented in QIIME (v1.9.1) [6], to identify
and remove chimeric sequences. Users have the choice
of eight OTU clustering approaches: five greedy algo-
rithms including AbundantOTU+ 0.93b (default; [19]),
CD-HIT 3.1.1 [15, 16], DNACLUST (release 3) [17],
UCLUST v1.2.22q [13], and UPARSE (USEARCH ver-
sion 8.0.1623) [18], and two reference-based approaches,
BLAST 2.2.22 [12] and UCLUST [13], which can either
be strictly closed (UCLUST-ref-strict) or conduct closed
clustering followed by de novo on any leftover sequence
not matching the reference database (UCLUST-ref ). Tax-
onomic assignment (and OTU clustering, where appro-
priate) can be assigned using two methods, BLAST or the
RDP Classifier 2.2 (default; [33]), against three reference
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Fig. 1 Schematic of the sl1p pipeline. The user input consists of FASTQ files and processing parameters. Upon input, the user can choose to deviate
from the default parameters to choose from various options for OTU picking algorithms, taxonomic assignment, and reference database. Every step
that sl1p utilizes is recorded in log and error files for the purposes of debugging, reference, and reproducibility. For more detail, see Additional file 1

databases: Greengenes Feb. 2011 (default), Greengenes
Aug. 2013 [34], and Silva Release 111 [35]. Finally, OTU
tables, phylogenies, and preliminary analyses are con-
ducted using QIIME and R (v3.3.1). Importantly, as part
of sl1p’s commandline options, the user can choose to run
all possible combinations of OTU clustering algorithms,
taxonomic assignment methods, and choice of reference
databases automatically with one command, making com-
parisons of available methods reproducible and easy to
approach.
The sl1p pipeline is open source and publicly available at

https://bitbucket.org/fwhelan/sl1p. The pipeline is writ-
ten in Perl and consists of one main script which calls on
auxiliary scripts to aid in reformatting data between steps
as necessary. Accompanying setup and install scripts are
provided to download and install sl1p.

Generation of test datasets
The HumanMicrobiome Project Mock Communities
(HMP-mock)
Genomic DNA of two unique representations of a 20
member mock community generated as part of the
Human Microbiome Project [25] were obtained from
BEI Resources (Catalog Nos. HM-782D and HM-783D;
ATCC, Manassas, VA). The first sample (HMP-mock1) is
an even distribution of the 20 bacterial organisms from
17 genera, whereas the second (HMP-mock2) is a stag-
gered distribution of the same organisms [25]. For each
sample, 3 PCR replicates were generated by using 1μl
of genomic DNA PCR amplified using 1 μl of dNTPs,
0.25 μl of Taq polymerase (Life Technologies, Carls-
bad, CA) and 5 μl of PCR primers designed for the
v3 region of 16S rRNA gene [26]. These amplification

https://bitbucket.org/fwhelan/sl1p
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products were then split across two runs of the Illumina
sequencer to generate sequencing replicates. Base call-
ing was performed using CASAVA (v1.8.2). Sequencing
depth ranged from 5917 to 113,084 reads with an aver-
age of 57,257. A negative PCR control was generated in
parallel.

Single and Combined Isolate Controls (URTCul)
One hundred ninety single colonies were picked from
a collection of upper respiratory tract culture isolates
(URTCul) and restreaked until pure on appropriate solid
agar plates as described in [36]. Once pure, isolates
were picked directly into 5% Chelex, boiled, and cen-
trifuged at 13,000 rpm for 5 min. 5 μl of the super-
natant was used as template for a 50μl PCR reaction
of the variable regions 8F-926R [37, 38] of the 16S
rRNA gene and sequenced using Sanger sequencing
(amplicon length = 918 bps). The resulting Sanger
sequences for each isolate were taxonomically assigned
using independent blastn searches against NCBI’s Ref-
Seq database. Taxonomic assignments were made to the
species level; in the case of multiple species matching
with percent identity within < 1% of each other, multiple
species names were included in the taxonomic assignment
are presented (e.g. g__Streptococcus;s__infantis_mitis).
This dataset contained 8 unique genera and 33 unique
species.
For Illumina sequencing, PCR amplification of the v34

