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Abstract

Background: Reduced microbial diversity in human intestines has been implicated in various conditions such as
diabetes, colorectal cancer, and inflammatory bowel disease. The role of physical fitness in the context of human
intestinal microbiota is currently not known. We used high-throughput sequencing to analyze fecal microbiota of
39 healthy participants with similar age, BMI, and diets but with varying cardiorespiratory fitness levels. Fecal short-
chain fatty acids were analyzed using gas chromatography.

Results: We showed that peak oxygen uptake (VO2peak), the gold standard measure of cardiorespiratory fitness,
can account for more than 20 % of the variation in taxonomic richness, after accounting for all other factors,
including diet. While VO2peak did not explain variation in beta diversity, it did play a significant role in explaining
variation in the microbiomes’ predicted metagenomic functions, aligning positively with genes related to bacterial
chemotaxis, motility, and fatty acid biosynthesis. These predicted functions were supported by measured increases
in production of fecal butyrate, a short-chain fatty acid associated with improved gut health, amongst physically fit
participants. We also identified increased abundances of key butyrate-producing taxa (Clostridiales, Roseburia,
Lachnospiraceae, and Erysipelotrichaceae) amongst these individuals, which likely contributed to the observed
increases in butyrate levels.

Conclusions: Results from this study show that cardiorespiratory fitness is correlated with increased microbial
diversity in healthy humans and that the associated changes are anchored around a set of functional cores rather
than specific taxa. The microbial profiles of fit individuals favor the production of butyrate. As increased microbiota
diversity and butyrate production is associated with overall host health, our findings warrant the use of exercise
prescription as an adjuvant therapy in combating dysbiosis-associated diseases.

Keywords: Intestinal microbiota, Microbial ecology, Physical activity, Exercise, Butyrate, Community diversity,
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Background
The interactions between humans, their environment,
and intestinal microbiota form a tripartite relationship
that is fundamental to the physiological homeostasis and
overall health of the host [1]. The human intestinal
microbiota aids their host in several important biological
functions such as digestion, absorption, stimulating

immune responses, and protection against enteropatho-
gens. The bacteria break down partially digested
complex carbohydrates via fermentation and produce
short-chain fatty acids (SCFAs) such as butyrate, acetate,
and propionate as by-products. These SCFAs act as the
primary food source of the colonocytes which consume
up to 10 % of the dietary energy expenditure in humans.
In particular, butyrate has been shown to play a critical
role in overall gut homeostasis and health [2]. Lasting
disturbances in the microbial community composition,
termed dysbiosis, can have deleterious health effects in
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the host (reviewed in [3]). Gut microbiome diversity has
emerged as a candidate indicator of overall host health.
Low community richness has been correlated with meta-
bolic markers such as adiposity, insulin resistance, and
overall inflammatory phenotypes [4], as well as gastro-
intestinal (GI) conditions such as inflammatory bowel dis-
ease [5], Clostridium difficile infection [6], colorectal
cancer [7], and irritable bowel syndrome [8]. As a result,
considerable research in recent years has focused on un-
derstanding and developing strategies to promote overall
GI health via community manipulation in attempt to re-
solve dysbiosis-associated diseases.
Various extrinsic variables such as stress, probiotic and

antibiotic use, alcohol consumption, and diet have been
identified as factors that can instigate changes in the
microbiome [1, 9]. The link between physical activity and
gut microbiota however is currently not well understood.
Matsumoto et al. (2008) first identified increases in butyr-
ate levels in cecum of physically active rats which they
suggested was a result of compositional changes in
butyrate-producing bacteria [10]. Evans et al. explored the
effects of voluntary wheel running in mice fed with low-
or high-fat diets and found that microbial communities
clustered based on both diet and physical activity [11].
Allen et al. further showed that the mode of physical activ-
ity, for example, forced treadmill running versus volunteer
wheel running, differently altered the microbiota [12]. Re-
cently, Clarke et al. also found clustering of bacterial com-
munities between professional rugby players and high/low
body mass index (BMI) controls [13]. They further identi-
fied increases in bacterial community richness in these
elite athletes compared to both control groups. In their
study, however, extreme dietary differences, especially
high protein intakes amongst the athletes, confounded in-
terpretations regarding the specific role of physical activity
and microbial changes.
To better isolate how physical fitness may moderate mi-

