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Background: Advances in next-generation sequencing technologies have allowed for detailed, molecular-based
studies of microbial communities such as the human gut, soil, and ocean waters. Sequencing of the 165 rRNA gene,
specific to prokaryotes, using universal PCR primers has become a common approach to studying the composition of
these microbiota. However, the bioinformatic processing of the resulting millions of DNA sequences can be
challenging, and a standardized protocol would aid in reproducible analyses.

Methods: The short-read library 16S rRNA gene sequencing pipeline (sl1p, pronounced “slip”) was designed with the
purpose of mitigating this lack of reproducibility by combining pre-existing tools into a computational pipeline. This
pipeline automates the processing of raw 16S rRNA gene sequencing data to create human-readable tables, graphs,
and figures to make the collected data more readily accessible.

Results: Data generated from mock communities were compared using eight OTU clustering algorithms, two taxon
assignment approaches, and three 165 rRNA gene reference databases. While all of these algorithms and options are
available to sl1p users, through testing with human-associated mock communities, AbundantOTU+, the RDP
Classifier, and the Greengenes 2011 reference database were chosen as sl1p’s defaults based on their ability to best

Conclusions: sl1p promotes reproducible research by providing a comprehensive log file, and reduces the
computational knowledge needed by the user to process next-generation sequencing data. sl1p is freely available at
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Background

The recent surge of next-generation sequencing technolo-
gies have allowed the scientific community to use marker
genes, most popular of which being the 16S rRNA gene,
to more thoroughly understand mixed bacterial com-
munities (i.e., microbiomes). However, the adoption of
any new technology requires standards and quality con-
trol. Alongside a plethora of 16S rRNA gene amplicon
studies, quality control efforts have addressed the stan-
dardization of experimental and bioinformatic methods.
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For example, laboratory standards have been proposed
for the preparation and storage of biological samples
[1-3] as well as procedures for the isolation and sequenc-
ing of DNA which mitigate environmental contamina-
tion [4, 5]. Sequencing controls have greatly reduced
variability between laboratories and datasets [5]. Simi-
larly, efforts have been made to standardize the bioin-
formatic processing of amplicon sequencing results
[6, 7]. Next-generation sequencing technologies are sub-
ject to varying levels of sequencing error; traditionally,
processing of amplicon sequencing data has involved
filtering based on input sequence quality, followed by
clustering of sequences into operational taxonomic units
(OTUs) which are given a taxonomic label based on
their similarity to a known database (for e.g. [8—10]).
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Choice of algorithms for quality filtering, OTU clus-
tering, and taxonomic assignment have been shown to
affect the downstream analysis of biologically meaningful
results [11].

OTU clustering, typically computed at 97% sequence
similarity, can be divided by approach. Reference-based
(or phylotyping) approaches, such as BLAST [12] and
UCLUST-reference [13], compare input sequences to a
reference database. In contrast, de novo-based approaches
are independent of a reference set. De novo approaches
include hierarchical clustering methods such as Mothur’s
average linkage algorithm [7], and ESPIRIT [14], as well as
greedy algorithms such as CD-HIT [15, 16], DNACLUST
[17], UPARSE [18], and AbundantOTU+ [19]. Similarly,
choice of taxonomic assignment algorithm and reference
database also vary across 16S rRNA amplicon studies.

Recent benchmark studies have helped identify some of
the most accurate methods in each of these categories.
For example, Kopylova et al. identified a series of cluster-
ing methods, including UPARSE and USEARCH, which
outperformed the widely used UCLUST algorithm [11].
Schloss and colleagues have also presented numerous
comparisons of OTU clustering algorithms to find that
de novo methods out perform reference-based methods
[20, 21] and, more specifically, that the average neigh-
bour algorithm often outperforms all others [20, 22, 23].
Some comparisons of taxonomic methods have also been
performed (for e.g., [24]).

