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Abstract

Background: Antibiotic-resistant pathogens are challenging treatment of infections worldwide. Urban sewage
is potentially a major conduit for dissemination of antibiotic resistance genes into various environmental
compartments. However, the diversity and abundance of such genes in wastewater are not well known.

Methods: Here, seasonal and geographical distributions of antibiotic resistance genes and their host bacterial
communities from Chinese urban sewage were characterized, using metagenomic analyses and 16S rRNA
gene-based Illumina sequencing, respectively.

Results: In total, 381 different resistance genes were detected, and these genes were extensively shared across China,
with no geographical clustering. Seasonal variation in abundance of resistance genes was observed, with average
concentrations of 3.27 × 1011 and 1.79 × 1012 copies/L in summer and winter, respectively. Bacterial communities did not
exhibit geographical clusters, but did show a significant distance-decay relationship (P < 0.01). The core, shared resistome
accounted for 57.7% of the total resistance genes, and was significantly associated with the core microbial community
(P < 0.01). The core human gut microbiota was also strongly associated with the shared resistome, demonstrating the
potential contribution of human gut microbiota to the dissemination of resistance elements via sewage disposal.

Conclusions: This study provides a baseline for investigating environmental dissemination of resistance elements
and raises the possibility of using the abundance of resistance genes in sewage as a tool for antibiotic stewardship.
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Background
Antibiotic resistance is one of the most serious global
threats to human health, challenging the treatment of
life-threatening infections [1]. The widespread use of
antibiotics in humans and animals is the main selective
driving force of the emergence and dissemination of
antibiotic resistance, and thus the cure is also the cause
[2, 3]. Antibiotic resistant pathogens now occur at high
frequencies in clinical contexts, and are increasingly
being found in environmental settings, such as water

bodies [4], soils [5], and animal feces [6]. In particular,
the frequent presence of multi-antibiotic resistant
“superbugs” in human feces predicts a return to the
pre-antibiotic era, where a growing number of infec-
tions can no longer be treated using the current arsenal
of drugs [7, 8].
Consequently, the World Health Organization has

endorsed a Global Action Plan on Antimicrobial Resist-
ance, which calls upon all nations to adopt mitigation
strategies within 2 years [9]. However, there is still
more to understand about the ecology and evolution of
antibiotic resistance. In particular, not enough is known
about the properties of the microbial resistome in eco-
systems dominated by humans, and how to monitor
such environments in order to evaluate their potential
for promoting the evolution of antibiotic resistance.
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Municipal wastewater treatment plants (WWTPs) re-
ceive and digest millions of tons of domestic sewage.
Adults harbor significant quantities of resistance genes
in their gut microbiome [10], and consequently
WWTPs, especially influents are likely to be a critical
hub for the evolution and spread of anthropogenically de-
rived resistance genes into natural environments [11, 12].
In China, more than 3700 municipal WWTPs have been
constructed to treat urban sewage, with a combined cap-
acity of 157 billion liters per day [13]. In each of these
facilities, sewage from tens to hundreds of thousands of
individuals creates an enormous biological reactor where
bacteria, and resistance genes are exposed to significant
concentrations of selective agents such as antimicrobial
agents, disinfectants and heavy metals [14]. The selective
pressures exerted by these agents, together with the
presence of dense bacterial populations facilitates selec-
tion of antibiotic resistance and the generation of
additional resistant bacteria via horizontal gene transfer
(HGT) [15]. This makes sewage a vast repository of
bacteria that carry and exchange resistance genes. In this
respect, resistance genes detected in sewage might
represent the resistance burden of their urban popula-
tions. Resistance profiles in sewage could then reflect
the structure and diversity of resistant bacteria in the
gastrointestinal tracts of urban residents within the
WWTP catchment. This may be especially true when
the WWTP mainly treats domestic wastewater without
significant contributions from agricultural and industrial
sources [16]. A nation-wide survey of resistance ele-
ments in sewage (untreated influent) could then provide
a rapid and efficient method for assessing the burden of
antibiotic resistance from urban populations.
Urban sewage compositions are subject to strong

temporal and environmental variation in conditions.
However, if and how the composition of microbial
community and antibiotic resistomes change with sea-
sons and regions in urban sewage have not been exten-
sively investigated. To address this need, 116 urban
sewage samples were collected from 32 WWTPs in 17
major Chinese cities during summer and winter. Sam-
pling sites were specifically chosen to reflect diverse
climatic conditions, economic development levels and
urban geography. By combining metagenomic analyses
and Illumina sequencing of 16S rRNA genes, the sea-
sonal and geographical variations of antibiotic resistome
and corresponding microbial community structure were
characterized.

Methods
Sample collection and DNA extraction
A total of 116 sewage samples were collected from 32
WWTPs influents in 17 major Chinese cities during
August 2014 (summer, n = 59) and February 2014

(winter, n = 57). All the untreated influent samples from
each WWTP were taken within two consecutive days
without recent rainfall to exclude the effect of the wea-
ther. Detailed information on these samples is summa-
rized in Table 1 and Additional file 1: Table S1. All
sewage samples from WWTPs were collected in 400-mL
sterilized containers and were mixed with 100% ethanol
at a volume ratio of 1:1 for biomass fixation. The fixed
samples were kept on ice and were immediately deliv-
ered to laboratory. The microbial cells from 400 mL of
fixed sample were pelleted by centrifuging at 9500 g for
20 min at 4 °C. All pellets were stored at −20 °C before
DNA extraction.
Genomic DNA was extracted from the collected pel-

lets using the FastDNA® Spin kit for Soil (MP Biomedi-
cals, France) following the manufacturer’s instructions.
Total DNA was eluted in 100 μL of sterile water and
kept at −20 °C until use. DNA concentrations and purity
were measured using a NanoDrop spectrophotometer
(ND-1000, Nanodrop, USA) [16].

