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The vaginal microbiota, human
papillomavirus infection and cervical
intraepithelial neoplasia: what do we know
and where are we going next?
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Abstract

The vaginal microbiota plays a significant role in health and disease of the female reproductive tract. Next-generation
sequencing techniques based upon the analysis of bacterial 16S rRNA genes permit in-depth study of vaginal microbial
community structure to a level of detail not possible with standard culture-based microbiological techniques. The
human papillomavirus (HPV) causes both cervical intraepithelial neoplasia (CIN) and cervical cancer. Although the virus is
highly prevalent, only a small number of women have a persistent HPV infection and subsequently develop clinically
significant disease. There is emerging evidence which leads us to conclude that increased diversity of vaginal microbiota
combined with reduced relative abundance of Lactobacillus spp. is involved in HPV acquisition and persistence and the
development of cervical precancer and cancer. In this review, we summarise the current literature and discuss potential
mechanisms for the involvement of vaginal microbiota in the evolution of CIN and cervical cancer. The concept of
manipulation of vaginal bacterial communities using
pre- and probiotics is also discussed as an exciting prospect for the field of cervical pathology.
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Background
Cervical cancer, the commonest infection-associated
neoplasm, and its premalignant precursor cervical
intraepithelial neoplasia (CIN), are caused by strains of
the human papillomavirus (HPV). Over 100 subtypes of
HPV exist with 13 being identified as high risk (high-risk
HPV; hrHPV) and causal of cervical cancer in 100 % of
cases [1]. HPVs-16 and -18 are the most oncogenic and
prevalent of these and are responsible for around 70 % of
cases [2]. The peak age for infection in girls is around
20 years. It is estimated that 80 % of sexually active
women will have been infected at some point by age 50
[3]. Over 90 % of HPV infections are transient, being
cleared by an incompletely understood immune response

within 6–18 months [4], although re-infection with the
same or different HPV subtypes can occur [5]. Persistence
of the virus is essential for development of high-grade
CIN and cervical cancer and factors that correlate with
higher persistence rates include age, immunodeficiency,
smoking, oral contraceptives and Chlamydia trachomatis
infection. Emerging evidence indicates that cervicovaginal
microbiota plays a substantial role in the persistence or re-
gression of the virus and subsequent disease. This review
will summarise this evidence, discuss possible mechanisms
linking vaginal bacteria with cervical pathology and finally
consider the potential for future therapeutic strategies.
Bacteria account for 50 % of the cells of the human body,

and together with archaea and lower eukaryotes are col-
lectively termed ‘human microbiota’ [6, 7]. Due to the limi-
tations of culture-based techniques [8], the composition of
microbiota in different body compartments is increasingly
studied through the use of next-generation sequencing
(NGS) techniques. This may involve shotgun metagenomic
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sequencing of all of the DNA in a biological samples
(human and bacterial) but most commonly involves ampli-
fying, sequencing and analysing specific regions of bacterial
16S rRNA genes, although other rRNA genes (18S for
eukaryotic microbes) or genomic regions (for viruses) can
be used. A variety of bioinformatics tools and platforms are
used to assign resulting sequences to specific microbial
taxa at different taxonomic levels as well as for in-
depth phylogenetic analysis of microbial community
structure. There are several excellent reviews covering
these topics in greater depth [6, 9, 10], which is beyond
the scope of this review.
The link between health, disease and the human

microbiota is a fast-moving and contentious area of
research, and an appreciation of the variation in micro-
biota composition amongst individuals is expanding our
understanding of the pathophysiology underlying a
variety of diseases affecting many body systems, from
colorectal cancer [11, 12] to atopic dermatitis [13]. In
the majority of human body sites to be examined to
date, highly diverse microbial communities are generally
considered a signature of health [14, 15]. However, in
the case of the female reproductive tract, health is more
commonly associated with low microbial diversity and
dominance by only one or a few species of Lactobacillus
[16–18]. Ravel and co-workers demonstrated that this
concept is broadly observed in the majority of repro-
ductive age women; a significant proportion harbour
comparatively diverse vaginal bacterial communities
[17]. In their study, vaginal samples collected from 396
ethnically diverse reproductive age women were analysed
using Roche 454 FLX-based sequencing of bacterial 16S
rRNA genes. In total, 282 taxa were identified and, using
hierarchical taxonomic clustering, the vaginal microbial
profile of each woman could be classified into a total of
five ‘community state types’ (CSTs), which have subse-
quently been used by numerous other studies [16, 19, 20].
CSTs I, II, III and V are characterised by dominance of
Lactobacillus crispatus, L. gasseri, L. iners and L. jensenii
respectively and tend to have low species diversity and
evenness. In contrast, CST IV is typically devoid of Lacto-
bacillus spp. and instead enriched with strict anaerobic
species often associated with bacterial vaginosis (BV)
including Gardnerella, Megasphera, Sneathia and Prevo-
tella. As will be discussed below, the structure of the vagi-
nal microbiota (VMB) is dynamic and transitioning
between CSTs can occur. In the vagina, the most
common transition observed is from CST III to CST
IV [21], which suggests that L. iners may be less able
to inhibit colonisation of strict anaerobes and patho-
bionts compared to other Lactobacillus spp. [21] or
because L. iners appears more capable of surviving
and adapting to a wide range of pH and other meta-
bolic stress-related conditions due to the constitutive

and inducible expression of genes not seen in other
lactobacilli [22, 23].
BV is a polymicrobial disorder characterised by a

microbial community structure consistent with CST IV;
that is, by diminished levels of Lactobacillus spp. with
associated overgrowth of anaerobes, particularly Gard-
nerella, Prevotella and Peptostreptococcus species [24].
The prevalence of BV is around 9 % in the UK [25] and
up to 29 % in the US [26]. The Hay/Ison criteria used
for diagnosis of BV in the UK is largely based on the
presence or absence of both Lactobacillus and Gardner-
ella or Mobiluncus morphotypes [27]. BV has previously
been correlated with higher incidence, prevalence and
persistence of HPV infection and with development of
CIN [28–31]. However, other studies did not find a posi-
tive correlation between CIN and BV [32–34], which
may partly be explained by the lack of objective diagnos-
tic tests for BV, the reliance on subjective scoring
systems [35] and the heterogeneity of BV itself.