crobial diversity, we analyzed the fecal microbiota of indi-
viduals with varied fitness levels with comparable diets.
We used peak oxygen uptake (VO2peak), the gold stand-
ard of cardiorespiratory fitness (CRF), as an indicator of
physical fitness. We asked the questions (a) does taxo-
nomical richness vary with CRF alone, (b) do abundances
of particular taxa vary systematically in relation to vari-
ation in CRF, and (c) is this variation associated with func-
tional pathways of the microbiome. We show that
VO2peak, independent of diet, correlates with increased
microbial diversity and production of fecal butyrate
amongst physically fit participants.

Methods
Study design
Healthy young adults between 18 and 35 years old were
recruited. Exclusion criteria included antibiotic treatment

within the previous 6 months, current prescribed pharma-
ceutical drug utilization, or active acute or chronic dis-
eases. All participants were verbally interviewed on their
dietary habits and CRF was determined using a VO2peak
cycle test. Participants were then provided a stool collec-
tion kit with instructions and were asked to provide a
sample within a week following their lab visit.

Nutritional data collection
On the day of VO2peak testing, nutritional data, includ-
ing supplements, was collected by means of a 24-h
dietary recall interview and assessed by a research nutri-
tionist using FoodWorks nutrient analysis software
(version 16.0). Food items described by participants that
were not available in the software were manually added
as needed. A sample copy of a completed questionnaire
is available in Additional file 1. On average, over 100
food categories per participant were produced by the
FoodWorks software. A manual screening was applied
to select categories of interest based on a priori interest
and existing literature showing a significant interaction
between those categories and intestinal microbiota. The
selected 24 food category data are available in the
uploaded metadata mapping file.

Cardiorespiratory fitness testing
Participants initially completed a physical activity readi-
ness questionnaire (PAR-Q) to rule out any contraindi-
cations to vigorous exercise. A continuous incremental
ramp maximal exercise test on an electronically braked
cycle ergometer (Lode Excalibur, the Netherlands) was
used to determine VO2peak and peak power output
(Wpeak). Expired gas was collected continuously by a
metabolic cart (Parvomedics TrueOne 2400, Salt Lake
City, Utah, USA) calibrated with gases of known concen-
tration. The test started at 50 W and increased by
30 W/min. The test was terminated upon volitional ex-
haustion or when revolutions per minute fell below 50.
VO2peak was defined as the highest 30-s average for
VO2 (in ml/kg/min). Criteria for achieving VO2peak
were the following: (i) respiratory exchange ratio >1.15;
(ii) plateau in VO2; (iii) reaching age-predicted HRpeak
(220-age); and/or (iv) volitional exhaustion. Following
VO2peak assessment, participants were categorized to
either low (LOW), average (AVG), or high (HI) fitness
based on their sex and age according to a modified Hey-
ward normal VO2max reference chart (Additional file 2).

Stool collection and storage
Participants were provided with a home stool collection
kit including a sterile 120 ml polypropylene container
(Starplex, Etobicoke, Ontario), sterile tongue depressor
and gloves, and an ice box. Participants were instructed
to avoid alcohol for 3 days prior to stool collection. Stool
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samples were immediately stored in the participant’s
freezer overnight and transported on ice to the lab
and stored in −80 °C until further analysis. Frozen
portions from the inner area of the samples were
scrapped using sterile razor blades for DNA extrac-
tion and SCFA analysis.