DNA sequencing
The hypervariable V4-V5 region of the 16S rRNA gene
was amplified using the primer pair (515 F: 5′-GTG
CCAGCMGCCGCGG-3′ and 907R: 5′-CCGTCAA
TTCMTTTRAGTTT-3′ with sample-identifying six-
nucleotide barcodes) [17]. The 4 × 50 μL reaction sys-
tem was set up for each PCR amplification under the
following program: initial denaturation at 95 °C for
5 min, and 30 cycles at 95 °C for 30 s, 58 °C for 30 s,
and 72 °C for 30 s and a final extension at 72 °C for
10 min. The resulting amplicons were purified, quanti-
fied, pooled, and sequenced on an Illumina MiSeq
PE300 platform (Novogene, Beijing, China). For meta-
genome sequencing, approximately 3 μg of sewage
DNA was used for shotgun library construction with an
insert size of 300 bp, followed by Illumina paired-end
sequencing on the HiSeq 2500 platform (Novogene,
Beijing, China).

Phylotype analysis
All the raw reads were processed using QIIME [18] (1)
to sort and assign by exactly matching the unique bar-
code into each sample, (2) to remove primers and the
sequences with ambiguous bases, primer mismatches,
and homopolymers in excess of six bases, or error in
barcodes, and (3) to filter low-quality reads with >20
low-quality bases. Chimeric and noisy sequences were
also filtered out. After processing, sequences were clus-
tered into operational taxonomic units (OTUs) using
Uclust clustering, which groups sequences at a mini-
mum pair-wise identity of 97%. Mitochondrion or
chloroplast sequences and singleton OTUs were dis-
carded from the final OTU table. For each resulting
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Table 1 Information of WWTP sewage samples

Sample namea Name of city Name of city (abbr.) Name of WWTP Code of WWTP Administrative regions Treatment technology

S_BJ_QH_1 Beijing BJ Qinghe QH Beijing Anaerobic-Anoxic-Oxic (A2/O)

S_BJ_QH_2 Beijing BJ Qinghe QH Beijing Anaerobic-Anoxic-Oxic (A2/O)

S_BJ_XHM_1 Beijing BJ Xiaohongmen XHM Beijing Anaerobic-Anoxic-Oxic (A2/O)

S_BJ_XHM_2 Beijing BJ Xiaohongmen XHM Beijing Anaerobic-Anoxic-Oxic (A2/O)

S_CQ_JGS_1 Chongqing CQ Jiguanshi JGS Chongqing Anaerobic-Anoxic-Oxic (A2/O)

S_CQ_JGS_2 Chongqing CQ Jiguanshi JGS Chongqing Anaerobic-Anoxic-Oxic (A2/O)

S_CQ_TJT_1 Chongqing CQ Tangjiatuo TJT Chongqing Anaerobic-Anoxic-Oxic (A2/O)

S_CQ_TJT_2 Chongqing CQ Tangjiatuo TJT Chongqing Anaerobic-Anoxic-Oxic (A2/O)

S_GZ_KFQ_1 Guangzhou GZ Kaifaqu KFQ Guangdong Oxidation ditch

S_GZ_KFQ_2 Guangzhou GZ Kaifaqu KFQ Guangdong Oxidation ditch

S_GZ_LD_1 Guangzhou GZ Liede LD Guangdong Anaerobic-Anoxic-Oxic (A2/O)

S_GZ_LD_2 Guangzhou GZ Liede LD Guangdong Anaerobic-Anoxic-Oxic (A2/O)

S_HK_SHX_1 Hong Kong HK Shihuxu SHX Hong Kong Anaerobic-Anoxic-Oxic (A2/O)

S_HK_SHX_2 Hong Kong HK Shihuxu SHX Hong Kong Anaerobic-Anoxic-Oxic (A2/O)

S_HK_ST_1 Hong Kong HK Shatin ST Hong Kong Anaerobic-Anoxic-Oxic (A2/O)

S_HK_ST_2 Hong Kong HK Shatin ST Hong Kong Anaerobic-Anoxic-Oxic (A2/O)

S_HZ_LA_1 Hangzhou HZ Lin’an LA Zhejiang Oxidation ditch

S_HZ_LA_2 Hangzhou HZ Lin’an LA Zhejiang Oxidation ditch

S_HZ_QG_1 Hangzhou HZ Qige QG Zhejiang Anaerobic-Anoxic-Oxic (A2/O)

S_HZ_QG_2 Hangzhou HZ Qige QG Zhejiang Anaerobic-Anoxic-Oxic (A2/O)

S_LS_1#_1 Lasa LS 1# 1# Tibet Anaerobic-Anoxic-Oxic (A2/O)

S_LS_1#_2 Lasa LS 1# 1# Tibet Anaerobic-Anoxic-Oxic (A2/O)

S_LS_2#_1 Lasa LS 2# 2# Tibet Anaerobic-Anoxic-Oxic (A2/O)

S_LS_2#_2 Lasa LS 2# 2# Tibet Anaerobic-Anoxic-Oxic (A2/O)

S_LY_1 Longyan LY Longyan LY Fujian Anaerobic-Anoxic-Oxic (A2/O)

S_LY_2 Longyan LY Longyan LY Fujian Anaerobic-Anoxic-Oxic (A2/O)

S_LZ_AN_1 Lanzhou LZ An’ning AN Gansu Sequence Batch Reactor (SRB)

S_LZ_AN_2 Lanzhou LZ An’ning AN Gansu Sequence Batch Reactor (SRB)

S_NJ_DC_1 Nanjing NJ Dachang DC Jiangsu Anaerobic-Anoxic-Oxic (A2/O)

S_NJ_DC_2 Nanjing NJ Dachang DC Jiangsu Anaerobic-Anoxic-Oxic (A2/O)

S_NJ_JXZ_1 Nanjing NJ Jiangxinzhou JXZ Jiangsu Anaerobic-Anoxic-Oxic (A2/O)

S_NJ_JXZ_2 Nanjing NJ Jiangxinzhou JXZ Jiangsu Anaerobic-Anoxic-Oxic (A2/O)

S_SH_MH_1 Shanghai SH Minghang MH Shanghai Anaerobic-Anoxic-Oxic (A2/O)