region (341F-806R, [27]) was performed and sequenc-
ing was conducted on an Illumina MiSeq sequencer to
produce paired-end, 250 bp reads; each isolate was PCR
amplified with its own unique barcoded primer (Fig. 2,
URTCul-singles). Because each isolate was uniquely bar-
coded, resulting reads per sample were expected to have
originated from an individual colony. Occassionally, iso-
lates were contaminated with a second, co-occurring
organism, resulting in reads from > 1 organism. In these
cases, specifically when a sample contained≥ 15% of reads
from 2 taxonomically divergent organisms, the sample
was culled; this process resulted in the culling of 9 sam-
ples. The average number of sequenced reads per isolates
was 12 (range 1–81); because each sample contained only
one organism, each sample was designated to 0.01% of an
Illumina MiSeq sequencing run.
After amplification and Illumina sequencing of each

isolate individually, the raw FASTQ reads were com-
bined in silico to create one sample (Fig. 2, URTCul-
combined). Further, the taxonomic assignments of the
Sanger sequencing results were consulted to create a sec-
ond in silico sample in which only uniquely identified taxa
were combined (Fig. 2, URTCul-uniques). The artificial
sequencing depths of these 2 samples were 2148 and 423,
respectively. These data are publicly available (BioProject
ID PRJNA 381557).

Publicly available dataset
Additionally, a publicly available dataset of human fecal
microbiota samples (Bioproject Submission SUB2392090;
[39]) was used in testing the phylogenetic outputs of sl1p
displayed in Fig. 6.

Data processing comparisons
All output data processing comparisons were based on
OTU tables, map files, and phylogenies generated by sl1p
v4.1 using the -p all -d all and -t all flags. All anal-
yses were computed in R using phyloseq [40], ggplot2
[41], and reshape2 [42] with the following exceptions.
FastQC [43] was used to calculate FASTQ quality scores
used in Fig. 3. Graphlan [44] was used to visualize phy-
logenies as presented in Fig. 6. All data processing was
computed on a standard personal desktop computer run-
ning Ubuntu 14.04. The R and Perl code necessary to
reproduce these data comparisons are available as an R
markdown (Additional file 2) and accompanying HTML
output (Additional file 3).

Results
The short-read library 16S rRNA gene sequencing
pipeline (sl1p) was developed as an automated and repro-
ducible 16S rRNA gene sequencing processing tool. The
output of this tool consists of an R markdown file and
accompanying HTML output showing preliminary analy-
ses of the data (e.g. Additional file 4). In order to deter-
mine the most accurate default settings of this tool, we
systematically tested various methods within the sl1p
workflow using 2 approaches (i.) 2 mock community sam-
ples from the HMP (HMP-mock), and (ii.) 190 single
bacterial isolates (URTCul-singles) and their combination
as a totality of the 190 sequencing results (URTCul-
combined) or the combination of unique taxa from this
pool (URTCul-uniques).

sl1p removes low quality reads effectively
One of the consequences of using next-generation
sequencing technologies in high-throughput is the
propensity for sequencing error. For instance, Illumina
technology is known to have an increased error rate
towards the 3’ end of the read, and that the reverse read
is generally of poorer quality then the forward. Mitigating
this error prior to OTU generation and taxonomic assign-
ment is essential in order to refrain from the generation of
spurious OTUs.
sl1p utilizes a multi-step approach to quality control.

Immediately following removal of sequencing primers
with cutadapt, forward and reverse reads are assembled
using PANDAseq. While many options are available for
the merging of paired-end reads, PANDAseq includes
both quality filtering and read assembly. Across our PCR
and sequencing replicates of HMP-mock, approximately
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Fig. 2 Schematic of URTCul mock community generation. Isolates were individually picked from solid agar plates and amplified using Sanger and
Illumina sequencing approaches. Following Illumina sequencing, the resulting reads from each individually sequenced isolate were analyzed
individually (URTCul-singles), in combination (URTCul-combined), or as a combination of each uniquely identified taxa (URTCul-uniques)

12.5% of raw input reads were culled at this step (Fig. 3a);
the majority of culled reads were due to mis-alignment
of forward and reverse reads. Following, cutadapt was
used to remove any reads containing Illumina annealing
or sequencing primers. While this step removed only 2.7%
of the HMP-mock input (Fig. 3a), we have found it to be an
important way of removing erroneous sequencing results,
and a measure of an infrequent poor Illumina sequenc-
ing run. Next, sickle was used to trim quality sequence
(and to remove any reads < 100 bp post-trimming). It is at
this stage where the most quality-filtering is done, with an
average 29.6% read loss (Fig. 3a). However, it is this strict

quality filtering that results in clean, high-quality paired-
end reads (Fig. 3b); when we compare this strict threshold
with lower quality cutoffs, we begin to see a decline in the
final paired-end read quality as the cutoff drops below 30
(Additional file 5).
The last step in sl1p’s quality control workflow is

chimera checking. Because 16S rRNA gene amplicon data
is generated via PCR amplification, chimeric sequences
can be an issue, especially if the PCR amplification
reaction traverses a highly conserved region as is the
case for multi-variable region amplicons. As such, sl1p
uses QIIME’s implementation of USEARCH to conduct
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a b