Without a comprehensive workflow, such a surplus of
available methods for 16S rRNA gene data processing
makes it difficult to identify the most accurate approaches.
Further, because each step has been developed indepen-
dently, processing often involves file and command line
manipulations between steps; conducting these manip-
ulations in high-throughput is often inaccessible to a
traditionally trained microbiologist, and makes it diffi-
cult to reproduce or extend data analyses. Widely used
and important tools, such as QIIME [6] and Mothur
[7], have aided in these issues; however, their step-by-
step approach and various parameters represent a sig-
nificant barrier to effective amplicon data processing
and do not fully mitigate issues of reproducibility. To
combat this need for ease-of-use, reproducible data pro-
cessing, and want of a non-biased assessment of pro-
cessing options, we developed the short-read library
16S rRNA gene sequencing pipeline (sl1p, pronounced
“slip”), a 16S rRNA data processing software. sllp takes
[llumina-generated FASTQ files as input and automates
all data processing to generate a reproducible OTU table
with taxonomic assignments. This pipeline is compati-
ble with any primer set or amplicon gene, and currently
offers access to eight OTU clustering algorithms, two
taxonomic assignment options, three 16S rRNA gene
reference databases, and two phylogenetic outputs. As
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presented here, the default processing steps and software
used in sllp have been determined to be the most accu-
rate available approaches based on their assessment with
synthetic communities generated as part of the Human
Microbiome Project (HMP) [25], and a set of 190 indi-
vidually picked isolates. All steps in data processing are
recorded by sllp in a log file for future reference and
reproducibility.

sl1p is a tool designed to be accessible to the microbi-
ologist without detailed bioinformatic training; as such,
it is fully automated, needing one line input from the
user upon startup. Further, the output of sllp includes
an R markdown file with the appropriate code to visual-
ize read counts per sample, taxonomic assignments, a-,
and B-diversity from which the user can begin their own
analyses. sllp is freely available at https://bitbucket.org/
fwhelan/sl1p.

Methods

The sl1p pipeline

sl1p is a data processing pipeline developed for the auto-
mated, reproducible, and accurate processing of paired-
end amplicon FASTQ data (Fig. 1 and Additional file 1).
Input to sll1p includes (a) FASTQ reads in Illumina’s stan-
dard FASTQ format, and (b) a ‘file of filenames’ file listing
all FASTQ files and their file path. Optionally, the user
can also include a sequencing information file if they
wish to use primer sets outside of the built in defaults
(v3, [26]; v34, [27]; v4 [27-30]). Each step in sllp’s data
processing approach is recorded in a log file, for future
reproducibility; further, the standard error output of each
step is recorded to an error file to aid in any necessary
de-bugging.

During initialization, the user can use command
line flags to deviate from sllp’s default functionality
(Additional file 1). By default, quality filtering consists of
cutadapt [31] to trim the PCR primers from the FASTQ
input, PANDAseq (version 2.9) [32] to align paired-end
reads, sickle (https://github.com/najoshi/sickle; version
1.33) to quality trim the resulting pairs, and USEARCH
[13], as implemented in QIIME (v1.9.1) [6], to identify
and remove chimeric sequences. Users have the choice
of eight OTU clustering approaches: five greedy algo-
rithms including AbundantOTU+ 0.93b (default; [19]),
CD-HIT 3.1.1 [15, 16], DNACLUST (release 3) [17],
UCLUST v1.2.22q [13], and UPARSE (USEARCH ver-
sion 8.0.1623) [18], and two reference-based approaches,
BLAST 2.2.22 [12] and UCLUST [13], which can either
be strictly closed (UCLUST-ref-strict) or conduct closed
clustering followed by de novo on any leftover sequence
not matching the reference database (UCLUST-ref). Tax-
onomic assignment (and OTU clustering, where appro-
priate) can be assigned using two methods, BLAST or the
RDP Classifier 2.2 (default; [33]), against three reference
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Fig. 1 Schematic of the sl1p pipeline. The user input consists of FASTQ files and processing parameters. Upon input, the user can choose to deviate

