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Abstract

Research on the human microbiome has yielded numerous insights into health and disease, but also has resulted in a
wealth of experimental artifacts. Here, we present suggestions for optimizing experimental design and avoiding known
pitfalls, organized in the typical order in which studies are carried out. We first review best practices in experimental
design and introduce common confounders such as age, diet, antibiotic use, pet ownership, longitudinal instability, and
microbial sharing during cohousing in animal studies. Typically, samples will need to be stored, so we provide data on
best practices for several sample types. We then discuss design and analysis of positive and negative controls, which
should always be run with experimental samples. We introduce a convenient set of non-biological DNA sequences that
can be useful as positive controls for high-volume analysis. Careful analysis of negative and positive controls is particularly
important in studies of samples with low microbial biomass, where contamination can comprise most or all of a sample.
Lastly, we summarize approaches to enhancing experimental robustness by careful control of multiple comparisons and
to comparing discovery and validation cohorts. We hope the experimental tactics summarized here will help researchers
in this exciting field advance their studies efficiently while avoiding errors.

Keywords: Metagenomics, 16S rRNA gene, Shotgun metagenomics, Environmental contamination, Methods,
Study design, Best practices

Background
Studies of microbial communities—the microbiome—have
become quite popular in recent years. These studies are
powered by the new DNA sequencing technologies which
allow acquisition of over one trillion bases of sequence in-
formation in a single instrument run. Using these
methods, sequence profiles of microbial communities
from different sources can be obtained and compared to
elucidate the associated patterns in the microbiota. For ex-
ample, human samples from a disease state can be com-
pared to samples from healthy controls, allowing for
quantification of differences [1–8]. In these studies, DNA
is first purified from the samples. DNA sequencing is then
used to characterize the associated taxa, querying either a
marker gene (16S for bacteria, 18S for eukaryotes, and

ITS for fungi) or all DNAs in a mixture (shotgun metage-
nomics sequencing). In at least some situations, the nature
of these microbial communities matters a lot—fecal mi-
crobial transplantation radically resets gut community
structure and cures relapsing Clostridium difficile infec-
tion in up to 90% of cases [9, 10].
Carrying out definitive experiments on the microbiota

requires great care, as in any field of research. All analyt-
ical methods have biases that must be taken into account
in experimental execution and interpretation. For ex-
ample, for analysis of 16S rRNA gene segments, the choice
of gene region studied influences the types of bacteria
queried [11–16]. Another example, emphasized here, in-
volves low microbial biomass samples. If there is very little
microbial DNA in a specimen, the library preparation and
sequencing methods will often return sequences that are
derived primarily from contamination [17–24]. Contamin-
ating sequences can originate in reagents, dust, crossover
between samples, or other sources. Without appropriate
precautions and controls, these false calls can be difficult
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to distinguish from authentic microbiota. Other challenges
mentioned below include changes associated with sample
storage, microbial sharing among animals during cohous-
ing, and authentic longitudinal microbial instability in the
body site of a host animal.
The goal of this article is to catalog major challenges in

microbiome research and to outline approaches to address
them. Many of these points have come up in the projects of
the PennCHOP Microbiome Program, with which the au-
thors of this article are associated. This review is intended
to help our collaborators and other microbiome researchers
wrestling with these issues. We will focus primarily on la-
boratory work important for microbiome analysis and
touch on computational and statistical methods only
briefly. Most examples will be from 16S rRNA marker gene
sequencing, but examples from ITS marker gene sequen-
cing for fungi and shotgun metagenomics are also dis-
cussed. Several good articles have also addressed these
issues and are recommended as additional reading [25–29].
Reviews of methods for bioinformatics analysis of micro-
biome specimens include [28, 30–33]. We focus here on
studies of the vertebrate microbiome and break out points
that are specific to studies of humans and model organisms.
We present sections in an order that matches the progres-
sion of performing an experiment—the paper begins with
study design, continues with sample collection and process-
ing, and concludes with analysis.

Planning a microbiome experiment
It is essential to plan carefully to ensure that the experi-
ment carried out will answer the question posed. Plan the
statistical analysis for your study at the start. If possible,
carry out a power analysis. Several approaches tailored to
microbiome research have been reported [34, 35].