S_SH_MH_2 Shanghai SH Minghang MH Shanghai Anaerobic-Anoxic-Oxic (A2/O)

S_SH_MHSZ_1 Shanghai SH Minghangshuizhi MHSZ Shanghai Anaerobic-Anoxic-Oxic (A2/O)

S_SH_MHSZ_2 Shanghai SH Minghangshuizhi MHSZ Shanghai Anaerobic-Anoxic-Oxic (A2/O)

S_SZ_GM_1 Shenzhen SZ Guangming GM Guangdong Anaerobic-Anoxic-Oxic (A2/O)

S_SZ_GM_2 Shenzhen SZ Guangming GM Guangdong Anaerobic-Anoxic-Oxic (A2/O)

S_SZ_LF_1 Shenzhen SZ Luofang LF Guangdong Oxidation ditch

S_SZ_LF_2 Shenzhen SZ Luofang LF Guangdong Oxidation ditch

S_TJ_XYL_1 Tianjin TJ Xianyanglu XYL Tianjin Anoxic/Oxic (A/O)

S_TJ_XYL_2 Tianjin TJ Xianyanglu XYL Tianjin Anoxic/Oxic (A/O)

S_TJ_ZGZ_1 Tianjin TJ Zhangguizhuang ZGZ Tianjin Anoxic/Oxic (A/O)

S_TJ_ZGZ_2 Tianjin TJ Zhangguizhuang ZGZ Tianjin Anoxic/Oxic (A/O)
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Table 1 Information of WWTP sewage samples (Continued)

S_WH_NTZ_1 Wuhan WH Nantaizi NTZ Hubei Carrousel oxidation ditch

S_WH_NTZ_2 Wuhan WH Nantaizi NTZ Hubei Carrousel oxidation ditch

S_WH_TXH_1 Wuhan WH Tangxunhu TXH Hubei DE oxidation ditch

S_WH_TXH_2 Wuhan WH Tangxunhu TXH Hubei DE oxidation ditch

S_WLMQ_HD_1 Wulumuqi WLMQ Hedong HD Sinkiang Sequence Batch Reactor (SRB)

S_WLMQ_HD_2 Wulumuqi WLMQ Hedong HD Sinkiang Sequence Batch Reactor (SRB)

S_WLMQ_HX_1 Wulumuqi WLMQ Hexi HX Sinkiang Sequence Batch Reactor (SRB)

S_WLMQ_HX_2 Wulumuqi WLMQ Hexi HX Sinkiang Sequence Batch Reactor (SRB)

S_XA_SW_1 Xi'an XA Sanwu SW Shan’xi Orbal oxidation ditch

S_XA_WW_1 Xi'an XA Wuwu WW Shan’xi Orbal oxidation ditch

S_XA_WW_2 Xi'an XA Wuwu WW Shan’xi Anaerobic-Anoxic-Oxic (A2/O)

S_XM_JM_1 Xiamen XM Jimei JM Fujian Orbal oxidation ditch

S_XM_JM_2 Xiamen XM Jimei JM Fujian Orbal oxidation ditch

S_XM_QP_1 Xiamen XM Qianpu QP Fujian Oxidation ditch

S_XM_QP_2 Xiamen XM Qianpu QP Fujian Oxidation ditch

W_BJ_QH_1 Beijing BJ Qinghe QH Beijing Anaerobic-Anoxic-Oxic (A2/O)

W_BJ_QH_2 Beijing BJ Qinghe QH Beijing Anaerobic-Anoxic-Oxic (A2/O)

W_BJ_XHM_1 Beijing BJ Xiaohongmen XHM Beijing Anaerobic-Anoxic-Oxic (A2/O)

W_BJ_XHM_2 Beijing BJ Xiaohongmen XHM Beijing Anaerobic-Anoxic-Oxic (A2/O)

W_CQ_JQS_1 Chongqing CQ Jiguanshi JGS Chongqing Anaerobic-Anoxic-Oxic (A2/O)

W_CQ_JQS_2 Chongqing CQ Jiguanshi JGS Chongqing Anaerobic-Anoxic-Oxic (A2/O)

W_CQ_TJT_1 Chongqing CQ Tangjiatuo TJT Chongqing Anaerobic-Anoxic-Oxic (A2/O)

W_CQ_TJT_2 Chongqing CQ Tangjiatuo TJT Chongqing Anaerobic-Anoxic-Oxic (A2/O)

W_GZ_LD_1 Guangzhou GZ Liede LD Guangdong Anaerobic-Anoxic-Oxic (A2/O)

W_GZ_LD_2 Guangzhou GZ Liede LD Guangdong Anaerobic-Anoxic-Oxic (A2/O)

W_HK_SHX_1 Hong Kong HK Shihuxu SHX Hong Kong Anaerobic-Anoxic-Oxic (A2/O)

W_HK_SHX_2 Hong Kong HK Shihuxu SHX Hong Kong Anaerobic-Anoxic-Oxic (A2/O)

W_HK_ST_1 Hong Kong HK Shatin ST Hong Kong Anaerobic-Anoxic-Oxic (A2/O)

W_HK_ST_2 Hong Kong HK Shatin ST Hong Kong Anaerobic-Anoxic-Oxic (A2/O)

W_HZ_LA_1 Hangzhou HZ Lin’an LA Zhejiang Oxidation ditch

W_HZ_LA_2 Hangzhou HZ Lin’an LA Zhejiang Oxidation ditch

W_HZ_QG_1 Hangzhou HZ Qige QG Zhejiang Anaerobic-Anoxic-Oxic (A2/O)

W_HZ_QG_2 Hangzhou HZ Qige QG Zhejiang Anaerobic-Anoxic-Oxic (A2/O)

W_LS_1#_1 Lasa LS 1# 1# Tibet Anaerobic-Anoxic-Oxic (A2/O)

W_LS_1#_2 Lasa LS 1# 1# Tibet Anaerobic-Anoxic-Oxic (A2/O)