Factors influencing vaginal microbiota composition
The composition of vaginal microbiota is influenced by
numerous factors. Ethnicity is a major intrinsic factor
known to be significantly associated with variance in
community composition, with Caucasian and Asian
women displaying a significantly greater prevalence of
Lactobacillus spp. dominant microbiota, compared to
Hispanic and Black women [17]. These differences may
be due to genetic factors that influence mucosal immun-
ity or metabolic pathways, which result in preferential
conditions for particular species, and could also be due
to variation in differing hygiene practices. Menstrual
hygiene practices are significantly influenced by cultural
and social factors [36], and vaginal douching, discussed
below, was reported by 22 % of the 3739 American
women sampled in a large representative cohort [37],
and is twice as common in Black women, compared to
Caucasians [38]. Female hormones also have a major
impact on both the structure and stability of vaginal
microbial communities. While the human vagina is
thought to be initially sterile at birth, rapid colonisation
with Lactobacillus spp. occurs supported by maternal
oestrogen. Reduced oestrogen levels 3–4 weeks post
birth correspond with a reduction in vaginal Lactobacil-
lus and increased species diversity with enrichment of
strict anaerobe and enteric species, which is maintained
until puberty [39]. Increased oestrogen and progesterone
secretion preceding menarche drives reduced VMB
diversity and increased relative abundance of Lactobacil-
lus spp. [40]. Throughout a woman’s reproductive age,
fluctuation of VMB composition can be linked to the cyc-
lical secretion of oestrogen and progesterone throughout
the menstrual cycle. Highest diversity and instability is
observed at the time of menstruation [41, 42] which
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oestrogen and progesterone levels are at their lowest. The
presence of menstrual blood also augments the com-
position of the vaginal mucosa and surrounding envir-
onment, leading to depletion of certain species and
enrichment of others. Greatest stability of VMB struc-
ture over the menstrual cycle is observed at the time
of the oestrogen peak, followed by the progesterone
peak a few days later [41]. Following menopause, re-
duced oestrogen and resulting vaginal atrophy are
thought to lead to Lactobacillus spp. depletion and
increased diversity [19]. Consistent with these find-
ings, we have recently shown that the postpartum
period of pregnancy, which involves a 100–1000-fold
decrease in circulating oestrogen concentrations, is
associated with a significant increase in vaginal micro-
bial diversity and richness [16]. The mechanism by
which hormones drive vaginal microbial composition is
yet to be fully elucidated, but Lactobacillus spp. domin-
ance appears to be strongly influenced by oestrogen-
driven maturation of the vaginal epithelium, which leads
to the accumulation of glycogen in vaginal epithelia [43].
Host α-amylase, present in vaginal mucosa, metabolises
the glycogen to simple sugar products such as maltose,
maltotriose and maltotetraose that appear to preferentially
support Lactobacillus spp. colonisation [44].
The widespread use of synthetic hormones for

contraceptive purposes also has an impact on the com-
position of vaginal microbiota. Meta-analysis has shown
that hormonal contraceptive use is associated with a 31
and 32 % reduction in recurrent and prevalent BV and
18 % reduced risk of incidence [45]. The study included
both combined hormonal contraceptives (combined
oral contraceptive pills and vaginal NuvaRing®) and
progesterone-only hormonal contraceptives (progester-
one-only pills, depot medroxyprogesterone acetate,
Mirena® intrauterine devices and implants). Neither
combined nor progesterone-only preparations were
shown to be more protective than the other. Besides
the use of hormonal contraceptives, other environmen-
tal factors known to influence VMB composition in-
clude smoking [46] and recent intercourse [47], both of
which are associated with reduced relative abundance
of L. crispatus and increase species diversity. Vaginal
douching, particularly after menstruation, has been
shown to significantly increase the risk of BV [48], and
cessation of the practice may reduce the risk of BV
[49]. A recent study of 1271 American women has also
shown douching to increase the risk of HPV infection
with high-risk subtypes in particular [50]. Interestingly,
the authors of a meta-analysis concluded that douching
may increase the risk of CIN and cervical cancer [51],
which may be due to the process resulting in an in-
creased bacterial diversity, which as discussed above is
associated with cervical disease.

Vaginal microbiota and HPV/CIN/cervical cancer
Lee and colleagues were the first to use NGS to examine
the impact of HPV infection on VMB composition in a
cross-sectional cohort of 912 women participating in a
Korean twin study, which included 16 premenopausal,
monozygotic twin pairs, 9 of whom were HPV discord-
ant. In the latter group, the investigators observed a pro-
found difference in the VMB structure between twins,
with HPV-positive women having higher species diver-
sity and significantly less Lactobacillus spp. presence
compared to their uninfected twin [52]. Furthermore,
they identified Sneathia spp. to be a microbiological
marker of HPV infection (Table 1).
In a longitudinal study, Brotman and co-workers stud-

ied a North American cohort of 32 sexually active,
premenopausal women over the course of 16 weeks
using self-sampling at twice-weekly intervals [53]. From
a total of 930 samples, women with CSTs III and IV
were most likely to be HPV positive (71 and 72 %,
respectively) (Table 1). In addition to examining the link
between the vaginal microbiota and HPV acquisition
and persistence, Brotman and colleagues also suggested
that CST II, dominated by L. gasseri, may be associated
with the most rapid clearance of acute HPV infection.
The authors defined rapid clearance as transition from
HPV negativity to positivity, and back to negativity, and
used continuous time multi-state Markov modelling to
calculate adjusted transition rate ratios. Such an obser-
vation might point to L. gasseri as a potential therapeutic
species for maintaining cervical health; however, it is
pertinent to note that only two of the 32 women had a
predominantly CST II VMB, and that two additional
women in the study with CST III and CST IV VMBs
also exhibited the same rapid patterns for acquisition
and clearance over the 16-week study period. Further
studies are necessary to confirm temporal relationships
between vaginal microbiota and HPV infection and to
determine whether any difference exists in the dynamics
of high- and low-risk HPV subtypes, which is most
clinically relevant.
Several additional cross-sectional studies have recently

been undertaken to characterise the VMB in women
with cervical lesions. We have recently studied 169
women in the UK (20 normal controls, 52 low-grade
squamous intraepithelial lesion (LSIL), 92 high-grade
squamous intraepithelial lesion (HSIL) and five invasive
cervical cancer (ICC)) and showed that increasing sever-
ity of CIN was associated with higher VMB diversity and
decreased relative abundance of Lactobacillus spp. [54]
(Table 1). A step-wise increase in prevalence of CST IV
with increasing disease severity was also observed. While
the normal healthy controls in this study displayed 10 %
prevalence of CST IV, consistent with previous studies
of disease-free individuals [17], the prevalence of CST
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Table 1 Characteristics of studies exploring the association of HPV infection and cervical preinvasive and invasive cervical disease to
the vaginal microbiome using next-generation sequence techniques