Consider the influence of factors such as antibiotic use,
age, sex, diet, geography, and pet ownership
The human microbiome is sensitive to its environment,
which can considerably confound associating any par-
ticular condition or intervention with a change in micro-
biota composition. Drug use, diet, age, geography, pet
ownership, and sex have all been reported to influence
function and composition [36–39]. In 2008, Relman and
colleagues documented effects of antibiotic treatment on
the gut microbiome, and many subsequent studies have
also reported effects [5, 40–42]. It has further been sug-
gested that additional prescription drugs can affect
microbiome analyses [43, 44]. For example, Imhann
et al. have suggested that decreasing the acidity of the
stomach with proton pump inhibitors allows upper
gastrointestinal microbes to move down into the gut
more readily [45], altering the composition of the lower
gastrointestinal microbiota and increasing the risk of C.
difficile infections.

Diet also influences the microbiota [5, 46–56]. Microbial
community structure and gene expression are reported to
change on short-time scales in response to extreme short-
term alterations in diet [57]. Long-term dietary patterns
have been linked to gut microbiomes dominated by cer-
tain genera—diets high in protein and animal fat are asso-
ciated with high Bacteroides, whereas diets high in
carbohydrates are associated with high Prevotella [55].
The human microbiome evolves from birth until death.

Typically, the gut microbiota adopts a stable anaerobic
pattern around age 3 years but varies in early life [58–60].
The microbiome also changes in old age, with institution-
alized elderly commonly developing high levels of Proteo-
bacteria [61]. Thus, it is critical to use age-matched
controls for microbiota comparisons.
Sex can also affect microbiome studies. The gut micro-

biome serves as a virtual endocrine organ due to the me-
tabolites and neurotransmitters it produces [62]. For
example, early microbial exposure has increased testoster-
one levels in male mice, leading to a protective effect
against type 1 diabetes [63]. When the microbiota from
these protected male mice was transplanted into younger
female mice, the same protection against type 1 diabetes
was seen [63]. A study of an anti-psychotic drug on weight
and gut microbiota in male and female rats reported that
drug treatment induced significant weight gain in female
rats only [64]. Microbial circadian rhythms in mice were re-
ported to differ between sexes [65]. Sex differences in
microbiota have also been reported in macaques [39, 66].
Remarkably, even sexual preference among men has

been linked to gut microbiome differences [67], which
may be a confounding factor in studies of gut micro-
biome and HIV infection where controls were not
matched by sexual preference.
Other studies have investigated whether pets influence

the human microbiome and vice versa [68]. One group
showed that cohabiting adults shared more similar skin
microbiota if they owned a dog [69].
How each of these factors will influence any given

microbiome study is dependent on the question asked
and the strengths of differences between study groups.
In general, it is important to enumerate possible con-
founders during experimental design, quantify each, and
then treat them each as independent variables in down-
stream statistical analyses.

Longitudinal instability
During experimental design, it is important to consider
the longitudinal stability of the microbiota to be studied.
The healthy human adult gut is known to be largely
stable in microbial composition over time [70–72], and a
perturbation in such stability—dysbiosis—has been asso-
ciated with diseases such as inflammatory bowel disease
[1, 5, 73]. However, the microbiome of other sites, like
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the human vagina, can vary on short-time scales without
necessarily indicating dysbiosis [74–78]. Even the gut
microbiome has been reported to display circadian be-
havior on a 24-h cycle [65, 79, 80]. Thus, for studies of a
new sample type, it is essential to understand longitu-
dinal variation in order to acquire samples that address
the question posed.
Different batches of DNA extraction kit reagents can be

a significant source of variation for longitudinal studies
[23, 81]. It is wise to purchase all the extraction kits needed
at the start of the study, or store samples and extract all at
the same time, to minimize the effects of this variable.