W_LS_2#_1 Lasa LS 2# 2# Tibet Anaerobic-Anoxic-Oxic (A2/O)

W_LS_2#_2 Lasa LS 2# 2# Tibet Anaerobic-Anoxic-Oxic (A2/O)

W_LZ_AN_1 Lanzhou LZ An’ning AN Gansu Sequence Batch Reactor (SRB)

W_LZ_AN_2 Lanzhou LZ An’ning AN Gansu Sequence Batch Reactor (SRB)

W_NJ_DC_1 Nanjing NJ Dachang DC Jiangsu Anaerobic-Anoxic-Oxic (A2/O)

W_NJ_DC_2 Nanjing NJ Dachang DC Jiangsu Anaerobic-Anoxic-Oxic (A2/O)

W_NJ_JXZ_1 Nanjing NJ Jiangxinzhou JXZ Jiangsu Anaerobic-Anoxic-Oxic (A2/O)

W_NJ_JXZ_2 Nanjing NJ Jiangxinzhou JXZ Jiangsu Anaerobic-Anoxic-Oxic (A2/O)

W_NN_JN_1 Nanning NN Jiangnan JN Guangxi Anaerobic-Anoxic-Oxic (A2/O)

W_NN_JN_2 Nanning NN Jiangnan JN Guangxi Anaerobic-Anoxic-Oxic (A2/O)
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OTU, the most abundant read was selected as a repre-
sentative sequence. The taxonomic classification of each
representative sequence was conducted using a Ribosomal
Database Project (RDP) Classifier at an 80% confidence
threshold (Version 2.2) [19, 20]. Alignment of the OTU
representative sequences was conducted using a PyNAST
aligner [21], and a phylogenetic tree was built using a
FastTree algorithm [22] for downstream analysis.
Rarefaction was performed to discern Phylogenetic

Diversity, Chao1 diversity, Shannon index, and observed
species metrics at each sampling depth. To remove the
bias caused by different sequencing depth, the OTU
table was rarefied and an even sampling depth was set
by randomly subsampling the same number of se-
quences from each sample. Beta-diversity was esti-
mated by computing weighed/unweighed UniFrac and
Bray-Curtis distances between every pair of community
samples using QIIME.

Metagenomic analysis
Of the original 116 sewage samples, 24 samples were ex-
cluded from metagenomic sequencing due to the low
quantities of DNA or poor sequence data (Additional file 1:
Table S1). Thus, only 92 samples were further used for
metagenomics analysis. Metagenomic sequencing of sew-
age DNA samples generated 203 Gb pairs of high-quality
data with an average of 2.2 Gb for each sample. Data
filtration was conducted to remove raw reads with low-
quality following the methods used in a previous study
[23]. Subsequently, metagenomic sequences were analyzed
by BLASTx against the Structured Non-redundant Clean
Antibiotic Resistance Genes Database (SNC-ARDB) with
E value ≤1 × 10−5. A read was annotated to be a resistance
gene if its BLAST hit for the alignment against SNC-
ARDB had ≥90% amino acid read identity for ≥25 amino
acids [16, 24]. In the present study, a package of custom-
ized scripts was developed to automatically classify the

Table 1 Information of WWTP sewage samples (Continued)

W_NN_LD_1 Nanning NN Langdong LD Guangxi Sequence Batch Reactor (SRB)

W_NN_LD_2 Nanning NN Langdong LD Guangxi Sequence Batch Reactor (SRB)

W_SH_MH_1 Shanghai SH Minghang MH Shanghai Anaerobic-Anoxic-Oxic (A2/O)

W_SH_MH_2 Shanghai SH Minghang MH Shanghai Anaerobic-Anoxic-Oxic (A2/O)

W_SH_MHSZ_1 Shanghai SH Minghangshuizhi MHSZ Shanghai Anaerobic-Anoxic-Oxic (A2/O)

W_SH_MHSZ_2 Shanghai SH Minghangshuizhi MHSZ Shanghai Anaerobic-Anoxic-Oxic (A2/O)

W_SZ_GM_1 Shenzhen SZ Guangming GM Guangdong Anaerobic-Anoxic-Oxic (A2/O)

W_SZ_GM_2 Shenzhen SZ Guangming GM Guangdong Anaerobic-Anoxic-Oxic (A2/O)

W_SZ_LF_1 Shenzhen SZ Luofang LF Guangdong Oxidation ditch

W_SZ_LF_2 Shenzhen SZ Luofang LF Guangdong Oxidation ditch

W_TJ_XYL_1 Tianjin TJ Xianyanglu XYL Tianjin Anoxic/Oxic (A/O)

W_TJ_XYL_2 Tianjin TJ Xianyanglu XYL Tianjin Anoxic/Oxic (A/O)

W_TJ_ZGZ_1 Tianjin TJ Zhangguizhuang ZGZ Tianjin Anoxic/Oxic (A/O)

W_TJ_ZGZ_2 Tianjin TJ Zhangguizhuang ZGZ Tianjin Anoxic/Oxic (A/O)

W_WH_NTZ_1 Wuhan WH Nantaizi NTZ Hubei Carrousel oxidation ditch

W_WH_NTZ_2 Wuhan WH Nantaizi NTZ Hubei Carrousel oxidation ditch

W_WH_TXH_1 Wuhan WH Tangxunhu TXH Hubei DE oxidation ditch

W_WH_TXH_2 Wuhan WH Tangxunhu TXH Hubei DE oxidation ditch

W_WH_TXH_22 Wuhan WH Tangxunhu TXH Hubei DE oxidation ditch

W_WLMQ_HD_1 Wulumuqi WLMQ Hedong HD Sinkiang Sequence Batch Reactor (SRB)

W_WLMQ_HD_2 Wulumuqi WLMQ Hedong HD Sinkiang Sequence Batch Reactor (SRB)

W_WLMQ_HX_1 Wulumuqi WLMQ Hexi HX Sinkiang Sequence Batch Reactor (SRB)

W_WLMQ_HX_2 Wulumuqi WLMQ Hexi HX Sinkiang Sequence Batch Reactor (SRB)