SCFA analysis
SCFAs (acetic, propionic, heptanoic, valeric, caproic, and
butyric acid) were analyzed from the feces by gas chro-
matography (GC) as described previously [14]. In brief,
~50 mg of stool was homogenized with isopropyl alco-
hol, containing 2-ethylbutyric acid at 0.01 % v/v as in-
ternal standard, at 30 Hz for 13 min using metal beads.
Homogenates were centrifuged twice, and the cleared
supernatant was injected to Trace 1300 Gas Chromato-
graph, equipped with Flame-ionization detector, with
AI1310 auto sampler (Thermo Fisher Scientific) in
splitless mode. Data was processed using Chromeleon
7 software. An aliquot of 50 mg of stool was freeze
dried to measure the dry weight, and measurements
are expressed as mass % (g of SCFA per g of dry
weight stool).

High-throughput sequencing
DNA was extracted from feces using QIAmp DNA Stool
Mini Kit (Qiagen) according to the manufacturer’s
instructions following 3 × 30 s of homogenization using
metal beads on a Retsch MixerMill MM 400 homogenizer.
Sequencing libraries were prepared according to the Illu-
mina MiSeq system instructions. In brief, the V3 and V4
region of the 16S bacterial rRNA gene was amplified using
recommended primers [15] (IDT, Vancouver, Canada):
Forward 5′ TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGCCTACGGGNGGCWGCAG, and Reverse 5′
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-
GACTACHVGGGTATCTAATCC, which create ampli-
cons of ~460 bp. Amplicons were cleaned using AMPure
XP bead step, and then, adapters and dual-index barcodes
(Nextera XT) were attached to the amplicons to facilitate
multiplex sequencing. After another clean-up step, librar-
ies were validated on an agarose gel, quantified, normal-
ized, and sent to The Applied Genomic Core (TAGC)
facility at the University of Alberta (Edmonton, Canada)
for sequencing using the Illumina MiSeq platform. The
resulting ~16,000,000 paired-end reads were merged using
PEAR software [16] and screened to exclude sequences
containing one or more base calls with a Phred score <20.
The average read per sample was ~350,000 with a min/
max of ~165,000/452,000 reads. Rarefaction curves dem-
onstrated that sufficient sampling depth had been reached
amongst all samples (Additional file 3).

Bioinformatics
Bioinformatics analyses on the demultiplexed paired
reads were conducted using QIIME 1.8.0 software suites
[17]. Reads were clustered at 97 % identity using the
uclust method into operational taxonomic units (OTUs)
then aligned to the most recent available version (2013/
08) of Greengenes bacterial database [18]. Singleton and
doubletons were removed, and the produced OTU table
was normalized using phylogenetic investigation of com-
munities by reconstruction of unobserved states
(PICRUSt) [19] to adjust for different 16S rRNA gene
copy numbers. Instead of rarefying our OTU table to the
lowest sample depth [20], uneven variance as a result of
differential sample sequencing depth was stabilized using
the cumulative sum scaling (CSS) method [21] of “meta-
genomeSeq” package in R. Alpha diversity indexes, rar-
efaction curves, OTU tables, and distance metrics were
also generated using QIIME.

Statistical analysis
All statistical analyses were performed using R [22] ver-
sion 3.2.0 unless stated otherwise.
The groups’ age and VO2peak data were tested for

normality using Shapiro-Wilk test, and a one-way
analysis of variance (ANOVA) with Tukey’s multiple-
comparison test was used to compare mean differences
amongst groups. Kruskal-Wallis non-parametric test was
used for comparing BMI as this dataset failed normality
tests even after several transformation attempts. For
comparison of dietary intake amongst groups, a permu-
tational multivariate ANOVA (PERMANOVA) with 999
random permutations was used. Due to the inherent
high variability of dietary data, we further searched for
dietary patterns amongst groups by looking at a princi-
pal component analysis (PCA) plot of participants’ diet-
ary scores using the ggbiplot package [23]. To facilitate
comparisons with previous work, we first compared
average alpha diversity amongst the three fitness cat-
egories using a one-way ANOVA, followed by a Tukey’s
multiple comparison. To simultaneously evaluate the
role of CRF alongside other potential predictors of alpha
diversity (sex, age, BMI, and dietary components), we
performed a multiple regression analysis. Given our
comparatively low sample size (n = 39), and the general
rule that multiple regressions should include at least 10
observations per predictor variable [24], we first
screened potential predictors using a Spearman correl-
ation matrix. Those that showed a significant correlation
with alpha diversity were retained for entry in the mul-
tiple regression model. Multicolinearity was checked
using the variable inflation factor (VIF) index with a
maximum cutoff score of 10.
Microbial communities in fecal samples were ordinated