Cage effects in animal experiments
Cage effects can derail microbiome studies in mice and
may be important for other laboratory animals as well.
Mice housed in the same cage come to share similar gut
microbiota due to mixing by coprophagia [82]. For per-
spective, in a recent study, mouse strain was found to ac-
count for 19% of the variation in gut microbiota, whereas
cage effects contributed to 31% [83].
To account for cage effects, an investigator must set

up multiple cages for each study group and treat the
cage as a variable in the final statistical analyses. One
can then determine whether microbial communities dif-
fer between groups given the measured effect of the cage
variable. To keep costs down, it is fine to house two to
three mice per cage [84–86].
As an example, consider the longitudinal study of fun-

gal populations during an antibiotic intervention in mice
in Dollive et al. [87]. In this work, antibiotic treatment
was associated with increased fungal colonization in the
treated groups (Fig. 1). The fungi detected were mostly
consistent within each cage, but varied from cage to cage
within each treatment group and also in the untreated

controls. The types of fungi detected changed longitu-
dinally, but nevertheless were consistent within cages.
This highlights how potent cage effects can be, and em-
phasizes the importance of analyzing multiple cages per
study group.

Considerations during sample collection and
processing
Sample storage conditions
The most important considerations for storing micro-
biome samples are to reduce changes in the original
microbiota from sample collection to processing and to
keep storage conditions consistent for all samples in a
study. Sample storage conditions are not always consistent
between labs due to downstream applications and re-
source limitations. In 2010, Wu et al. compared human
fecal samples that were immediately frozen at −80 °C,
stored on ice for 24 h, or stored on ice for 48 h before
DNA extraction and analysis. Differences due to storage
method were not significant compared to differences be-
tween human individuals [88].
Due to an increased number of studies collecting sam-

ples from remote locations, several groups have assessed
the efficacy of preservation methods that may be used
when laboratory freezers are not readily available. In
2016, Song et al. tested the effects of different preserva-
tives and temperature fluctuations on feces to mimic
microbiome sampling in the field. If fecal samples can-
not be frozen, store the samples in 95% ethanol, on FTA
cards, or use the OMNIgene Gut kit [89]. These condi-
tions are optimized for sample collection in the field;
however, they may not be applicable to all studies
depending on study goals and available resources. Other
groups have also published similar sample storage
studies [90–97].
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Fig. 1 Example of cage effects dominating a mouse study of fungal communities. Fungal lineages in the murine gut were inferred from ITS rRNA
gene sequencing of pellets [87]. The heat maps summarize taxonomic assignments derived from the sequence data. The color scale to the right
indicates the proportions of each lineage; white indicates not detected. Caging dominated over treatment in this study. The three conditions
studied were continuous exposure to antibiotics (Condition 1), short-term exposure to antibiotics (Condition 2), and no exposure to antibiotics
(Condition 3). For details see [87]
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We recently performed a study on the storage of oral
swab samples and found conditions to be relatively forgiv-
ing (Fig. 2). In this study, we collected cheek swab samples
from three healthy subjects and stored them in a variety
of conditions (frozen at −20 °C, refrigerated at 4 °C, or
stored at an ambient temperature of 20 °C for 0, 24, 48,
72, or 96 h) before freezing at −80 °C (details and add-
itional analysis are presented in Additional file 1). Figure 2
shows a principal coordinates analysis of unweighted Uni-
Frac distance between the samples. The subject identifier
(Fig. 2a) accounted for almost half the total variation in
UniFrac distances (R2 = 0.47, P < 0.001). The storage con-
ditions did not represent a significant effect (Fig. 2b)—we
estimated the relative effect size at less than half the effect
of inter-subject variability (R2 = 0.17, P = 0.2). The UniFrac
results were recapitulated in our analysis of taxon abun-
dances, where the effect of subject far exceeded any po-
tential storage effects. This analysis provided evidence that
over a period of 3 days, storage conditions of cheek swabs
did not substantially influence the measured oral micro-
biome composition for these subjects. Another group re-
cently investigated the effect of collection method, storage
condition, and storage medium on taxonomic relative
abundance in saliva and dental plaque, and found saliva
samples stored in OMNIgene medium to be relatively
consistent after a week at room temperature [98].
Optimal storage conditions have also been investigated