W_XA_SW_1 Xi’an XA Sanwu SW Shan’xi Orbal oxidation ditch

W_XA_SW_2 Xi’an XA Sanwu SW Shan’xi Orbal oxidation ditch

W_XA_WW_1 Xi’an XA Wuwu WW Shan’xi Anaerobic-Anoxic-Oxic (A2/O)

W_XA_WW_2 Xi’an XA Wuwu WW Shan’xi Anaerobic-Anoxic-Oxic (A2/O)
aFormat of sample name: X(season)_XX(abrr. of city)_XXX(code for WWTP)_X(day), where S/W in season represents for summer/winter and 1/2 in day stands for
day 1/day 2
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BLAST hits into different types and subtypes of resistance
genes. The detailed procedure for sorting sequences using
a customized Python script was reported previously [23].
SNC-ARDB contains a number of genes for efflux pro-

teins that do not necessarily confer resistance phenotypes.
These proteins do, however, function in the efflux of anti-
biotics and have previously been classified as resistance
genes and in the Comprehensive Antibiotic Resistance
Database (CARD) [25–27]. Therefore, efflux pump-related
genes were retained in the SNC-ARDB to evaluate anti-
biotic resistance potential [16].
The ‘abundance’ of the resistance type or subtype was

calculated as previously reported by Li et al. (2015) [16].
Thus, the abundance of resistance genes based on meta-
genomic analysis was compared with those derived from
qPCR in the previous studies. The abundance of resistance
genes was transformed to ‘concentration’ (copies per liter)
by normalization to the absolute copy number of 16S
rRNA gene [28]. The average copy number of 16S rRNA
genes per bacterium is currently estimated at 4.1 based on
the Ribosomal RNA Operon Copy Number Database
(rrnDB version 4.4.4) [29]. The numbers of bacterial cells
were calculated by dividing the copy number of 16S rRNA
gene by 4.1, and the ‘relative abundance’ of resistance
genes (copies per bacterial cell) was estimated by dividing
the ARGs concentration in each sample by its correspond-
ing number of bacterial cells. Additionally, the copy num-
ber of resistance genes discharged by each person per day
in urban areas is defined as ‘ARG load’, which can be cal-
culated by the formula: ARG load (copies/capita/day)
= (the average concentration of sewage ARGs) × (the vol-
ume of municipal sewage discharge)/urban population.
‘ARG burden’ (copies/day, the total ARG load in urban
areas) is calculated by multiplying the medium value of
ARG load by total urban population.

Real-time qPCR quantification of 16S rRNA gene
Real-time qPCR assay of total bacteria was performed
using a SYBR® Green approach on a Roche 480 (Roche
Inc., USA). The absolute copy numbers of 16S rRNA
gene were quantified using primers 515 F and 907R. The
qPCR system (20 μL) amplification was conducted as re-
ported previously [30]. The size of amplified fragments
was about 410 bp. For the preparation of 16S rRNA gene
standards, 16S rRNA gene was amplified from extracted
DNA and then was cloned into the pMD 19-T vector
(TaKaRa, Japan). Plasmids containing the target gene
were used as standards for the calibration curve. All
qPCR assays were conducted in triplicate with negative
and positive controls.

Human gut microbiome analysis
In this study, human gut microbiota was defined as the
bacterial genera detected in human gut or human

intestinal tract. To track the human gut microbiome fin-
gerprint in the sewage, the human gut microbiome data-
base including 382 bacterial genera (Additional file 2:
Dataset 1) was retrieved from Human Microbiome Pro-
ject (HMP) [31] and the Metagenomics of the Human
Intestinal Tract (MetaHit) [32] project. The microbial
catalogue reference set (16S rRNA gene) from these two
human metagenomic projects covers almost all genera
of human gut bacteria and is a useful resource for fur-
ther analyses of human gut microbiome [33].

Statistical analysis and network analysis
Averages and standard deviations were determined using
Excel 2010 (Microsoft Office 2010, Microsoft, USA).
One-way analysis of variation (ANOVA), paired-sample
t tests and correlation tests were performed using SPSS
V20.0 (IBM, USA). All statistical tests were considered
significant at P < 0.05. Diversity index, non-metric multi-
dimensional scaling (NMDS) and significance test (Adonis
test, procrustes analysis, and mantel test) were performed
in R 3.1.0 with vegan 2.2.0 [34, 35]. Post-hoc plot was
generated using STAMP V2.1.3 [36]. To investigate co-
occurrence patterns of microbial community and resis-
tome, correlation matrixes were constructed by calcu-
lating each pairwise Spearman’s rank correlations. The
P value was adjusted with a multiple testing correction
using FDR method to reduce the false-positive results
[37]. A correlation between any two items was consid-
ered statistically robust if the Spearman’s correlation
coefficient (ρ) was > 0.7 and the P value was < 0.01 [16,
38]. The resulting correlation matrixes were translated
into an association network using Gephi 0.9.1 [39]. An
informatics mathematical approach based on geograph-
ical information systems, ArcGIS, was applied to map
the resistance load and the resistance burden at varying
spatial scales [40]. Spatial autocorrelation analysis was
conducted to evaluate spatial dependency of ARG bur-
dens between provinces using ArcGIS [41].