from the default parameters to choose from various options for OTU picking algorithms, taxonomic assignment, and reference database. Every step
that sl1p utilizes is recorded in log and error files for the purposes of debugging, reference, and reproducibility. For more detail, see Additional file 1

databases: Greengenes Feb. 2011 (default), Greengenes
Aug. 2013 [34], and Silva Release 111 [35]. Finally, OTU
tables, phylogenies, and preliminary analyses are con-
ducted using QIIME and R (v3.3.1). Importantly, as part
of sl1p’s commandline options, the user can choose to run
all possible combinations of OTU clustering algorithms,
taxonomic assignment methods, and choice of reference
databases automatically with one command, making com-
parisons of available methods reproducible and easy to
approach.

The sl1p pipeline is open source and publicly available at
https://bitbucket.org/fwhelan/sllp. The pipeline is writ-
ten in Perl and consists of one main script which calls on
auxiliary scripts to aid in reformatting data between steps
as necessary. Accompanying setup and install scripts are
provided to download and install sl1p.

Generation of test datasets

The Human Microbiome Project Mock Communities
(HMP-mock)

Genomic DNA of two unique representations of a 20
member mock community generated as part of the
Human Microbiome Project [25] were obtained from
BEI Resources (Catalog Nos. HM-782D and HM-783D;
ATCC, Manassas, VA). The first sample (HMP-mockl) is
an even distribution of the 20 bacterial organisms from
17 genera, whereas the second (HMP-mock2) is a stag-
gered distribution of the same organisms [25]. For each
sample, 3 PCR replicates were generated by using 1ul
of genomic DNA PCR amplified using 1 pl of dNTPs,
0.25 ul of Taq polymerase (Life Technologies, Carls-
bad, CA) and 5 ul of PCR primers designed for the
v3 region of 16S rRNA gene [26]. These amplification
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products were then split across two runs of the Illumina
sequencer to generate sequencing replicates. Base call-
ing was performed using CASAVA (v1.8.2). Sequencing
depth ranged from 5917 to 113,084 reads with an aver-
age of 57,257. A negative PCR control was generated in
parallel.

Single and Combined Isolate Controls (URTCul)

One hundred ninety single colonies were picked from
a collection of upper respiratory tract culture isolates
(URTCul) and restreaked until pure on appropriate solid
agar plates as described in [36]. Once pure, isolates
were picked directly into 5% Chelex, boiled, and cen-
trifuged at 13,000 rpm for 5 min. 5 ul of the super-
natant was used as template for a 50ul PCR reaction
of the variable regions 8F-926R [37, 38] of the 16S
rRNA gene and sequenced using Sanger sequencing
(amplicon length = 918 bps). The resulting Sanger
sequences for each isolate were taxonomically assigned
using independent blastn searches against NCBI’s Ref-
Seq database. Taxonomic assignments were made to the
species level; in the case of multiple species matching
with percent identity within < 1% of each other, multiple
species names were included in the taxonomic assignment
are presented (e.g. g_ Streptococcus;s__infantis_mitis).
This dataset contained 8 unique genera and 33 unique
species.

For Illumina sequencing, PCR amplification of the v34
region (341F-806R, [27]) was performed and sequenc-
ing was conducted on an Illumina MiSeq sequencer to
produce paired-end, 250 bp reads; each isolate was PCR
amplified with its own unique barcoded primer (Fig. 2,
URTCul-singles). Because each isolate was uniquely bar-
coded, resulting reads per sample were expected to have
originated from an individual colony. Occassionally, iso-
lates were contaminated with a second, co-occurring
organism, resulting in reads from > 1 organism. In these
cases, specifically when a sample contained > 15% of reads
from 2 taxonomically divergent organisms, the sample
was culled; this process resulted in the culling of 9 sam-
ples. The average number of sequenced reads per isolates
was 12 (range 1-81); because each sample contained only
one organism, each sample was designated to 0.01% of an
[llumina MiSeq sequencing run.