for other sample types. Lauber et al. tested the effect of
both temperature and length of storage on relative taxon
abundance of bacterial communities in soil, human skin,
and human fecal samples. The overall composition of
bacterial communities and the relative abundance of
most major bacterial taxa did not change with different
storage conditions studied (P > 0.1 for all sample types)
[99]. Replicate samples for both skin and feces clustered
by host rather than by temperature or length of storage.
However, Lauber et al. mentioned that one fecal sample
replicate kept at room temperature was excluded from
analysis due to visible fungal growth before DNA was

extracted. Though convenience can be prioritized when
handling samples over a short period of time (e.g., ship-
ping samples on cold-packs for a 48 hour period before
putting them in the freezer), we do recommend freezing
samples promptly after collection or using alternative
preservative methods if freezers are unavailable [89].

Low microbial biomass samples—managing
environmental contamination
Handling and analyzing samples with low microbial bio-
mass can be challenging. Reagent and laboratory contam-
ination comprise a larger proportion of the total microbial
load in these samples compared to samples with rich mi-
crobial communities (e.g., healthy human feces). The low
absolute amount of starting material can be overpowered
by trace amounts of DNA from reagents or laboratory in-
struments used for sample processing, so that some or all
of the microbial reads can be derived from environmental
sources. Accounting for potential contaminants is espe-
cially important when studying the microbiome of body
sites with low levels of bacteria, such as the human lung
and skin, or sites that may not normally harbor any mi-
crobes at all, such as various healthy tissues [17, 19, 22].
Problems with contamination were well recognized

even before the era of deep sequencing [100–102]. More
recently, several groups have reported on the presence
of bacteria in DNA extraction kits—the “kitome”—as
well as other reagents used during sample processing
[20, 23, 24, 103]. Salter et al. demonstrated that serial di-
lutions of a bacterial culture produced more contaminat-
ing 16S sequence reads and fewer “real” reads with each
subsequent dilution, until contamination accounted for
the majority of total sequences [23]. This pattern oc-
curred at three different institutes that participated in
this study, indicating a widespread issue [23]. Salter and
colleagues also investigated effects of the number of
PCR cycles for amplification. For low biomass samples,
20 cycles was too low, but 40 cycles recovered both con-
taminating and authentic low level sequences [23]. Later,
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Kennedy and colleagues reported that starting template
concentration was the major factor behind variability in
sequencing results [104]. Even in metagenomic samples
prepared without a targeted PCR amplification step,
similar contamination patterns were observed for sam-
ples containing low amounts of microbial DNA [23].
The kitome varies between kits, and can even vary be-

tween different lots of the same kit [20, 23]. Thus, it is
best to process all samples in a project side by side using
the same batches of reagents. It is crucial to record the
kit used to process each sample, and which batch of
each kit was used. If multiple kits were used, treat kit
batch as a factor in the statistical analysis.
In our lab, we have investigated different DNA extrac-

tion methods in order to minimize the presence of the
kitome. While the MO BIO PowerSoil DNA Isolation Kit
(MO BIO Laboratories, Carlsbad, CA, USA) provides high
yields and has been used widely in microbiome work, in-
cluding the Human Microbiome Project [105], the kit was
designed to isolate DNA from soil, stool, and environmen-
tal samples which are high in microbial DNA. The MO
BIO kit was not manufactured with the intention of min-
imizing background contamination. C. difficile and Strep-
tophyta, for example, have both been identified as possible
reagent contaminants in this kit [22]. For low microbial
biomass samples, we instead recommend using DNA iso-
lation kits designed to minimize kit contamination (e.g.,
the QIAamp UCP (UltraClean production) Pathogen Mini
Kit (QIAGEN)). Remember: it is important to choose one
kit type for all of the samples in a microbiome study.
Thus, if a project contains both low and high microbial
biomass samples, please commit to one kit type for all
samples in order to avoid kitome variation.
On the analytical side, several methods have been de-