Study Summary of findings Study characteristics

Lee et al. [52] Summary of findings
− HPV positivity = higher diversity and lower proportion of
Lactobacillus spp. compared to HPV-negative women (19
HPV-positive women vs 26 HPV-negative women)

− Sneathia spp. = microbiological marker of HPV infection
(19 HPV-positive women vs 26 HPV-negative women)

− L. iners reduced in HPV-positive vs negative monozygotic
(MZ) HPV-discordant twins (9 twin pairs, 18 women)
(P = 0.03)

Participants: 912 women who participated in the Healthy
Twin Study, a part of the Korean Genome Epidemiology
Study; 68 female twins, their mothers and sisters including
9 HPV infection-discordant MZ twin pairs without CIN and
45 premenopausal women with or without HPV infection
Sexual history meta-data: not reported
VMB sampling: clinician-collected high vaginal swabs
HPV testing technique: MY09/MY11 and GP5+/GP6+, PCR
amplicons of 450 and 150 bp and HPV typing (high vs low
risk)
NGS technique: 16 s rRNA gene regions: V2 and V3, primers
barcoded: 8F and 534R, platform: Roche 454 Life Sciences
FLX Titanium

Brotman et al. [19] − CST was significantly associated with remission of HPV
(P = 0.008)

− CST IV-A higher transition to HPV positivity compared
to CST I (aTRR: 1.86, 95 %CI 0.52–6.74)

− Fastest remission of HPV infection - CST II (aTRR: 4.43,
95 % CI 1.11–17.7 when compared to CST I)

− Slowest remission of HPV infection = CST IV-B (aTRR: 0.33,
95 % CI 0.12–1.19 when compared to CST I)

Participants: premenopausal women taking bi-weekly
samples over 16-week period as part of a douching
cessation study; 5 consistently HPV negative, 2 positive for
1 HPV subtype, 25 positive for 2 or more HPV subtypes
Sexual history meta-data: monogamous relationship, number
of lifetime sexual partners and daily diary including frequency
and type of intercourse and type of contraception used
VMB sampling: mid-vaginal swabs, self-sampling
HPV testing technique: Roche Linear Array HPV Genotyping
Test (37 high- and low-risk subtypes)
NGS technique: 16 s rRNA gene regions: V1–V2, primers
barcoded: 27F and 338R, platform: Roche 454 Life Sciences
FLX Titanium machine

Mitra et al. [54] − CST IV associated with increasing disease severity
(normal = 10 %; LSIL = 21 %; HSIL = 27 %; ICC = 40 %)

− CST I negatively associated with increasing disease severity
(normal = 50 %; LSIL = 42 %; HSIL = 40 %; ICC = 20 %)
- higher levels of S. sanguinegens (P < 0.01), A. tetradius
(P < 0.05), P. anaerobius (P < 0.05) associated with HSIL vs LSIL

− Lower levels L. jensenii (P < 0.01) associated with HSIL vs LSIL

Participants: 169 premenopausal women attending
colposcopy clinic; 20 normal, 52 LSIL, 92 HSIL, 5 ICC
Sexual history meta-data: history of intercourse in 48 h
prior to sampling, type of contraception used
VMB sampling: clinician-collected, high vaginal swab
HPV testing technique: Abbott RealTime HR HPV assay
(Abbott M2000 platform)
NGS technique: 16 s rRNA gene regions: V1-V2, primers
barcoded: 27F and 338R, platform: Ilumina MiSeq

Oh et al. [56] Higher risk of CIN for the higher vs the lower tertile of
− A. vaginae, G. vaginalis, L. iners predominance with a minority
of L. crispatus: OR 5.80, 95 % CI 1.73–19.4 - A. vaginae: OR
6.63, 95 % CI 1.61–27.2

− Risky microbial pattern in presence of oncogenic HPV: OR
34.1, 95 % CI 4.95–284.5

Participants: 120 premenopausal women attending
gynaecological oncology clinics; 70 CIN cases: CIN1 (n = 55),
CIN2 or CIN3 (n = 15), controls: normal cytology (n = 25),
ASCUS (n = 25)
Sexual history meta-data: not reported, use of oral
contraception recorded
VMB sampling: clinician-collected digene cervical sampler
brush
HPV testing technique: hybrid capture II DNA Test (Qiagen,
Gaithersburg, MD, USA)
NGS technique: 16 s rRNA gene regions: V1–V3, primers
barcoded: not stated, platform: Roche/454 Genome
Sequencer Junior

Piyathilake et al. [57] Summary of findings
− L. iners and unclassified Lactobacillus spp. associated with
higher CIN2+ rates compared to diverse taxa unclassified
Lactobacillus spp, L. iners, Bifidobacteriaceae, Clostridiales,
Allobaculum (OR = 3.48, 95 % CI 1.27–9.55)

− Lactobacillaceae, Lactobacillus, L. reuteri and several
sub-genus level Lactobacillus OTUs higher in women
with CIN2+ vs CIN1

− DNA oxidative damage does not correlate with VM
structure

Participants: 430 hrHPV positive women aged 19–50 years
attending colposcopy clinics; 340 cases: CIN2 (n = 208), CIN3
(n = 132), 90 non-cases: all CIN1
Sexual history meta-data: not reported, use of oral
contraception recorded
VMB sampling: clinician-collected high vaginal swabs
(Merocel ophthalmic sponges)
HPV testing technique: Roche Diagnostics Linear Array
NGS technique: 16 s rRNA gene region: V4, primers
barcoded: not stated, platform: Illumina MiSeq

Audirac-Chalifour
et al. [55]

Summary of findings
− VMB diversity significantly higher in CIN and ICC
compared to normal, HPV-negative women (P = 0.006,
P = 0.036, respectively)

− L. crispatus and L. iners predominate in normal women
− Sneathia spp. predominate in women with CIN