Results
Diversity and abundance of the resistome in urban
sewage
Twenty resistance gene types consisting of 381 subtypes
were detected, with 373 subtypes in summer samples
and 346 subtypes in winter samples, respectively (Fig. 1a).
The three most dominant resistance gene types, confer-
ring aminoglycoside, tetracycline, and beta-lactam resist-
ance, accounted for 54.1% of the total ARG abundance
(Additional file 3: Figure S1a). For the resistance gene
subtypes, genes encoding beta-lactamase, sulfonamide
(sulI), and tetracycline (tet40) were most common across
all sewage (Additional file 4: Dataset 2). Resistance gene
profiles indicated distinct seasonal clustering (Adonis
test, P < 0.01) (Fig. 1b) and paired-samples t tests further
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demonstrated significant seasonal differences within most
cities (P < 0.05), except the cities of Shenzhen (SZ), Tianjin
(TJ), and Xi’an (XA) (Additional file 5: Table S2).
The relative abundance of antibitotic resistance genes

in summer (1.73 copies per bacterial cell) was signifi-
cantly higher than that in winter (1.15 copies per bacter-
ial cell) (P < 0.01) (Fig. 1c and Additional file 3: Figure
S1b). In terms of abundance, winter samples contained
highly abundant bacteria (1.21 × 1012 cells/L) (P < 0.01)
and resistance genes (1.79 × 1012 copies/L) (P < 0.01),
while summer samples were found to harbor lower bac-
terial abundance (1.70 × 1011 cells/L) and lower resist-
ance gene concentration (3.27 × 1011 copies/L) (Fig. 1d,
Additional file 3: Figure S1c and Figure S1d). Signifi-
cantly different seasonal abundances were observed for
27 ARG subtypes (Additional file 6: Figure s2a).

Geographical burden of ARGs in Chinese urban sewage
No distinct regional distribution pattern of the antibiotic
resistome was observed among the sewage samples from
different cities (Additional file 7: Figures S3a and S3b and
Fig. 2a, b). Based on the demographic data (Additional
file 8: Dataset 3), the total volume of domestic sewage

discharge ranged from 0.329 to 7.846 million tons/day
across major Chinese cities in 2014. The ARG load in
the major Chinese cities was calculated with a range from
5.89 × 1012 to 7.85 × 1014 copies/person/day (Additional
file 9: Figure S4). The urban ARG burden in Chinese
administrative regions was calculated by multiplying
the median value (9.47 × 1013 copies/person/day) of
ARG load by the urban population, resulting in a range
from 5.40 × 1019 to 6.91 × 1021 copies (Additional file 8:
Dataset 3). ArcGIS mapping of antibiotic resistance
showed significantly higher ARG burden in the east of
China, which was 1–2 orders of magnitude higher than
those in the west of China. The antibiotic resistance
distribution was distinguished by the “Hu Huanyong
line”, which delineates a striking difference in the distri-
bution of China’s population (Fig. 3). A strong spatial
dependency was observed in the ARG burdens between
geographically nearby provinces with Moran’s I index
of 0.173 (variance = 0.0056; z score = 2.709; p value =
0.007). Moran’s I index > 0 indicates spatial autocorrel-
ation and larger values of Moran’s I indicate higher spatial
autocorrelation. P value < 0.01 indicates an extremely sig-
nificant spatial autocorrelation.

Fig. 1 The overall profile of antibiotic resistance genes from urban sewages in China. a The number of detected ARG types and subtypes in
sewages. b Non-metric multidimensional scaling (NMDS) analysis based on the abundance of ARGs (copy of ARG per copy of 16S rRNA gene)
showing the seasonal variation of ARGs (Adonis test, P < 0.01). NMDS analysis was conducted using Bray-Curtis distance. c Relative abundance
of ARGs presented as copy number of ARGs per bacterial cell. d The concentration of ARGs in sewages presented using the sum of copy
numbers of detected mobile genetic elements (MGEs) and ARGs conferring resistance to a specific class of antibiotics. Mean ± SD; ANOVA;
*P < 0.05; **P < 0.01
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Characterization of bacterial communities in urban
sewage
From PCR amplicons spanning the V4 and V5 hypervari-
able regions of the 16S rRNA gene, 6,174,489 high quality
sequences (22,149–147,635 per sample) were clustered
into 74,138 OTUs (2551–10,691 for each sample, mean =
5,509) (Additional file 1: Table S1). Higher OTU numbers
and higher microbial diversity (Chao 1 index, P < 0.01)
(Fig. 4a) were observed in summer sewage. Overall, micro-
bial cohorts closely clustered by sampling time (Adonis
test, P < 0.01) (Fig. 4b) and sewage microbiomes between
seasons were more heterogeneous than those within either
season (t test, P < 0.01) (Fig. 4c). A significant distance-
decay effect was also observed—similarity in microbial
communities between any two cities decreased with in-
creasing geographic distance (r = −0.364, P < 0.01) (Fig. 4d).
Similar to antibiotic resistome, no geographical cluster
of either bacterial community or shared bacterial OTUs
was also observed (Additional file 7: Figures S3c and S3d
and Fig. 2c, d).
Proteobacteria, Bacteroidetes, Firmicutes, and Fusobac-

teria were the dominant phyla, accounting for 58.7 to
98.5% of sequences within the 116 samples (Additional
file 10: Figure S5a). Bacteroidetes had significantly higher
abundance in summer samples than that in winter sam-
ples (P < 0.01), while both Firmicutes and Actinobacteria

were more abundant in winter than those in summer
(Additional file 10: Figure S5b). Significantly different
seasonal abundances were also observed in several bac-
terial classes, for example, Deltaproteobacteria, Bacter-
oidia, and Clostridia (Additional file 6: Figure S2b). At
the genus level, the most abundant 30 genera were
mainly classified to Proteobacteria, Bacteroidetes, and
Firmicutes, and Bacteroides, Prevotella and Acinetobac-
ter were the top 3 abundant genera (Additional file 11:
Figure S6a).

Core resistome and microbiome in Chinese urban sewage
128 resistance genes were shared in more than 80% of
samples, accounting for 95.6% of all the ARGs observed.
A set of 31 resistance genes were found in all sewage
samples, and this core resistome contributed 57.7% (ran-
ging from 29.4 to 84.3%) to the total ARGs detected
(Fig. 5). Among the core resistome, the genes for amino-
glycoside, tetracycline, beta-lactam, and MLS resistance
were dominant (Additional file 12: Figure S7a). Resist-
ance genes sulI, tet40, and one encoding chlorampheni-
col acetyltransferase were the most abundant resistance
subtypes (Fig. 5). The core resistome clustered by season
(Adonis test, P < 0.01) (Additional file 12: Figure S7b),
but geographical clustering was not observed (Additional
file 7: Figure S3 and Fig. 2b).