veloped for filtering suspected contaminating taxa. In a
study of the human oral and lung microbiome, Bittinger
et al. introduced a method to determine the probability
that fungal taxa arose from contamination sources [18],
making use of the total fungal DNA concentration, as ap-
proximated by post-PCR assays of DNA concentration
using PicoGreen. The PicoGreen assay is usually included
in the sequencing protocol as a standard step, so the data
is available with no extra effort. Similarly, Lazarevic et al.
presented a method that incorporates measurements of
total DNA concentration by qPCR, a more accurate but
more resource-intensive approach [106]. Jervis-Bardy and
colleagues showed that contaminating taxa tend to show
a strong decrease in relative abundance as total DNA
concentration increases and used this as the basis of
another method to remove contaminant taxa [21]. Indi-
vidual contamination sources can be modeled using
SourceTracker, which employs a Bayesian approach to es-
timate the relative fraction of sequence reads arising from
each source [107].

Studies investigating a potential placenta microbiome
provide a case study of the difficulties of working with low
biomass samples (Fig. 3). Several groups have reported
that there may be a unique, low-abundance microbiome
in healthy human placenta [46, 108–110], but reporting of
negative controls in these studies has been incomplete.
However, a series of independent control studies showed

no significant difference in taxonomic abundance between
placenta samples and contamination controls [22]. Lauder
and colleagues extracted DNA from placenta from six hu-
man subjects and worked them up alongside several types
of blank swabs and empty extraction wells containing re-
agents only. DNA was extracted from samples using two
different purification kits in order to characterize the con-
tribution of the kitome. Real-time qPCR was performed to
quantify total 16S rRNA gene copies in placental samples,
controls, and saliva samples (from the same subjects)
which were also purified using both DNA extraction kits.
Placental samples and controls showed copy numbers that
were low and indistinguishable from negative controls re-
gardless of the kit used, whereas oral samples showed high
signals several logs above background. Characterization of
bacterial lineages by 16S rRNA gene sequencing showed
that oral samples harbored distinct 16S profiles character-
istic of the well-studied oral microbiota, and results were
consistent between kits. However, placental and control
samples looked similar to each other, but the pattern seen
tracked with the DNA extraction kit used rather than with
the sample type (Fig. 3). Several of the shared lineages
found in placental and control samples were known con-
taminants of DNA extraction kits. The inference was that
the kitome provided the predominant microbial signature
in placental samples [22]. It remains to be seen whether
future studies can show a clear distinction between pla-
cental samples and negative controls.

Negative control samples
It is essential to collect negative control samples to allow
empirical assessment of the contamination background. We
commonly include three types of negative control samples
on each 16S rRNA marker gene sequencing run (Fig. 4). In
“blank swab” samples, a sterile swab was opened from its
package in the sequencing lab, and the full sequencing
protocol was applied to the swab. In “blank extraction” sam-
ples, DNA extraction and all subsequent steps were carried
out with no additional input material. In “blank library”
samples, the extraction protocol was not applied; DNA-free
water (UltraClean PCR Water, MO BIO Laboratories,
Carlsbad, CA, USA) was used as input to the post-
extraction steps of the protocol, starting with library gener-
ation, to characterize contamination in downstream steps.
If microbial biomass is low, additional negative control

samples can be included to measure contaminating DNA
introduced during sample collection. As an example, in
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studies of the lung microbiome using bronchoalveolar lav-
age, an excellent negative control can be generated by
washing the bronchoscope with a sample of the lavage sa-
line prior to carrying out the bronchoscopy [19].
In our recent work, the average number of DNA se-

quence reads for negative control samples was typically
five logs lower than the average for experimental samples
derived from high biomass sites such as feces (Fig. 4a).
The bacterial taxa appearing in negative control samples
were among those previously reported as contamination
in the literature, including Comamonadaceae, Ralstonia,
and Propionibacterium (Fig. 4b).

Positive control samples
Side by side sequencing of new samples with well-vetted
positive controls is strongly recommended. Positive control
samples allow verification that sample preparation and se-
quencing procedures are running smoothly. When samples
are purified on multi-well plates, the consistent placement
of samples in defined locations on plates allows any sample
tracking mix-ups to be detected in the sequence output.
Positive and negative controls will ideally be positioned
asymmetrically on extraction plates, uniquely defining the
plate orientation.