Fig. 3 sl1p effectively removes low quality reads. a sl1p’s quality control workflow consists of paired-end assembly, removal of residual primers,
quality trimming, and length filtering. Here, the number of reads culled at each step is presented. Inline percentages indicate the percentage of raw
input reads which remain following the quality control process. b This process successfully removes bases of low quality from the resulting
paired-end reads as demonstrated here on the raw sequence input from 2 unique mock HMP samples sequenced using 3 PCR and 2 sequencing
replicates

chimera checking on the generated paired-end reads
(Fig. 1 & Additional file 1). This approach is database-
dependent; however no significant differences were
observed between sl1p’s 3 options for reference database
(removal of 0.36%, 0.4%, and 0.39% of reads for Green-
genes 2011, 2013, and Silva Release 111, respectively on
the HMP-mock data).
Following sl1p’s quality control workflow, an average of

55.2% of the raw input HMP-mock reads remain. This per-
centage is higher to that found with the URTCul dataset
(mean of 30.4%); a greater number of unassembled paired-
end reads (57.9% of raw input removed during PANDAseq
alignment) were observed with the URTCul v34 sequenc-
ing, possibly due to the shorter overlap in the target
sequence (Additional file 6).

OTU clustering algorithms produce varying numbers of
OTUs compared to known input communities
Clustering of input reads into Operational Taxonomic
Units (OTUs) has been the most well-studied effect on
processed reads [11, 22, 45–48]. OTUs are typically clus-
tered based on a 97% threshold based upon imperial
studies identifying this as the differentiating threshold of
species [49]; however when sequencing is restricted to
small regions within the gene, this threshold may pro-
vide differentiation between the genus and species level,
depending on the organism in question [24].
sl1p provides 8 OTU clustering approaches from

which the user can choose from upon initialization of
the pipeline. As expected, de novo clustering methods

produce observed OTU numbers independent of the ref-
erence database, whereas some variability in observed
OTUs is seen with reference-based approaches (Fig. 4).
Most of these options over-estimate the number of OTUs
within the HMP-mock and URTCul datasets when com-
pared to the known taxonomic composition (Fig. 4).
This is perhaps the most evident in the HMP-mock
dataset where some algorithms, such as DNACLUST,
over-estimated sample diversity by almost 40x (Fig. 4a,
Additional files 7 and 8). When Swarm [50], USEARCH
v6.1.5.44, and Mothur’s average neighbour (v1.25.0) algo-
rithm were compared using sl1p-generated quality fil-
tered reads, sample diversity was also over-estimated,
though the removal of singletons greatly reduced the
number of spurious OTUs (Additional file 9). When
OTUs with a successively small number of defined
reads where culled, the number of observed OTUs
quickly converged to the expected community diver-
sity (Additional file 10), suggesting that these spurious
OTUs are often due to low abundance reads. Other algo-
rithms, such as UPARSE, under-estimated OTU abun-
dance (Fig. 4, Additional files 7-8 and 10). Of those
tested, the approaches which most closely estimated
within sample OTU diversity in the HMP-mock samples
were AbundantOTU+, UCLUST open reference picking,
and UPARSE.
Within the URTCul-single dataset, in which each sam-

ple consisted of DNA from a single bacterial colony, many
OTU picking algorithms over-estimated sample diver-
sity in multiple samples (Fig. 4b). UPARSE, with its own
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a

b c

Fig. 4 OTU clustering methods perform variably. a Eight methods were used on control communities of known composition to report OTU counts
compared to known sample diversity (black dotted lines = number of genus; grey dotted line = number of species). Non-bacterial sequences were
removed as part of sequence processing. Similar results were obtained when singletons were also removed (Additional file 5). b A group of 190
single isolates were independently sequenced in order to test varying OTU clustering algorithm’s ability to correctly identify 1 OTU within the input
sample. cWhen these individual isolates were combined, the number of OTUs generated often lies between the known number of unique genera
and species within the samples