Fig. 2 Non-metric multidimensional scaling (NMDS) analysis depicting geographical distribution of antibiotic resistomes using Bray-Curtis distance
(a, total ARGs; b, shared ARGs) and microbial communities (c, total OTUs; d, shared OTUs; e, human gut microbiota; f, shared human gut microbiota) of
urban sewages (mean ± SD)
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Common 16S rRNA OTUs accounted for 64.6% of the
total reads in more than 100 samples. A highly shared
prevalence of microbiome among all sewage samples was
also observed to include 88 classified OTUs, and accounted
for 13.6–67.7% (on average 48.8%) of the total bacterial
abundance in each sample (Fig. 6a, b). The core OTUs
belonged to 33 dominant genera that were affiliated to 7
phyla (Additional file 12: Figure S7c), of which Proteobac-
teria, Bacteroidetes, and Firmicutes were the most abundant.
At the genus level, the most prevalent OTUs were Bacteroi-
detes, Prevotella, and Trichococcus (Additional file 11: Figure
S6b). Similar to the core resistome profiles, these shared
OTUs were separated by season without a geographical dis-
tribution pattern (Fig. 2d and Additional file 12: Figure S7d).

Linking antibiotic resistome with bacterial phylogeny in
Chinese urban sewage
Co-occurrence patterns between antibiotic resistance
and bacterial assemblages were explored based on strong
(ρ > 0.7) and significant (P < 0.01) correlations (Fig. 7).
There were more complex and dense correlations be-
tween bacterial communities in winter than those in
summer, whereas looser relationships with the antibiotic
resistome were observed in summer (Additional file 13:
Figures S8). Co-occurrence, using network analysis, is
summarized in Additional file 14: Dataset 4. Mantel test
indicated that the antibiotic resistome was significantly
correlated with bacterial phylogeny (P < 0.01). Explor-
ation of connections between ARGs and bacterial genera

Fig. 3 ArcGIS map showing the ARG burden based on urban populations of administrative districts in China. The black line on the map refers to
the Chinese demographic “Hu Huanyong line”. The value presented in the legend was log transformed ARG burden (copies/day) discharged by
urban populations. The ARG burden in Chinese administrative regions is calculated by multiplying the medium value of ARG load (9.47 × 1013

copies/cap/day) by total urban population
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showed that most genera from the same phylum had
similar antibiotic resistance profiles (Additional file 15:
Table S3), but this does not prove that bacterial OTUs
were actually hosts of resistance genes. In addition, sig-
nificant correlation between core resistance genes and
core bacterial OTUs was also observed (Procrustes test,
M2 = 0.927, P < 0.001, 9999 permutations).

Human gut microbiota in urban sewage
A total of 205 genera of gut bacteria were detected in
116 samples with abundance ranging from 6.1 to 59.9%
(average 28.6%) in each sample. Both the diversity and
the relative abundance of gut bacteria in winter samples
were higher than those in summer samples (Additional
file 11: Figure S6e). A significant seasonal variation of
gut bacterial community structure was also observed
(Adonis test, P < 0.01) (Additional file 11: Figure S6f ).
Geographical profiles varied from city to city, with no
obvious regional clustering in either total gut bacteria or
shared gut bacteria (Fig. 2e, f ). Of the detected human
gut microbiota, Proteobacteria, Firmicutes, and Bacteroi-
detes were most abundant phyla. The most abundant
gut bacterial genera in sewage were affiliated with Acine-
tobacter, Arcobacter, and Paludibacter (Additional file

11: Figure S6c). The shared human gut microbiota, in-
cluding 32 human gut genera detected in all sewage
accounted for 49.6% (ranging from 34.6 to 70%) of the
shared OTUs (Fig. 6c).

Discussion
The urban sewage resistome represents the emission of
antibiotic resistance from the gastrointestinal tracts of
citizens into wastewater treatment plants. A large-scale
sampling of municipal sewage from 17 major cities
across China was performed in this study. The seasonal
variation and geographical distribution of the urban sew-
age antibiotic resistome were characterized. Municipal
sewage harbored diverse and abundant resistance genes,
conferring resistance to almost all antibiotics, highlight-
ing that municipal sewage could be a major conduit for
transferring antibiotic resistance genes into the envir-
onment. Significant seasonal differences were observed
in the urban sewage antibiotic resistome (P < 0.01). Sea-
sonal temperature changes might have a significant in-
fluence on the variation of antibiotic resistance and on
the composition of microbial community. The season-
ality of microbial communities in lakes [42], soil [43],
and sludge [44] has been well documented. Temperature

Fig. 4 Overall profile of microbial diversity of the sewage samples from Chinese WWTPs. Diversity of the microbiome was evaluated by using
OTUs with 97% similarity cutoffs. a Rarefied Chao 1 index at a sequencing depth of 22,149 showing significant difference of α-diversity between
summer and winter samples (mean ± SD; ANOVA; *P < 0.05; **P < 0.01). b NMDS analysis showing the overall pattern of microbial communities
(Adonis test, P < 0.01). c β-diversity of microbial communities computed with weighted UniFrac indices within/between the summer and winter
samples (mean ± SD; ANOVA; *P < 0.05; **P < 0.01.). d Spearman’s rank correlations between the Bray-Curtis similarity of microbial communities
and geographical distance (n is the number of comparison)
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and temperature-dependent organic matter load can
foster the proliferation of microbial taxa that carry re-
sistance genes, or improve the growth of non-resistant
microorganisms [45]. Antibiotic administration could
also explain the clear seasonality in shifts within the
sewage resistome [3, 12]. Seasonal variation in antibiotic
consumption driven by associated seasonality in path-
ologies exerts selective pressure, leading to selection and
subsequent dissemination of antibiotic resistance genes
in wastewater [3]. Thus, seasonally variable release of
antibiotics, bacteria, and resistance genes into municipal
sewage can alter bacterial populations and remodel their
resistome [46, 47]. A recent study on sewers further sup-
ported the speculated reason, demonstrating a clear sea-
sonal pattern in the relative abundances of resistance
genes, and that this coincided with the overall rates of
antibiotic prescription [12].
Higher concentrations of ARGs were detected in win-