Many studies have used positive controls comprised of
mixtures of cultured organisms (“mock communities”)
[23, 96, 111] or known mixtures of free DNA (“mock
DNA” samples) [88, 112, 113], both of which make useful
controls. Analysis usually shows that sequencing results
are reproducible within a method and lab environment,
but biases can differ between methods and labs [23].
For a simple positive control, we designed and synthe-

sized mock DNA samples as gene blocks (Fig. 5a, see
Additional file 2 for DNA sequences). We selected DNA to
synthesize using regions of the 16S rRNA gene in eight ar-
chaeal species which would not normally be detected in ex-
perimental data because the sequences at the amplification
primer binding sites in the archaeal V1-V2 region do not
match the bacterial V1-V2 primers used. In the engineered
sequences, bacterial 16S V1-V2 primer binding sites were
added synthetically to archaeal controls, allowing amplifica-
tion. This has the advantage that the control sequences can
be easily distinguished from experimental samples while
still being processed through the same pipeline. A disad-
vantage of this strategy is that such controls are specific to
a particular primer set and must be remade for each
amplicon used. However, given the low cost of synthetic
DNA, cost for a set of positive controls is modest (about
$450). After sequencing archaeal gene block samples in 11
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separate sequencing runs, we found that the relative abun-
dances of the sequences were relatively consistent (Fig. 5b).
The gene block design provided an opportunity to test

the level of cross-contamination between experimental
samples during wet-lab library preparation (in 96-well
plates) and sequence acquisition. Figure 5c shows repre-
sentative results from one sequencing run. The abundance
of control archaeal taxa did not increase with proximity to
positive control samples on the 96-well plates (P = 0.6, lin-
ear regression analysis), suggesting that spill-over during
preparation was not a prominent source of admixture be-
tween samples. However, low levels of these sequences
could be detected in multiple dispersed samples (Fig. 5c,
blue squares), potentially due to misreading of bar codes
or hybridization of DNA molecules in adjacent clusters
during Illumina sequencing [114]. A possible means of
suppressing this would be to use bar codes on both ends
of the amplicons and to require precise matches to both
in the quality filtering [115].
The gene block scheme is a simple method for ensuring

proper amplification of experimental samples, tracking sam-
ple mix-ups, and measuring sample cross-contamination
during library preparation and sequencing. However, syn-
thetic positive controls are not useful for benchmarking
analytical and statistical methods. Analysis methods
developed for real communities often do not perform as
well on mock communities, and vice versa, due to the pres-
ence of naturally occurring sequence variation and low
abundance taxa.
Many investigators use primers that simultaneously tar-

get the 16S region of both bacteria and archaea, for ex-
ample, the 515fB/806rB primer set used by the Earth
Microbiome Project [116, 117]. Here, there is no advan-
tage to using archaeal sequences in the gene blocks be-
cause archaea might be observed in experimental samples.
Nonetheless, investigators can build gene blocks using ar-
tificially altered DNA sequences that are different enough
to be reliably distinguished from genomic sequence but
similar enough to be compatible with the analysis pipeline.
In Additional file 2, we present example gene block sets
for the 515fB/806rB primer pair.
When artificial positive control samples are not suitable

or cost effective, many of the benefits may be achieved by
sequencing a small number of positive control samples
collected from the field. We have used samples of pond
water and saliva as indicators of consistency in sample
preparation and sequencing, though ultimately found the
mock DNA samples to be more convenient.

Contamination in shotgun metagenomic data
Microbial DNA introduced by reagents can also be de-
tected in shotgun metagenomic sequencing. As for ampli-
con sequencing, contamination is particularly apparent in
samples with low microbial biomass. This is seen both for

samples with generally low biomass (e.g., skin swab) and
for samples dominated by non-microbial DNA (e.g.,
tissue biopsy).
For example, in our work to characterize the microbiota