using the Bray-Curtis and weighted and unweighted
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UniFrac distance metrics. Principal coordinate analysis
(PCoA) based on the Bray-Curtis dissimilarity metric was
conducted using the cmdscale function in the base “stats”
package in R, while PCoA based on the weighted and un-
weighted unifrac distances was made using EMPeror tool
[25]. Microbial communities were analyzed using two
complementary multivariate approaches: (1) constrained
ordination and (2) generalized linear models (GLM). For
the constrained ordination approach, redundancy analysis
(RDA) was used, which focuses on assemblage compos-
ition differences in relation to predictors of interest
(VO2peak, sex, age, BMI, and dietary components). This
was implemented using the “vegan” package [26] version
2.2-1 in R. Abundance data at each taxonomical resolution
(phyla, class, order, family, and genus) were first
Hellinger-transformed [27] to accommodate counts data
with large occurrences of low and zero abundance. Vari-
able selection in RDA was implemented using the ordistep
function of vegan using both forward and backward step-
wise inclusion. Predictors selected by this method at each
classification level are presented in Additional file 4. To
identify genera that significantly contributed to total vari-
ance, we evaluated Spearman correlations between genus
abundance and the first two RDA axes. OTUs with a sig-
nificant correlation coefficient (evaluated at Bonferroni
adjusted alpha level) were displayed on the RDA plots
with type II scaling. To evaluate the association of genus
abundance with explanatory variables, we implemented
multiple negative binomial GLMs using the “mvabund”
package [28]. This multiple GLM method utilizes a series
of univariate F tests of the effects of predictor variables on
the abundance of each taxon. Regression assumptions
were assessed using residual diagnostics. Taxa that made
up less than 0.1 % of the total count and occurring in less
than 75 % of samples were first removed (cf. [29]). Fifty
taxa met the inclusion criteria and were included in the
model. The default implementation of the multi-GLM
method adjusts P values to account for multiple tests.
Classification of relative abundance data according to the
previously described enterotypes [30] was carried out
using the Calinski-Harabasz (CH) index as described on-
line (http://enterotype.embl.de/enterotypes.html).
Bacterial phylogeny is sufficiently linked to their func-

tional capabilities and can be used to computationally
predict the functional composition of the community
metagenome [19]. The normalized genus abundance
OTU table was used to predict the microbiome’s meta-
genomic functions using PICRUSt’s extended ancestral-
state reconstruction approach. A new abundance matrix
of predicted functional categories based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
was created. We constructed a biplot from the output of
a PCA of functional category data and visually assessed
clustering patterns based on CRF groupings. Next, to

isolate the influence of specific predictor variables, an
RDA was also performed using these functional categor-
ies as response variables and the same variables and se-
lection methods described above.
Similarly, to determine the role of our exploratory var-

iables in explaining variance in fecal SCFAs, an RDA
was conducted using SCFA abundance data as the re-
sponse variables (cf. [31]).

Results
Diet was not a confounding factor across fitness groups
Twenty-two males and 19 females participated in the
study. Two female participants were removed from se-
quencing analysis due to technical errors. Table 1 repre-
sents a summary of the 39 participants’ characteristics
and dietary intake. Only one participant followed a vege-
tarian diet, and all 39 participants reported consuming
dairy products (data not shown). Age distribution was
similar across all groups. The LOW group had a margin-
ally higher BMI (25.5, SD 3.9) compared to the AVG
(23.5, SD .5) and HI (22.8, SD 1.5) groups; however, the
difference was not statistically significant. BMI of AVG
and HI groups falls within the “normal weight” range
(18.5–24.9) as defined by Health Canada, while the LOW
group is marginally above the “overweight” threshold of
25. The results of the PERMANOVA (Additional file 5)
showed no main differences (permutation P = 0.56) across
any nutritional classes based on fitness groups. PCA
plot (Fig. 1) of dietary patterns amongst the different
fitness groups also showed no discrete clusters, fur-
ther supporting a lack of distinct dietary patterns
amongst fitness groups.