Participants: 32 women aged 22–61 years, selected from a
biobank, recruited from the gynaecological service at a
National Cancer Institute; 20 normal (10 HPV negative,
10 HPV positive), 4 CIN (all HPV positive), 8 ICC (all HPV
positive)
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IV was two-, three- and four-fold higher in low-grade
CIN, high-grade CIN and invasive cervical cancers,
respectively. In addition, women with high-grade CIN
had significantly higher levels of Sneathia sanguinegens,
Anaerococcus tetradius and Peptostreptococcus anaero-
bius and lower levels of L. jensenii compared to those
with low-grade CIN [54]. A subsequent study of vaginal
microbiota and vaginal mucosal cytokine profiles in 32
Mexican women (20 normal, 4 with SIL and 8 with
cervical cancer) corroborated some of these findings al-
beit in a smaller sample size [55]. In this study, increased
diversity and a greater relative abundance of Sneathia
spp. and members of the closely related Fusobacterium
spp. were shown to be associated with increased disease
severity (Table 1). In particular, increased Fusobacterium
spp. relative abundance was associated with higher levels
of IL-4 and TGF-1β mRNA, which the authors sug-
gested may provide local immunosuppression facilitating
HPV immune evasion and disease development.
A study in 70 Korean women with CIN and 50 healthy

controls used regression modelling and calculated relative
excess risk due to interaction and synergy indices to deter-
mine biological interactions between vaginal microbiota
and hrHPV [56]. Their results were in accordance with
our study [54] and Audirac-Chalifour and co-workers
[55], concluding that women with CIN had a higher
vaginal diversity than healthy controls. The study also ide-
ntified presence of Anaerococcus vaginae, Garderella vagi-
nalis and L. iners in the absence of L. crispatus to be the
most high-risk combination for development of CIN, with
an odds ratio (OR) of 34.1 for CIN in the presence of
hrHPV, compared to hrHPV-negative women. The exist-
ence of A. vaginae alone was associated with an OR of
29.9 in HPV-positive women, compared to negative
women in the cohort. Interestingly, the OR of CIN in
hrHPV positive women with L. iners was 10.9 (Table 1).
Piyathilake and colleagues [57] have also studied

women with CIN (cytologically defined HSIL (n = 340)
vs LSIL (n = 90); all women were hrHPV positive) and

used the Dirichlet multinomial mixture model to
partition samples into four different metacommunities
(partitions 1–4), rather than the previously defined
CSTs. Unlike the three previously described studies, this
group did not find a high vaginal microbial diversity
(CST IV/BV-like VMB) to be associated with HSIL.
Partition 3 dominated L. iners and unclassified Lactoba-
cillus spp. had higher HSIL levels as compared to those
with diverse taxa unclassified Lactobacillus, L. iners, Bifi-
dobacteriaceae, Clostridiales and Allobaculum (partition
1) (OR = 3.48, 95 % CI 1.27–9.55) (Table 1). Such an
observation may arise due to ethnic differences between
studies. The authors also tested the hypothesis that
particular VMB structures may induce oxidative DNA
damage, through measuring 8-hydroxy-2′-deoxyguano-
sine (8-OHdG) levels; a well-characterised biomarker of
oxidative stress-induced DNA damage, which has previ-
ously been shown to be elevated in SIL compared to
healthy controls [58]; however, they did not find a
significant correlation.
All four studies in patients with CIN [54–57] are

observational studies, and with lack of longitudinal
data, it is only possible to demonstrate association
with disease states rather than causality. This has
been acknowledged as one of the current limitations
of ongoing research into the ‘oncobiome’; that is the
microbiota associated with cancer development [59].
Although Brotman and colleagues [53] have shown
that certain vaginal microbiota may increase a
woman’s chance of acquiring transient and persistent
HPV infections, there is much work to be done to in-
terrogate the sophisticated relationships between the
host, the microbiota and carcinogenesis. However, if a
causal link were to be established, the clinical impact
would be profound and open up the potential for
therapeutic strategies involving the manipulation of
the vaginal microbiota away from disease-causing spe-
cies or structures and towards those associated with
protection and health.

Table 1 Characteristics of studies exploring the association of HPV infection and cervical preinvasive and invasive cervical disease to
the vaginal microbiome using next-generation sequence techniques (Continued)

− Fusobacterium spp. in women with ICC
− Highest mean levels of IL-4 and TGF-β1 mRNA in
Fusobacterium spp. VMBs

Sexual history meta-data: age at first intercourse, number of
lifetime sexual partners, no sexual activity ‘in previous days of
the sampling’ (number of days not stated)
VMB sampling: cervical scraping swabs from normal women
and fresh cell biopsies from women with CIN and ICC
HPV testing technique: Seegene Anyplex II HPV HR Detection
assay
NGS technique: 16 s rRNA gene regions: V3–V4, primers
barcoded 347F and 803R, platform: Roche/454 Genome
Sequencer Titanium system

aTRR adjusted transition rate ratio, A. vaginae Atopobium vaginae, CI confidence interval, CIN cervical intraepithelial neoplasia, HPV human papillomavirus, hrHPV
high-risk HPV, HSIL high-grade squamous intraepithelial lesion, ICC invasive cervical cancer, L Lactobacillus, LSIL low-grade squamous intraepithelial lesion; MZ
monozygotic twins, NGS next-generation sequencing, OR odds ratio, OTUs operational taxonomic units, SIL squamous intraepithelial lesion, VM vaginal microbiome
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Potential mechanisms of vaginal microbiota-
mediated cervical health and disease
Recent observational cross-sectional studies support
the concept that CSTs III and IV, in particular, are
frequently linked with the presence of HPV infection
and development of preinvasive cervical disease states
[52–54]. While microbial diversity is considered to be
a sign of health in many body sites, highly diverse
vaginal microbiota are often considered atypical or a
state of dysbiosis and are associated with disease
states. However, there is a lack of investigation into
how exactly the vaginal microbiota could play a role,
and further mechanistic studies are warranted. Vaginal
Lactobacillus spp. prevent colonisation of bacterial
vaginosis-associated bacterial species through main-
tenance of a low pH [60–63] and bacteriocin produc-
tion [64–66]. This is important for maintenance of
the cervical epithelial barrier function that inhibits
entry of HPV to the basal keratinocytes [67]. When
BV-associated strict anaerobes are able to colonise,
they produce enzymes and metabolites, which may
compromise this barrier, facilitating HPV entry. They
also act on several cellular pathways that can enable a
persistent, productive viral infection and subsequent
disease development and progression [68–72]. Indirect
evidence generated by existing mechanistic studies in
vivo and in vitro in complementary fields and models
of BV, as well as studies of other viral genital infec-
tions, supports potential mechanisms that warrant
further investigation.