After amplification and Illumina sequencing of each
isolate individually, the raw FASTQ reads were com-
bined in silico to create one sample (Fig. 2, URTCul-
combined). Further, the taxonomic assignments of the
Sanger sequencing results were consulted to create a sec-
ond in silico sample in which only uniquely identified taxa
were combined (Fig. 2, URTCul-uniques). The artificial
sequencing depths of these 2 samples were 2148 and 423,
respectively. These data are publicly available (BioProject
ID PRJNA 381557).
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Publicly available dataset

Additionally, a publicly available dataset of human fecal
microbiota samples (Bioproject Submission SUB2392090;
[39]) was used in testing the phylogenetic outputs of sl1p
displayed in Fig. 6.

Data processing comparisons

All output data processing comparisons were based on
OTU tables, map files, and phylogenies generated by sl1p
v4.1 using the -p all -d all and -t all flags. All anal-
yses were computed in R using phyloseq [40], ggplot2
[41], and reshape2 [42] with the following exceptions.
FastQC [43] was used to calculate FASTQ quality scores
used in Fig. 3. Graphlan [44] was used to visualize phy-
logenies as presented in Fig. 6. All data processing was
computed on a standard personal desktop computer run-
ning Ubuntu 14.04. The R and Perl code necessary to
reproduce these data comparisons are available as an R
markdown (Additional file 2) and accompanying HTML
output (Additional file 3).

Results

The short-read library 16S rRNA gene sequencing
pipeline (sl1p) was developed as an automated and repro-
ducible 16S rRNA gene sequencing processing tool. The
output of this tool consists of an R markdown file and
accompanying HTML output showing preliminary analy-
ses of the data (e.g. Additional file 4). In order to deter-
mine the most accurate default settings of this tool, we
systematically tested various methods within the sllp
workflow using 2 approaches (i.) 2 mock community sam-
ples from the HMP (HMP-mock), and (ii.) 190 single
bacterial isolates (URTCul-singles) and their combination
as a totality of the 190 sequencing results (URTCul-
combined) or the combination of unique taxa from this
pool (URTCul-uniques).

sl1p removes low quality reads effectively
One of the consequences of using next-generation
sequencing technologies in high-throughput is the
propensity for sequencing error. For instance, Illumina
technology is known to have an increased error rate
towards the 3’ end of the read, and that the reverse read
is generally of poorer quality then the forward. Mitigating
this error prior to OTU generation and taxonomic assign-
ment is essential in order to refrain from the generation of
spurious OTUs.

sllp utilizes a multi-step approach to quality control.
Immediately following removal of sequencing primers
with cutadapt, forward and reverse reads are assembled
using PANDAseq. While many options are available for
the merging of paired-end reads, PANDAseq includes
both quality filtering and read assembly. Across our PCR
and sequencing replicates of HMP-mock, approximately
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Fig. 2 Schematic of URTCul mock community generation. Isolates were individually picked from solid agar plates and amplified using Sanger and
lllumina sequencing approaches. Following lllumina sequencing, the resulting reads from each individually sequenced isolate were analyzed
individually (URTCul-singles), in combination (URTCul-combined), or as a combination of each uniquely identified taxa (URTCul-uniques)

12.5% of raw input reads were culled at this step (Fig. 3a);  quality filtering that results in clean, high-quality paired-
the majority of culled reads were due to mis-alignment end reads (Fig. 3b); when we compare this strict threshold
of forward and reverse reads. Following, cutadapt was  with lower quality cutoffs, we begin to see a decline in the
used to remove any reads containing Illumina annealing final paired-end read quality as the cutoff drops below 30
or sequencing primers. While this step removed only 2.7%  (Additional file 5).

of the HMP-mock input (Fig. 3a), we have found it to be an The last step in sllp’s quality control workflow is
important way of removing erroneous sequencing results,  chimera checking. Because 16S rRNA gene amplicon data
and a measure of an infrequent poor Illumina sequenc- is generated via PCR amplification, chimeric sequences
ing run. Next, sickle was used to trim quality sequence can be an issue, especially if the PCR amplification
(and to remove any reads < 100 bp post-trimming). Itisat  reaction traverses a highly conserved region as is the
this stage where the most quality-filtering is done, withan  case for multi-variable region amplicons. As such, sllp
average 29.6% read loss (Fig. 3a). However, it is this strict  uses QIIME’s implementation of USEARCH to conduct
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chimera checking on the generated paired-end reads
(Fig. 1 & Additional file 1). This approach is database-
dependent; however no significant differences were
observed between sllp’s 3 options for reference database
(removal of 0.36%, 0.4%, and 0.39% of reads for Green-
genes 2011, 2013, and Silva Release 111, respectively on
the HMP-mock data).