approach to sequence quality control (Additional file 1),
often underestimated sample diversity. However, many
approaches, including AbundantOTU+, CD-HIT, DNA-
CLUST, and UCLUST often identified the sole OTU
within the sample (Fig. 4b). When these individually
sequenced isolates were combined, most OTU pick-
ing approaches estimated sample diversity between the
known number of genera and species present within

the samples (Fig. 4c). Notably, UPARSE under-estimated
diversity, generating 9 and 5 OTUs in the URTCul-
combined and -unique samples, which consisted of 33
species from 8 genera. As next-generation sequencing
approaches become more accessible to this field, the fea-
sibility of implementing these methods on a common lab-
oratory desktop is increasingly more practical and should
be considered (Table 1).
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Table 1 CPU time for OTU clustering approaches implemented
in sl1p

OTU picking approach CPU time (in mins)

AbundantOTU+ 3.38

BLAST 127.17

CD-HIT 13.32

DNACLUST 0.08

UCLUST 0.21

UCLUST-ref 0.69

UCLUST-ref-strict 0.82

UPARSE 0.28

All calculations were computed on a standard Desktop running Ubuntu 14.04

Choice of data processing algorithms affect taxonomic
assignment
However, as has been previously addressed [47], what
is more important than simply the number of OTUs
produced is how the taxonomic assignment and corre-
sponding relative abundance of each taxa compares to
the known sample composition. To measure this, we
compared the known composition of the mock datasets
to the OTU composition generated via sl1p’s options
for OTU clustering, taxon assignment, and reference
database (Fig. 5). The processing options which showed
the most similarity to a given mock community was
highly sample-dependent; for example, a combination
of UPARSE, BLAST, and reference database Greengenes
2011 showed the most similarity to the HMP-mock1
sample whereas AbundantOTU+ and the RDP Classifier
replaced UPARSE and BLAST as the most accurate OTU

b

a

c

Fig. 5 Taxonomic assignment is dependent on up-stream choices in 16S rRNA gene processing. sl1p implements 2 methods of taxon assignment
across 3 reference databases. By running all methods, we compared taxon assignment against expected control samples. a The negated Bray-Curtis
dissimilarity was used to identify which taxonomically assigned OTU sets most closely matched the known composition of the mock HMP
communities (a) and the combined URTCul isolates (c). b In a set of 190 single isolate samples, the number of samples whose most abundant OTU
correctly matched full-length 16S rRNA Sanger sequencing results is displayed
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picking algorithm and taxonomic assignment method in
HMP-mock2 and URTCul-combined (Fig. 5a, c). Further,
the combination which produced the most similar out-
put to the known composition of HMP-mock1 (UPARSE,
BLAST, and Greengenes 2011) produced one of the least
similar outputs in URTCul-combined (Fig. 5a, c). In the
URTCul-singles dataset, the most abundant OTU’s taxo-
nomic assignment was compared with the results of taxo-
nomic assignment based on full-length Sanger sequencing
of the 16S rRNA gene. In this dataset, the RDP Classi-
fier produced the highest number of correctly assigned
taxa accompanied with either Greengenes 2011 or the
Silva database (Fig. 5b). These results indicate the impact
of sample composition as well as choice of OTU pick-
ing approach, taxon assignment method, and reference
database on the underlying biological implications of
these data.
To further quantify these differences, comparisons can

be made between the known taxa and relative abun-
dance compared to each set of OTU picking, taxonomic
assignment, and reference database options (Additional
files 11 and 12). At this level of resolution, indepen-
dent of the number of OTUs assigned to each genera,
we can see that the proportions of each genera output
from sl1p reflect the expected proportions in each of
the HMP-mock samples. However, in some sets of pro-
cessing options, some mistakes are made in taxonomic
assignment. The combination of the RDP Classifier and
Greengenes 2013 database, for example, incorrectly iden-
tifies genus Flexispira in place of the Heliobacter genus
in HMP-mock1 (Additional file 11). In other cases, the
correct assignment is made, though more conservatively
left at the family, order, or class level (Additional files 11
and 12); for example, Greengenes 2013 using BLAST as
the taxon assignment algorithm assigns someOTUs to the
class Bacilli, failing to differentiate between the Bacillus,
Listeria, Staphylococcus, Enterococcus, and Streptococcus
species present in HMP-mock1. Overall, across all meth-
ods and the HMP-mock samples, BLAST in combination
with Greengenes 2011 was the only combination to pro-
vide no errors in taxonomic assignment at the genus level.
This accuracy comes with a small increase in computing
time compared with the RDP Classifier (data not shown).