Vaginal pH, lactic acid and hydrogen peroxide
The observational studies discussed in this review all
point towards presence of specific species of Lactobacil-
lus spp. as potential protective factors against acquisition
and persistence of HPV and ultimately development and
progression of CIN. This genus is well known to express
enzymes capable of glycogen fermentation, which is
present at high levels in the oestrogenised cervical and
vaginal epithelium, thus producing large amounts of lac-
tic acid [73]. As a result, a strong correlation between
high Lactobacillus spp. relative abundance in the vagina
and low pH exists. This acidic environment can inhibit
growth of several potentially pathogenic species, such as
Chlamydia trachomatis, Neisseria gonorrhoeae and
Gardnerella vaginalis [60–63], yet provides optimal sup-
port for cellular metabolic function of the cervix and the
vagina [74]. In a study of 9165 Costa Rican women,
vaginal pH greater than 5 was shown to be significantly
associated with a 10–20 % increased risk of HPV positiv-
ity in premenopausal women [75]. The HPV E5 protein
responsible for viral transformation is known to be
particularly susceptible to low pH [76], which is one
plausible mechanism for this observation. Although a

low pH environment promoted by lactic acid may be
considered generally protective, HPV infection and de-
velopment of CIN may be additionally influenced by the
chemical structure of the lactic acid molecule itself.
Lactic acid is a chiral compound with a D- and L-
isomer, with the former being predominately produced
by L. jensenii, L. crispatus and L. gasseri. However, the
L-isomer of lactic acid is produced by the vaginal epithe-
lium, L. iners and various anaerobes associated with
dysbiosis [77]. Women with CSTs III and IV therefore
exhibit a higher ratio of L- to D-lactate, which can lead
to increased expression of extracellular matrix metallo-
proteinase inducer (EMMPRIN) and activation of matrix
metalloproteinase (MMP-) 8. This expression could feas-
ibly lead to altered cervical integrity [77] and facilitate
entry of HPV to the basal keratinocytes, where the
virus thrives. Additionally, high concentrations of D-
lactate produced by L. crispatus-dominant microbiota
have been recently shown to increase cervicovaginal
mucus viscosity and enhance its viral particle trapping
potential [78].
Previous studies have shown higher rates of bacterial

vaginosis in women with lower vaginal levels of hydro-
gen peroxide (H2O2) producing bacteria [79]. Unlike
the majority of Lactobacillus spp., L. iners is unable to
produce H2O2, which has also been shown to have
antibacterial and antiviral properties [80–82]. However,
further studies have shown that under the hypoxic
conditions of the vagina, bacteria are unable to make
significant levels of H2O2, which is subsequently
present at low levels in the human vagina, and these
physiological levels are unable to inhibit growth of
BV-associated species in vitro [83, 84]. The observa-
tion that L. iners often predominates in the presence
of HPV infection [53] and CIN [56, 57] may also be
linked to the relative instability of this CST in com-
parison to other Lactobacillus spp.-dominant CSTs
[21], allowing growth of strict anaerobes resulting in
transition to CST IV, which as previously discussed is
commonly found in association with dysplasia [54–56].
However, vaginal lactobacilli can exhibit cytotoxic
effects on cervical tumour cells in vitro, independent
of pH and lactic acid, without the same effects on
normal cervical cells [85]. This data suggests that L.
iners has many properties that differ from most other
Lactobacillus spp., which could explain why this spe-
cies does not prevent strict anaerobic growth well, and
suggests additional or alternative protective mecha-
nisms against dysplasia on the part of other Lactoba-
cillus spp.
L. crispatus is infrequently found in coexistence with

other bacterial species, tending to be either strongly
dominant, or absent, and is the least likely to transition
into CST IV [41]. This led us to conclude that the
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species is strongly resistant to co-colonisation of other
bacteria, and thus its presence is consistently associated
with health. Women with this microbiota structure not
only have the lowest pH of all five CST’s [17], they are
also less likely to be infected with bacterial sexually
transmitted infections (STIs), Herpes simplex virus
(HSV)-2 and HIV, as well HPV [86]. It is thus unsurpris-
ing that the presence of L. crispatus (CST I) is negatively
correlated with CIN [56].

Bacteriocin production
Besides influencing pH, as discussed above, species that
are protective may inhibit pathogen growth through ex-
pression of bacteriocidal and bacteriostatic proteins such
as bacteriocins [64] which are through to have evolved
as a result of ecosystem competition. Gasserin is an ex-
ample of such a bacteriocin with Gram-negative and
-positive activity that was first isolated from L. gasseri
but has since been found to be produced by other strains
of L. crispatus and L. reuteri. [64–66]. Biosurfactants are
another group of peptides excreted by bacteria that can
alter surface tension and thus bacterial adhesion thereby
preventing formation of biofilms, which are associated
with overgrowth of pathogenic anaerobes, in particular
G. vaginalis [87]. Recently, strains of L. crispatus have
been shown to excrete Lactobacillus epithelium adhesin
(LEA), a compound that mediates adhesion to the intes-
tinal and genital mucosa, but additionally inhibits pilus-
mediated adhesion of G. vaginalis [88]. There is a
notable lack of published evidence to suggest that L.
iners produces many of the protective peptides men-
tioned above. Lack of protective peptides may account
for the comparatively high rates of transition observed
between L. iners-dominant microbial communities and
CST IV [41]. Microbially produced bacteriocins and bio-
surfactants may also interrupt viral infiltration [89, 90],
but further work is required to understand mechanisms
and the relevance to HPV infection.