Following sl1p’s quality control workflow, an average of
55.2% of the raw input HMP-mock reads remain. This per-
centage is higher to that found with the URTCul dataset
(mean of 30.4%); a greater number of unassembled paired-
end reads (57.9% of raw input removed during PANDAseq
alignment) were observed with the URTCul v34 sequenc-
ing, possibly due to the shorter overlap in the target
sequence (Additional file 6).

OTU clustering algorithms produce varying numbers of
OTUs compared to known input communities
Clustering of input reads into Operational Taxonomic
Units (OTUs) has been the most well-studied effect on
processed reads [11, 22, 45—48]. OTUs are typically clus-
tered based on a 97% threshold based upon imperial
studies identifying this as the differentiating threshold of
species [49]; however when sequencing is restricted to
small regions within the gene, this threshold may pro-
vide differentiation between the genus and species level,
depending on the organism in question [24].

sllp provides 8 OTU clustering approaches from
which the user can choose from upon initialization of
the pipeline. As expected, de novo clustering methods

produce observed OTU numbers independent of the ref-
erence database, whereas some variability in observed
OTUs is seen with reference-based approaches (Fig. 4).
Most of these options over-estimate the number of OTUs
within the HMP-mock and URTCul datasets when com-
pared to the known taxonomic composition (Fig. 4).
This is perhaps the most evident in the HMP-mock
dataset where some algorithms, such as DNACLUST,
over-estimated sample diversity by almost 40x (Fig. 4a,
Additional files 7 and 8). When Swarm [50], USEARCH
v6.1.5.44, and Mothur’s average neighbour (v1.25.0) algo-
rithm were compared using sllp-generated quality fil-
tered reads, sample diversity was also over-estimated,
though the removal of singletons greatly reduced the
number of spurious OTUs (Additional file 9). When
OTUs with a successively small number of defined
reads where culled, the number of observed OTUs
quickly converged to the expected community diver-
sity (Additional file 10), suggesting that these spurious
OTUs are often due to low abundance reads. Other algo-
rithms, such as UPARSE, under-estimated OTU abun-
dance (Fig. 4, Additional files 7-8 and 10). Of those
tested, the approaches which most closely estimated
within sample OTU diversity in the HMP-mock samples
were AbundantOTU+, UCLUST open reference picking,
and UPARSE.

Within the URTCul-single dataset, in which each sam-
ple consisted of DNA from a single bacterial colony, many
OTU picking algorithms over-estimated sample diver-
sity in multiple samples (Fig. 4b). UPARSE, with its own
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>1

approach to sequence quality control (Additional file 1),
often underestimated sample diversity. However, many
approaches, including AbundantOTU+, CD-HIT, DNA-
CLUST, and UCLUST often identified the sole OTU
within the sample (Fig. 4b). When these individually
sequenced isolates were combined, most OTU pick-
ing approaches estimated sample diversity between the
known number of genera and species present within

the samples (Fig. 4c). Notably, UPARSE under-estimated
diversity, generating 9 and 5 OTUs in the URTCul-
combined and -unique samples, which consisted of 33
species from 8 genera. As next-generation sequencing
approaches become more accessible to this field, the fea-
sibility of implementing these methods on a common lab-
oratory desktop is increasingly more practical and should
be considered (Table 1).
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Table 1 CPU time for OTU clustering approaches implemented

inslip

OTU picking approach

CPU time (in mins)