Choice of processing methods affect biologically relevant
results of 16S rRNA gene sequencing
Like all bioinformatic pipelines and processing workflows,
what is most important in the output is the reflection
of the true underlying biology in the results. While 16S
rRNA sequencing data can be analyzed in a number of
ways in order to answer many unique research questions,
calculations of α and β diversity are often fundamental to
analyses. α diversity, or within sample diversity, is a cal-
culation performed on each sample within a dataset. This

metric can be calculated using different indices depend-
ing on the question at hand. Popular approaches include
Shannon and Simpson diversity as these indices incorpo-
rate both evenness and richness of the community into
their calculations [51, 52]. Other metrics, such as Chao1,
are estimates of species richness [53]. Using output of
the sl1p processing pipeline, we calculated the Shannon,
Chao1, and Simpson diversity metrics on the HMP-mock
data (Fig. 6a & Additional file 13). Here, only the OTU
clustering algorithm contributes to the estimated rich-
ness and evenness of OTU composition, except in the
case of reference-based algorithms which are database-
dependent (Additional file 1). We observe that the output
of α diversity metrics is dependent on the processing
methods employed. The range of calculated Shannon
diversity scores within the same sample processed using
different commonly-used approaches is greater than 1.0
(range 1.54-2.84) (Fig. 6a). Similarly, Chao1 estimates
species richness anywhere from 20 to 2,451 depending on
data processing options employed; Simpson diversity, in
contrast, has much less observed variability betweenOTU
clustering methods and reference database choice. Inter-
estingly, these metrics are also affected by changes in read
depth as seen in the variation between sequencing repli-
cates (Additional file 13a); rarefaction of reads somewhat
reduces this variation depending on the metric employed
(Additional file 13b).

β , or between-sample, diversity is often used as a mea-
sure of difference between sample states (e.g. health and
disease). Similar to α diversity, there are a variety of dis-
tance metrics one can utilize depending on the question
at hand. A popular set of these metrics use the phylo-
genetic distances between OTUs as a contributor to the
distance score. Using sl1p, we discovered that the output
of these metrics are dependent on how the accompany-
ing phylogenetic tree is generated Fig. 6b-c). Comparisons
using Procrustes analysis show substantial differences in
the PCoA plots generated using the weighted UniFrac
methodwith different phylogenetic inputs (Fig. 6b-c). One
approach recommended in the QIIME workflow, is the
use of PyNAST [54] and FastTree [55] to create a multiple
sequence alignment and phylogeny of the representative
sequence from each OTU in the community (Fig. 6d,
default phylogeny). However, because this phylogeny is
reliant on the sequence diversity within the sequenced
variable region, which is often ≤100–300 bp in length,
it often does not reflect the true bacterial phylogeny but
instead creates paraphyletic phyla (Fig. 6d). Because of
this, sl1p generates an alternate phylogeny which rep-
resents the Greengenes reference 16S rRNA gene phy-
logeny trimmed to those OTUs present within the given
dataset. Beginning with a curated phylogeny ensures that
the phylogenetic relationships between organisms within
a given sample set are preserved. Using these phylogenies
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a b

c

d

Fig. 6 Analyses of biologically-meaningful outputs are dependent on 16S rRNA sequence processing. a α diversity metrics vary greatly between
OTU picking approaches, and are dependent on the choice of reference database in the case of reference-based OTU clustering methods. Black
dotted lines indicate the expected values of these metrics based on known community composition. b-c Phylogeny-dependent β diversity metrics,
including Weighted UniFrac (b) and Unweighted UniFrac (c), differ depending on the method of phylogeny-generation. A comparison of the
distribution of samples via a Procrustes analysis indicates the impact that the phylogenetic tree makes on these data. d sl1p generates 2
phylogenies. The default phylogeny represents the phylogeny generated as part of the default QIIME workflow. The pruned phylogeny is generated
by sl1p by pruning the Greengenes reference phylogeny to those branches which are present within the sample set

to generate the Weighted and Unweighted UniFrac met-
rics, summarized here as Principal Coordinate Analyses
(PCoAs), results in differences in the calculated distance
between the samples within this community (Fig. 6b-c);
Procrustes analysis was used to visualize the differences
between these phylogenetic inputs. These results indi-
cate that processing options greatly affect the output and
potential interpretation of 16S rRNA gene sequencing
results.