Disruption of mucosa and epithelial integrity may aid
viral entry
Recently, Borgdorff and colleagues proposed modula-
tion of the vaginal epithelial barrier as an important
driver of infection. Using samples derived from a co-
hort of 50 Rwandan sex workers, they examined
changes associated with dysbiosis, which causes in-
creased acquisition of HIV infection, using NGS and a
proteomics approaches [67]. Irrespective of HIV status,
dysbiosis resulted in disruption of key vaginal epithe-
lial cytoskeletal proteins, with increased cell death,
which implies epithelial cell damage and desquam-
ation. This change would potentially facilitate entry of
HPV into the basal epithelial cells of the cervical
transformation zone where the virus thrives and CIN

develops [91]. The next stage in viral persistence is
replication and shedding of viral particles. BV is asso-
ciated with higher shedding of HIV and HSV-2 [92],
and G. vaginalis in particular has been shown to in-
duce HIV replication in vitro [93]. It is therefore
plausible that a similar mechanism may exist for HPV,
and that dysbiosis, paucity of Lactobacillus spp. or a
combination of the two, creates an environment that
promotes the viral life cycle, persistence of the infec-
tion and ultimately development of dysplasia. BV is
commonly diagnosed based on the presence of a char-
acteristic thin, watery foul-smelling vaginal discharge
[94], which is thought to arise from squamous cell ex-
foliation in response to amines produced by particular
bacterial species [95] and mucus breakdown. Sialidases
are a group of mucin-degrading enzymes produced
mainly by Prevotella and Bacteroides spp. and are
found at significantly higher levels in women with BV
[96]. Dysbiosis may also result in decreased mucus
production [67] and a subsequent decrease viral trap-
ping through antibody capture as well as increased ex-
posure of the cervical epithelium. There also exists
evidence that inflammation plays an important role in
dysbiosis-induced cervical disease. Clinical studies have
shown that levels of vaginal proinflammatory cytokines
are higher in women with dysbiosis [69, 70] which can
result in chronic inflammation; a well-known factor in
carcinogenesis of numerous tissues in the body [97].

Oxidative stress
Dysbiosis has also been shown to result in higher levels
of oxidative stress [68], which can generate reactive
oxygen species (ROS) which subsequently cause double-
stranded DNA breaks in both the HPV episome and
host genome, thus assisting HPV integration and ultim-
ately neoplastic transformation. The HPV E6 oncopro-
tein [98] is also known to use this mechanism which
results in the loss of E1 and E2 genes, and subsequently
uncontrolled transcription of E6 and E7 enabling in-
creased cellular proliferation, and decrease apoptosis
[99]. Despite this evidence, a recent study by Piyathilake
and co-workers [57] did not report any significance asso-
ciated between VMB composition and oxidative stress-
induced DNA damage.

Cellular targets and a role for specific bacterial species
It is currently unclear if dysbiotic vaginal microbial com-
munities act in synergy with HPV to manipulate its cel-
lular targets such as p53, pRB, survivin and hTERT [100]
or whether this occurs independently. However, evidence
points towards the likelihood that particular species have
a pathological role in HPV acquisition and persistence,
rather than dysbiosis as a whole. G. vaginalis is com-
monly found in CST IV [17] and often presents at
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relatively high relative abundance in the adolescent va-
gina [40]. The immature adolescent cervix is known to
be more susceptible to HPV infection compared to older
women, and this correlates positively with the rate of
squamous metaplasia [101]. It is plausible that the higher
levels of G. vaginalis may play a role during this period
of greater susceptibility. Sneathia spp. have frequently
been identified in association with HPV positivity [52]
and with CIN and cervical cancer [54, 55]. Furthermore,
Sneathia spp. have also been associated with adverse ob-
stetric outcomes including miscarriage and preterm
labour [102, 103]. Previously, Nawrot and colleagues
used a PCR-based method to show Leptotrichia amnio-
nii (now re-named Sneathia amnii) is associated with
cervical cancer but not HPV infection or CIN [104]. The
species was, however, not unique to women with cancer,
suggesting that it may play a role in carcinogenesis,

rather than occurring as a consequence of the disease.
Sneathia spp. belong to the Fusobacterium genus, which
has further been implicated in colorectal carcinogenesis
[12, 105, 106] through activation of proinflammatory
pathways and inhibition of immunocytotoxicity [107].
Fusobacterium spp. produce FadA, a virulence factor,
which is capable of activating the WNT signalling path-
way, a key cell survival and proliferation pathway which
is found to be dysregulated colorectal carcinogenesis
[108] and cervical cancer [71]. Fusobacteria are also im-
plicated in the modulation of immunomodulatory path-
ways. For example, F. nucleatum DNA levels have been
shown to be inversely proportional to CD3+-T cell
counts in colonic mucosa [109], which is interesting
given that aberrant CD3+-T cell signalling and function
has been observed in cervical cancers [72] and relapsing
disease [110] (see Fig. 1).

Fig. 1 Summary of potential mechanisms associating the VMB with cervical disease. a VMB structure appears to be associated with acquisition
and persistence of HPV infection, and CST II in particular is associated with most rapid clearance of an acute HPV infection. b Dysbiosis can result
in a proinflammatory environment, which can facilitate several of the necessary steps in viral transformation including E6 and E7 expression,
genomic instability, viral integration and telomerase activation, which are necessary for carcinogenesis. c Higher diversity with lower Lactobacillus
spp. content has been associated with increasing severity of CIN. Particular species associated with high diversity VMBs may produce sialidases
which cause mucus breakdown, predisposing the cervical epithelium to tissue damage, as well as producing biological amines which are
responsible for oxidative stress; a key mechanism in carcinogenesis. Certain species Lactobacillus spp. have been shown to mop up these amines,
and therefore their presence may reduce the risk of oxidative damage. L. iners does not appear to share many of the protective mechanisms of
other Lactobacillus species and therefore appears intermediate in its ability to prevent cervical disease
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Probiotics, prebiotics and HPV
Probiotics are defined by the World Health Organisation
as ‘live microorganisms that, when administered in ad-
equate amounts, confer a health benefit on the host’. They
have been used successfully as an adjunct to traditional
antibiotics in BV to improve cure rates and prevent recur-
rence through their ability to replenish the depleted pool
of Lactobacillus spp. [111].
Metronidazole and clindamycin are the most commonly