AbundantOTU+
BLAST

CD-HIT
DNACLUST
UCLUST
UCLUST-ref
UCLUST-ref-strict
UPARSE

338
12717
13.32
0.08
0.21
0.69
0.82
0.28

All calculations were computed on a standard Desktop r

unning Ubuntu 14.04
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Choice of data processing algorithms affect taxonomic
assignment

However, as has been previously addressed [47], what
is more important than simply the number of OTUs
produced is how the taxonomic assignment and corre-
sponding relative abundance of each taxa compares to
the known sample composition. To measure this, we
compared the known composition of the mock datasets
to the OTU composition generated via sllp’s options
for OTU clustering, taxon assignment, and reference
database (Fig. 5). The processing options which showed
the most similarity to a given mock community was
highly sample-dependent; for example, a combination
of UPARSE, BLAST, and reference database Greengenes
2011 showed the most similarity to the HMP-mockl
sample whereas AbundantOTU+ and the RDP Classifier
replaced UPARSE and BLAST as the most accurate OTU
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across 3 reference databases. By running all methods, we compared taxon assignment against expected control samples. a The negated Bray-Curtis
dissimilarity was used to identify which taxonomically assigned OTU sets most closely matched the known composition of the mock HMP
communities (a) and the combined URTCul isolates (€). b In a set of 190 single isolate samples, the number of samples whose most abundant OTU
correctly matched full-length 16S rRNA Sanger sequencing results is displayed
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picking algorithm and taxonomic assignment method in
HMP-mock2 and URTCul-combined (Fig. 5a, c). Further,
the combination which produced the most similar out-
put to the known composition of HMP-mockl (UPARSE,
BLAST, and Greengenes 2011) produced one of the least
similar outputs in URTCul-combined (Fig. 5a, c). In the
URTCul-singles dataset, the most abundant OTU’s taxo-
nomic assignment was compared with the results of taxo-
nomic assignment based on full-length Sanger sequencing
of the 16S rRNA gene. In this dataset, the RDP Classi-
fier produced the highest number of correctly assigned
taxa accompanied with either Greengenes 2011 or the
Silva database (Fig. 5b). These results indicate the impact
of sample composition as well as choice of OTU pick-
ing approach, taxon assignment method, and reference
database on the underlying biological implications of
these data.

To further quantify these differences, comparisons can
be made between the known taxa and relative abun-
dance compared to each set of OTU picking, taxonomic
assignment, and reference database options (Additional
files 11 and 12). At this level of resolution, indepen-
dent of the number of OTUs assigned to each genersa,
we can see that the proportions of each genera output
from sllp reflect the expected proportions in each of
the HMP-mock samples. However, in some sets of pro-
cessing options, some mistakes are made in taxonomic
assignment. The combination of the RDP Classifier and
Greengenes 2013 database, for example, incorrectly iden-
tifies genus Flexispira in place of the Heliobacter genus
in HMP-mockl (Additional file 11). In other cases, the
correct assignment is made, though more conservatively
left at the family, order, or class level (Additional files 11
and 12); for example, Greengenes 2013 using BLAST as
the taxon assignment algorithm assigns some OTUs to the
class Bacilli, failing to differentiate between the Bacillus,
Listeria, Staphylococcus, Enterococcus, and Streptococcus
species present in HMP-mockl. Overall, across all meth-
ods and the HMP-mock samples, BLAST in combination
with Greengenes 2011 was the only combination to pro-
vide no errors in taxonomic assignment at the genus level.
This accuracy comes with a small increase in computing
time compared with the RDP Classifier (data not shown).

Choice of processing methods affect biologically relevant
results of 16S rRNA gene sequencing

Like all bioinformatic pipelines and processing workflows,
what is most important in the output is the reflection
of the true underlying biology in the results. While 16S
rRNA sequencing data can be analyzed in a number of
ways in order to answer many unique research questions,
calculations of & and 8 diversity are often fundamental to
analyses. « diversity, or within sample diversity, is a cal-
culation performed on each sample within a