ter sewage, being approximately one order of magnitude
higher than those of summer. This finding was sup-
ported by a recent study, where increases in ARGs in
sewers were always encountered in colder seasons of the
year, when the more frequent seasonal epidemic diseases
contributed to the therapeutic prescription of antibiotics
[12]. In addition, dilution of urban sewages by increasing

domestic daily water discharges in summer may be an-
other explanation for lower ARG concentration in sum-
mer. Similar observations were found in urban streams,
where total bacterial numbers were the highest in winter
[48, 49]. Although ARGs absolute concentrations in win-
ter sewage were greater, a significantly higher relative
abundance of ARGs in summer sewage was observed.
The major reason for such disparity might be that the
bacterial density in winter sewage (1.21 × 1012 cells/L)
was much greater than that in summer sewage (1.70 ×
1011 cells/L). Bacterial biomass in sewage has been
quantified using flow cytometry within the range from
1010 to 1012 cells/L [29, 50], and this is consistent with
our results when normalizing for 16S rRNA gene copy
number per cell.
The total output of resistance genes was estimated by

considering the amount of domestic sewage and urban
populations in Chinese administrative districts to quan-
tify the regional ARG burden at a national scale. A
strong spatial dependency in the distribution of ARG
abundance in various administrative areas were ob-
served, with two main regions separated by the demo-
graphic “Hu Huanyong line”, which is based on climatic
zonation and population density [51]. It was previously
reported that industrialization was correlated with the

Fig. 5 Bubble graph showing the abundance (copy of ARG per copy of 16S rRNA gene) of the core resistome, which was shared by all sewage
samples. MLS Macrolide-Lincosamide-Streptogramin resistance. Others, the genes coding other unclassified antibiotic resistance proteins or other
functional proteins
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antibiotic resistance burden of the human gut, and this
was in turn driven by age, diet, cultural tradition, cli-
mate, pathogen carriage, and periodic perturbation, for
example, by antibiotic exposure [10, 52]. A similar geo-
graphic distribution was found in the antibiotic emission
densities in Chinese river basins [40], suggesting that hu-
man activities are the major driver of resistance gene
distribution.
Geographical clustering was not observed in the struc-

ture of either antibiotic resistome or bacterial commu-
nity in Chinese sewage. The core antibiotic resistome
and the core microbial community were stable across
WWTPs [23, 53]. The resistome closely correlates with
host-related bacterial phylogeny in sewage [12], indicating
that the shared resistome and the core microbiota might
play a vital role in the profile of urban resistome and its
microbial community. Despite no distinct geographical
grouping, there was a distance-decay effect in the similar-
ity in bacterial community composition. This has been
specifically reported in freshwater bacterial communities,
phyllosphere bacteria, and more generally [54, 55].

Median fecal dry mass production is estimated at 29 g
per person per day [56, 57]; and human intestinal con-
tents range from 1010 to 1011 bacterial cells per gram
(dry weight) [58]. Therefore, it was estimated that ap-
proximately 1011 ~ 1012 bacterial cells per person per
day were discharged into sewage. Given the proportion
of these cells that carry antibiotic resistance, there are
clear pathways for dissemination of resistance genes via
sewage [59]. Although the core resistome was shared by
all populations investigated here, there were differences
in the abundance of ARGs between urban areas. This
suggests that monitoring sewage systems for ARGs
could provide a real-time estimate of antibiotic resist-
ance threats in specific areas, and this in turn could be
used to inform treatments and to promote stewardship
of antibiotics.

Conclusions
Currently, sound and necessary data on seasonal and
geographical characterization of antibiotic resistome in
urban sewage is still lacking. This study provided solid
evidence for seasonal and geographical patterns of the
profiles of antibiotic resistome and potential ARG hosts
via a national-scale survey. Seasonal variation in both
antibiotic resistomes and bacterial communities was
observed in urban sewage. No distinct geographical clus-
ter was found in the distribution of the resistance genes
and bacterial community composition. The demographic
“Hu Huanyong line” separated the regional ARG burden
into two main regions, suggesting human activities
might be the major driver of antibiotic resistance burden

Fig. 6 Frequency distribution of OTUs across samples. a The number
of OTUs commonly observed at each frequency (in n samples). b
The bar presents the read abundance of OTUs observed at each
frequency (in n samples) and the line denotes the cumulative total
these frequencies from the most to least frequently observed. c The
embedded plot revealing the percentage of human gut bacteria in
the shared OTUs based on the number of sequences

Fig. 7 Co-occurrence network analysis showing the correlation
between resistance genes and bacterial taxa at genus level. Only
connections with a strong (Spearman’s ρ > 0.7) and significant
(P value < 0.01) correlation were presented in the network. The size
of the nodes (circles) is proportioned to the number of connections
(the degree), and the width of the edges (lines connecting the circles)
is proportioned to the Spearman’s correlation coefficient between
bacterial genera and ARGs. MLS Macrolide-Lincosamide-Streptogramin
resistance. Others, the genes coding other unclassified antibiotic
resistance proteins or other functional proteins
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distribution. A core, shared antibiotic resistome accounted
for more than 50% of the total resistance genes, and was
significantly associated with the core microbial commu-
nity. The shared resistome and the shared bacterial com-
munity exhibited a distinct seasonal distribution, but did
not show geographical clusters, indicating that the share
resistome and the core microbiota might play a vital role
in the profile of urban resistome and its microbial com-
munity. In addition, the strong correlations between resis-
tome and bacterial communities, especially between the
core, shared resistome and the core human gut micro-
biota, indicated the contribution of human gut microbiota
to the dissemination of antibiotic resistance. These data
provide dynamic background (seasonal and geographical
variation) for mitigation activities in WWTPs based on
the presence of ARGs and practical guide for improving
antibiotic management in the urban sewage.
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