prescribed antibiotics for BV. They target the overgrowth
of anaerobes but do not appear to have a mechanism of
action that would actively promote re-establishment of
Lactobacillus spp. Following successful metronidazole
treatment for BV, classified as improvement in Nugent
and Amsel’s clinical scoring systems, L. iners is often seen
to be the predominant re-colonisation species [112],
which may arise through expansion of an existing popula-
tion of this species. An oral preparation of Lactobacillus
rhamnosus GR-1 in combination with L. reuteri RC-14
was shown to increase the prevalence of Lactobacillus-
dominant vaginal microbiota, as well as improve BV cure
rates when given in combination with metronidazole
[113]. As neither of these are endogenous vaginal species,
the study provides evidence that oral administration of
Lactobacilli is capable of modulating vaginal microbial
structure. These orally administrated bacteria are thought
to reach the vagina through a poorly understood mechan-
ism involving transition via the anus and the perineal and
vulval skin [114]. A potential mechanism by which these
species modulate community structure involves L. reuteri
secretion of the bacteriocin, Gasserin [66], and L. rhamno-
sus produced Lactocin 160, a similar bacteriocin that is
particularly active against G. vaginalis. Interestingly, this
particular preparation has also been associated with in-
creased relative abundance of L. iners as shown using
NGS [115]. In a study of bacteria isolated from premeno-
pausal women, PCR-based techniques demonstrated that
L. gasseri negatively associated with L. iners and A. vagi-
nae [116]; two species which co-associate [116] and are
suggested to pose an intermediate and high risk for devel-
opment of CIN respectively [56]. This observation pro-
vides further evidence that L. iners is not always
associated with health, and this should be taken into con-
sideration when designing probiotic therapies, to ensure
that they do not promote dominance of this particular
Lactobacillus. Probiotics have also been suggested as an
intervention to promote HPV clearance, and in vitro and
in vivo evidence exist to support this technique. Treat-
ment of SiHA cells, an HPV-16-infected cervical cell line,
with Bifidobacterium adolescentis significantly reduced
the production of E6 and E7 mRNAs, suggesting that this
species may represent a novel therapeutic of virally trans-
formed cells [117]; however, the efficacy of this species as
a probiotic is yet to be proven in humans.

As described above, L. gasseri is associated with rapid
clearance of incident HPV infections [53]. This species,
along with L. crispatus, has also been shown to be cyto-
toxic to HPV-18-infected HeLa cervical cancer cells but
not to normal cervical cell lines, independent of pH or
lactate concentration, suggesting a more sophisticated
mechanism of action [85, 118]. Furthermore, a semi-
randomised, interventional study of 54 HPV-positive
women with low-grade cervical lesions showed that
women treated with oral L. caseii showed greater
clearance of HPV infections (29 vs 19 %) and were
significantly more likely to clear their cervical lesion
(60 vs 31 %), compared to an untreated cohort [119].
Prebiotics are indigestible carbohydrates, which include

the fructo-oligosaccharide (FOS) and gluco-oligosaccharide
(GOS) families, which promote the growth of healthy bac-
teria already present in the body. They have been most well
studied in the gastrointestinal tract, where they have been
shown to modulate microbiota composition, as well as exert
immunomodulatory effects independent of the microbiota
(reviewed in [120]). Several encouraging in vitro studies, and
a handful of small in vivo studies, suggest proof of concept
in the vagina. FOS and GOS have been shown to promote
the growth of L. crispatus, L. jensenii and L. vaginalis in
vitro but not Candida albicans, Escherichia coli or G. vagi-
nalis, with the investigators using high-performance liquid
chromatography (HPLC) to show that GOS and FOS could
not be used as energy sources by the three latter pathobionts
[121]. GOS, applied as an intravaginal gel, has been shown
in a randomised controlled trial of 42 women, immediately
following metronidazole treatment for BV, to result in a
significant reduction in Nugent scores at 8 and 16 days of
treatment [122]. Konjac glucomannan hydrolysates (GMH)
have similarly been shown to promote Lactobacilli spp. col-
onisation in women with C. albicans infection [123]. Beyond
promotion of bacterial growth through acting as a growth
substrate, mannose and GMH have been shown to inhibit
adhesion of E. coli to human cheek epithelial cells in vitro
[124], suggesting additional mechanisms of pathobiont
inhibition. When concomitantly administered with probio-
tics in a synbiotic preparation, they may enhance the growth
of probiotic species as well as their bacteriocin production
[125]. These results are encouraging and represent a very
cheap, safe intervention with few side effects for a disease
that cannot otherwise be treated without the risk of signifi-
cant reproductive and obstetric morbidity [126–130]. While
further studies are required to both understand the mecha-
nisms by which the vaginal microbiota plays a role in the
pathophysiology of cervical disease, and to identify the most
protective species or strain to defend against HPV-induced
dysplasia and neoplasia, and their therapeutic doses, pre-
and probiotics may offer a practical intervention for the
developing world, where cervical cancer is a major cause of
female cancer-related mortality [131].
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Limitations of current literature and areas for
future study
The ability to derive a causal link between vaginal
microbiota and HPV infection and CIN/cervical cancer
is limited by the cross-sectional nature of most studies
undertaken in this area. This difficulty is further com-
pounded by the slow natural history of the disease, with
time from acute HPV infection to high-grade CIN taking
years to decades. In addition, numerous other con-
founders can impact results including smoking [46] and
vaginal intercourse without the use of barrier contracep-
tion [47], which have both been associated with deple-
tion of Lactobacillus spp. The impact of other sexual
practices such as oral intercourse, use of lubricants and
having multiple sexual partners is poorly understood,
and the information gathered in the current observa-
tional studies is very heterogeneous as highlighted in
Table 1. This information may represent major con-
founders affecting the VM composition as well as the
presence of oncogenic HPV infections and should be
clearly documented in future reports.
Furthermore, many of the published studies describe

the VM in relatively small cohorts with absent or limited
representation of a sizeable group of normal, HPV-
negative controls for the described comparisons. Oh and
colleagues used samples collected from women with both
low-grade and high-grade preinvasive disease and as con-
trols grouped women with normal and ASCUS cytology
irrespective of their HPV status [56], including women
that may harbour underlying higher grade disease [132].
Piyathilake and colleagues only compared hrHPV-positive
patients with CIN1 (non-cases) to those with CIN2 and
CIN3 (cases) and lacked a healthy control population [57].
Audirac-Chalifour and colleagues defined as normal
controls women with negative cytology and colposcopy,
irrespective of HPV status [55]. The study by Mitra and
co-workers was the only to group the compared popula-
tions according to cytology, histology and HPV status. The
authors present subgroup analyses including HPV nega-
tive women with normal/ASCUS/LSIL cytology separate
to those positive for hrHPV, although the samples in those
subgroups were small [54]. Studies must therefore be
appropriately designed to permit accurate interpretation
of data and ensure any observed changes in vaginal micro-
bial communities are directly associated with the path-
ology. Appropriately stored samples in historical biobanks
are thus a precious commodity, which may present an
opportunity to perform longitudinal studies to answer
these kinds of questions. There are however limitations as
these biobanks often use long interval sampling designs.
Prolonged intervals between samples may fail to describe
rapid changes in VMB composition occurring throughout
the disease process, while important meta-data such as
sexual history and smoking may be lacking.