in sarcoidosis, we performed shotgun metagenomic se-
quencing on tissue DNA extracted using both standard
(DNeasy PowerSoil, Qiagen, Valencia, CA, USA) and low-
contaminant (QiaAmp UCP Pathogen, Qiagen, Valencia,
CA, USA) kits (unpublished data). When sequencing
negative control samples, we observed that the kit back-
ground differed between the two (Fig. 6a). Lineages found
in both kits were also present in our low biomass tissue
samples, likely derived from reagents. Lineages found in
both samples and controls included Propionibacterium
spp. and Corynebacterium spp., commonly associated with
human skin, and Bradyrhyzobium, a common soil bacteria
also identified as a contaminant by other groups [23, 118].
Of concern, this lineage has been proposed to be respon-
sible for a colitis syndrome in patients undergoing
umbilical-cord hematopoietic stem-cell transplantation
[118, 119]—it will be key to strengthen the link to colitis
with additional forms of data to rule out contamination as
an explanation.
This indicates that while some reagent contamination

is unavoidable, usage of low-contaminant kits reduces
the total sequencing effort spent on contaminants. Fur-
thermore, it highlights the importance of sequencing
and analyzing extraction controls, because without them
it is impossible to distinguish reagent contamination
from true microbial signals.
An extreme example of contamination detection

comes from virome analysis, where multiple displace-
ment amplification is used to amplify specimens. The
multiple displacement amplification method uses the
phage phi29 DNA polymerase, a highly processive phage
polymerase, to copy target DNA prior to library prepar-
ation. Shotgun metagenomic sequencing of a blank vir-
ome prep sample (unpublished data) returned hits on
phage phi29, but upon inspection, these turned out to
align exclusively to the polymerase gene (Fig. 6b). Evi-
dently the amplification method was so sensitive that we
recovered the gene used to produce a protein that we
had purchased from a commercial supplier and used in
our library preparation procedure.

Considerations during analysis
This article is mostly concerned with optimal procedures
for laboratory methods, but we do want to comment on
three issues in analyzing and interpreting microbiome data.

Handling of negative controls
It is essential to report compositions of negative control
samples as for all other samples. Work up negative con-
trol samples through the full pipeline. Sequence negative
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control samples even if library yield is low or undetect-
able. Show the lineages present in stacked bar graphs or
heat maps. Check negative control data into sequence
archives when experimental samples are deposited. Do
not just subtract lineages in negative controls and con-
sider the problem solved. There is no reason to think
that contaminating lineages are fully sampled without
specific evidence, and there can be cases where environ-
mental lineages are authentically present in samples and
functionally important.

Controlling multiple comparisons
High-throughput sequencing experiments commonly gen-
erate sequence reads attributed to hundreds of taxa. Re-
searchers wishing to know which taxa are potentially
associated with a difference in phenotype must make many
comparisons, each time testing a null hypothesis of no dif-
ference in taxon abundance. In addition, studies will often
involve multiple types of clinical data, allowing myriad
comparisons over the microbiome data set. If the

acceptable false positive rate for the test is set at a certain
level (e.g., 5%), these repeated comparisons will raise the
chances of getting a false positive higher than that level. To
re-adjust the false positive rate back to the desired level, a
multiple testing correction must be used.
This type of problem—controlling for multiple compari-

sons—is well covered by the statistical literature. A conser-
vative approach is to ensure that none of the hypotheses
are falsely rejected, within a specified probability, using the
Bonferroni correction [120]. However, this method has
been shown to be unacceptably conservative, leading to
too many false negatives. A more popular approach is to
control for a pre-specified rate of false discovery (i.e., false
rejections of the null hypothesis). Benjamini and Hochberg
presented a method to control for the false discovery rate
in a series of independent tests [121], and this is the formu-
lation used in microbiome analysis software such as QIIME
[122] and Mothur [123]. Use of a multiple testing correc-
tion is strongly recommended whenever multiple compari-
sons are made.
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Fig. 6 Contamination in shotgun metagenomic data. a Lineages observed in shotgun metagenomic sequencing of negative control samples
using standard (DNeasy PowerSoil) and low-contaminant (QiaAmp UCP Pathogen) kits. b Detecting Bacillus phage phi29 polymerase reads in a
blank sample. Twenty-one reads from a blank sample aligned to the DNA polymerase gene (1145 to 2863 bp) of Bacillus phage phi29. The
protein was purchased as a reagent from a commercial supplier, suggestive of contamination of the protein with cloned DNA encoding the
polymerase gene used in protein over-expression
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Discovery and validation cohorts
Moving beyond single experiments, researchers can provide
better and more reliable evidence for a discovery by re-
producing the results in an independent cohort of samples.
The use of separate discovery and validation cohorts is
standard in genome-wide association studies, which are
also massively multivariate (e.g., [124].). Using this strategy
in the microbiome context, the experiment is first con-
ducted in the discovery cohort and taxa or gene types are
selected using a particular testing procedure. The validation
cohort is then analyzed to test only those results found to
be significant in the discovery cohort. The total number of
tests is thus drastically reduced in the validation cohort.
Several microbiome studies have used independent dis-