Discussion
sl1p is an automated, reproducible 16S rRNA gene
sequencing processing pipeline that makes 16S rRNA data
processing accessible to those without formal bioinfor-
matic training. sl1p is not restricted by variable region
or choice of PCR primer set. In this study, we outline
the workflow of this tool, which can be broken down

into 3 main steps: FASTQ quality control, OTU cluster-
ing, and taxonomic assignment (Fig. 1). We show how
sl1p can aid in the comparison of multiple options and
the effects they have on downstream analyses. The qual-
ity control workflow within sl1p was determined based on
the parameters necessary to obtain high quality base pair
assembly along the length of each paired-end sequence
(Fig. 3). In order to compare the effect of various OTU
picking approaches and taxonomic assignment methods,
mock communities were employed. Comparisons of OTU
clustering algorithms displayed a wide range of predicted
OTUs, generally over-estimating diversity. This, as well
as the under-estimations made by UPARSE (Fig. 4), have
been previously shown [11, 20, 23]. Further, the choice of
taxonomic assignment algorithm and reference database
greatly influenced the predicted taxonomic composition
of the communities (Fig. 5).
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Most importantly, the use of sl1p to compare data pro-
cessing outputs (OTU tables, taxonomic summaries, and
phylogenies) recognizes the effect processing options have
on biological analyses (Fig. 6). Popular α diversity met-
rics such as Shannon diversity are greatly affected by OTU
clustering options and sequencing depth (Fig. 6a). These
results have implications on the interpretation of micro-
biome studies across manuscripts and research groups
which may process their data using different methods.
Further, the differences between sequencing runs have
implications for studies which are split across multiple
sequencing runs due to size of the sample set. Importantly,
the rarefaction of these data did not fully mitigate these
effects (Additional file 13b). Further, the alternative phylo-
genetic representation of the OTU data generated by sl1p
better describes the bacterial tree of life, allowing for more
accurate β diversity distances to be calculated between
samples, furthering our knowledge of differences between
varying microbial communities.
The default parameters of sl1p were carefully chosen

based on the analyses presented within this study. Of
course, all algorithms and tools tested have their own
merits and niches within this widely growing field; this
is reflected in the fact that no set of tools out per-
formed others in all circumstances (Figs. 4, 5 and 6).
We chose AbundantOTU+ as the default OTU picking
approach. AbundantOTU+ most closely predicted the
correct number of OTUs within HMP-mock1, HMP-
mock2, URTCul-combined, and URTCul-unique, without
under-estimating diversity. AbundantOTU+ was also the
tool able to correctly predict the highest number of sin-
gle isolate samples in the URTCul-singles dataset. This
method also performed well in tests of correctly identified
taxa, including the Bray-Curtis dissimilarity comparisons.
For choice of taxon assignment algorithm, we chose the
RDP Classifier as sl1p’s default. This tool consistently cal-
culated the most number of accurate URTCul-singles iso-
lates, and out-performed or tied BLAST performance on
Bray-Curtis dissimilarity comparisons in all cases except
for HMP-mock1. These results mirror previous com-
parisons of taxonomic assignment as completed by Liu
et al. [56]. Lastly, Greengenes 2011 is sl1p’s default ref-
erence database based on its superior performance in
the Bray-Curtis distance comparisons of the HMP-mock
communities and as one of the best choices for genus-level
taxon identification for the URTCul data. Even though
the Greengenes 2013 reference database represents an
update to the 2011 version, it often incorrectly predicted
taxonomic assignments to the species level which were
incorrect compared to the known composition of the
mock communities.
It is important to note that these default parameters

are based on mock communities of human-associated
microbes and may not represent the best combination

of tools in the study of other microbiota. The authors
hope that by providing a pipeline in which multiple OTU
picking, taxonomic assignment, and reference database
options are easily accessible, that the user can choose to
easily deviate from these defaults as they see fit. Further,
as the field of microbiome research continues to grow
new approaches to data processing can be implemented
in sl1p and benchmarked against established approaches.
Having a non-biased method for tool comparison will be
important for the maturation of this field.

Conclusions
In conclusion, we present a 16S rRNA gene sequence pro-
cessing workflow with the aim of generating the most
biologically meaningful outputs for the furthering of
16S rRNA gene sequencing techniques and microbiome
research in general.
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