A number of recent studies have led the scientific
community to re-think the traditional conceptual model
of the natural history of HPV. Previously regarded as a
viral infection which simply causes transient infections
or persists as a chronic infection based on studies con-
ducted with protracted sampling intervals, it has now
been shown that HPV status can fluctuate quickly over a
short time period, based on studies involving very
frequent testing over a short space of time [53, 133].
Whether this is due to detection and re-detection of
low-level persistent infections due to wavering loss and
regained immune tolerance, rather than true re-
infection, is currently unclear. A small study of HPV sta-
tus in 20 women has shown that HPV detection peaked
at days 7–11 of the menstrual cycle [134], which are the
days immediately following the time of highest VM di-
versity [41]. This suggests that it may be possible to cor-
relate fluctuations in HPV status with the changes in the
VM occurring as a result of the menstrual cycle to ex-
plain in role of the VM in the emerging, rapidly dynamic
model of infection. However, these studies have been
performed in normal, presumably healthy women, and
to our knowledge the temporal dynamics of HPV status
over a short period of time has not yet been studied in
women with known CIN. The current theories behind
the VM in cervical disease will require re-evaluation if
similar HPV dynamics are observed compared to that of
healthy women. Furthermore, integration of alternative
HPV tests for detecting DNA, such as mRNA and E6/E7
levels, into future microbiome studies may help us begin
to answer these important questions. In addition studies,
focus on the interplay between the microbiota and the
host immune system within these alternative conceptual
models on the natural history of HPV infection is also
required. It has recently been suggested that the immune
system contributes as little as 20 % towards viral clear-
ance, and that stem cell stochasticity plays the biggest
role, based on the integration of epidemiological data
with mathematical cellular modelling [135]. This model
may also explain the concept of latency and thus fluctu-
ating HPV status. How the VM may influence the sto-
chastic dynamics of basal epithelial cells however is
unknown.
Alternative approaches for the assessment of vaginal

microbiota and its interactions with the host immune sys-
tem may also offer useful means to monitor HPV acquisi-
tion, persistence and subsequent cervical dysplasia and
neoplastic transformation. For example, metabonomics,
defined as ‘the quantitative measurement of the dynamic
multiparametric metabolic response of living systems to
pathophysiological stimuli or genetic modification’ [136],
is emerging as a novel way to investigate the host-microbe
interaction through inspecting functional metabolic
changes associated with disease phenotypes [137, 138].
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Using nuclear magnetic resonance (NMR) or mass spec-
troscopy (MS) coupled to separation technologies, e.g.
HPLC, it is possible to identify particular metabolites or
pathways that are altered in association with the VMB
structure. This approach will not only increase our under-
standing of the impact of bacteria on host biochemical
and immune response, which is likely extremely complex
[138], but may also present the opportunity for develop-
ment of novel prognostic tests for triage of patients who
are most likely to develop a high-grade or cancerous
cervical lesion. The identification of such patients is one
of the biggest clinical challenges in current colposcopy
practice.
By definition, members of a particular bacterial species

have a total nucleotide identity of >70 % across their
genomes [139]. The remaining genome diversity gives
rise to the existence of different strains, which may have
different functional genes that induce different biological
properties. Further evidence is required in order to de-
termine whether only certain strains of a particular
bacterial species are either protective or pathogenic with
regards to HPV and cervical dysplasia, and a recent
study by Abdelmaksoud and colleagues [140] hints this
is very likely. The team compared strains of L. crispatus
that colonised women with, and without BV, demon-
strated considerable genomic diversity within the species
and identified several genes exclusive to the presence or
absence of BV [140]. These genes require further investi-
gation to help understand the protective mechanisms
exploited by certain bacteria, and other disease-associated
species should also be studies using metagenomic tech-
niques, which in turn will support development of appro-
priate probiotic preparations.
Afro-Caribbean women have a fourfold higher preva-

lence of CST IV VMBs compared to Caucasian and
Asian women [17]. They have also been found to have a
higher age standardised rates of cervical cancer (6.3–
11.2 per 100,000 women), compared to Caucasian and
Asian women (8.2–8.7 and 3.6–6.5 per 100,000, respect-
ively) in the UK [141] and the USA [142]. Although
there may be a slightly higher risk of invasive disease,
this does not correspond to the increase in the preva-
lence of CSTIV in black women, suggesting the presence
of a far more complex mechanism and interactions be-
tween the bacteria and the individual host beyond the
simple presence of CST IV that promotes or not HPV
persistence and cervical carcinogenesis. Future studies
will help to further explore these possible associations in
long-term samples and comprehend why particular
species or VM CSTs may be associated with health in
some but disease in others. Compliance with cervical
screening and many behavioural and social factors
may also explain the higher risk of invasive disease in
this ethnic group.

Pre- and probiotics clearly present an enticing novel
therapeutic approach to this disease, because they are
cheap, easy to administer, with a low side effect profile,
unlike the current gold standard treatment for high-grade
CIN, which involves a surgical method that carries signifi-
cant risk to future reproductive outcomes [126–130].
Furthermore, pre- and probiotic use would have an im-
pact in other areas of women’s health, with dysbiosis being
responsible for a two- to fourfold increase in risk of pre-
term birth [143], increased risk of miscarriage [143] and
increased rates of HIV transmission [144], which high-
lights the importance of investing time and resources into
exploring this therapeutic strategy.

Conclusions
The vaginal microbiota appears to play a role in the ac-
quisition and persistence of HPV in the human vagina
and in the subsequent development and progression of
CIN. There is a need for further longitudinal studies to
prove that these disease outcomes are influenced by
VMB composition. This information may present the
opportunity for development of novel therapeutic agents
in the form of probiotics, to prevent HPV infection, pro-
mote its clearance in infected women and negate the
risk of cervical dysplasia and future adverse reproductive
outcomes that are associated with the current treatment
methods [126–128]. Mechanistic studies are required to
identify the most protective species. Furthermore, it is
possible that only certain strains of a bacterial species
are able to protect or promote disease processes.
Alongside the bacterial microbiota, the virome is now

a new emerging area of interest. Although we have
known for many years that HPV is the aetiological agent
in precancerous and cancerous pathologies of the cervix
and lower genital tract, other viral genera present in the
normal vagina, alongside papillomaviridae, may be in-
volved in disease progression [145]. Furthermore, we are
aware of a symbiotic relationship between bacterial and
viral communities, which requires further investigation
specific to HPV and cervical pathology.
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