covery and validation cohorts to select taxa of interest for a
disease state. Sabino et al. identified three bacterial genera
associated with primary sclerosing cholangitis in a discovery
cohort and used their results to correctly classify 75% of
subjects in an independent validation cohort [125]. For-
slund et al. used separate cohorts to replicate their findings
of taxa altered in metformin-treated subjects with type 2
diabetes mellitus [126]. In a series of papers, a composite
index of bacterial taxon abundance in stool associated with
inflammatory bowel disease (IBD) was developed in one
group of subjects [73], and then found to distinguish IBD
from healthy controls in an independent follow-up study
[127]. Kelsen et al. applied the discovery-validation cohort
design to determine differences in the subgingival micro-
biota between children with Crohn’s disease and healthy
controls [128], and successfully demonstrated reproducible
taxa. Additionally, they were able to distinguish taxa that
were associated with antibiotic use from those associated
only with the disease.

Conclusions
Summarizing the considerations above, we can make
several recommendations for the design and execution
of microbiome studies.

� For analysis, multiple confounding factors need to
be taken into account, including antibiotic use, age,
sex, diet, geography, and pet ownership.

� In animal studies, cage effects can dominate over
what may seem to be extreme interventions. Thus, it
is critical to set up each condition to be studied in
multiple cages, so that the caging variable can be
isolated and accounted for.

� Although we recommend storing samples, especially
fecal samples, at −80 °C immediately after collection
for most accurate results, alternative storage
methods for field studies also lead to results with
relatively small deviations. For new sample types, it
will be wise to test for changes during storage under
study-specific storage conditions.

� In a cross-sectional study, it is essential to know
whether the time point sampled will be representa-
tive. For example, the healthy adult gut microbiota
does not change radically over short time scales, but
that of the vagina sometimes does. Therefore, it is
important to assess the relationship of possible lon-
gitudinal dynamics to the question posed.

� Be energetic in creating and analyzing negative
controls—DNA extraction kits usually come with
contaminants, and contamination may vary between
suppliers and even between batches of the same kit.

� Use positive controls for each batch of samples.
Mock communities are valuable for this, and the
simple synthetic DNA controls presented here
(Additional file 2) are also quite useful. Place
controls asymmetrically in purification plates to
verify proper sample tracking through the DNA
purification and library preparation procedures.

� Low microbial biomass samples present many
challenges. When starting a study that might involve
low microbial biomass samples, it is essential to
quantify the microbial load in the samples to
understand the extent of the challenge. QPCR of
total 16S rRNA gene copies can be used for this
purpose, as can conventional plating assays if
applicable. In an experiment that may involve low
biomass samples, start with the null hypothesis that
all sequence data reflects contamination only, and
ask whether this idea can be rejected in a statistical
analysis of the data.

� Be realistic about “data dredging,” that is, imposing a
rigorous statistical method to control multiple
comparisons.

� Lastly, if affordable, it greatly strengthens a study to
assess effects in separate discovery and validation
cohorts.

There is no question that the human microbiota are
critical for health and disease—by attending to the above
challenges, one can generate high quality data to drive
new discoveries in this exciting field.

Additional files

Additional file 1: Supplementary methods. (PDF 1926 kb)

Additional file 2: DNA sequences for gene block control samples.
(XLSX 11 kb)
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