CRF is correlated with increased microbial diversity
Species diversity of each participant (alpha diversity) was
determined using several indexes: species richness (SR),
chao1, Shannon, Simpson, and Faith’s phylogenetic di-
versity (PD). As all the alpha diversity indexes were
highly correlated (Additional file 6), SR was chosen as a
proxy in the regression model. After screening of poten-
tial predictors via Spearman correlation analysis, three
variables were included in the multiple regression model:
VO2peak, sex, and relative fat intake. Of these, only
VO2peak was a significant predictor of alpha diversity
(Table 2), with SR significantly (P = 0.011) associated
with increasing VO2peak (Radj

2 = 0.204, coefficient esti-
mate = 5.36, t = 2.17) (Fig. 2). Replacing SR with chao1,
Shannon, and Simpson index in the regression model
produced identical results in that VO2peak was the only
significant predictor of these indices. Faith’s PD index
showed a similar relationship with VO2peak (Pearson’s
R = 0.30, P = 0.062); however, it did not reach statistical
significance within the regression model (Radj

2 = 0.07,
coefficient estimate = 0.14, t = 1.12).

Estaki et al. Microbiome  (2016) 4:42 Page 4 of 13

http://enterotype.embl.de/enterotypes.html


Table 1 Summary of group characteristics and dietary intake

LOW (n = 14) AVG (n = 12) HI (n = 13)

Mean (SD) Median (IQR) Mean (SD) Median (IQR) Mean (SD) Median (IQR)

Age (years) 25.5 (3.3) 25.5 (23–27.8) 24.3 (3.7) 24.5 (21.8–26) 26.2 (5.5) 28 (21–31)

BMI (kg/m2) 25.5 (3.9) 24.9 (23.2–27.8) 23.5 (.5) 23.4 (22.1–23.8) 22.8 (1.5) 22.4 (21.9–24)

VO2peak 33 (4.8)* 33.3 (30.7–26.3) 41.9 (4.3)* 41.2 (38.5–44.2) 54.8 (5.6)* 52.4 (51.3–60.9)

Dietary components

Energy (kcal) 2477.5 (1168.4) 2119.5 (1537.2–3565) 2230 (605.4) 2092 (1793–2561) 2458.3 (668.3) 2647 (2060–2714)

Protein (g) 128.7 (88.5) 104.8 (55.4–182.7) 110.2 (53.7) 90 (80–134.6) 111.2 (49.7) 97.5 (84–127.2)

Carbohydrate (g) 278.9 (97.5) 294.7 (201.7–347.6) 245.2 (90.4) 245.2 (182.1–275.2) 276.9 (80.2) 268.5 (248.3–310.8)

Fat (g) 95.4 (61.9) 74.1 (46.5–121.3) 95.8 (29.1) 85.6 (78.4–113.6) 105.3 (41.1) 111.9 (84.2–131.30)

Saturated fat (g) 37.7 (30) 25.2 (16.9–62.2) 32 (29.1) 31.2 (26.5–34.5) 31.6 (14.7) 32.6 (21.2–36)

MUFA (g) 30.7 (19.9) 27.6 (14.1–36.9) 35 (14.4) 34.9 (27.6–40.8) 38.6 (16.5) 36.4 (28.5–46.9)

PUFA (g) 15 (6.8) 15.1 (9.3–20) 20.2 (11.7) 17.9 (11.1–26.7) 23.3 (10.7) 22.6 (15.4–28.2)

Trans fat (mg) 730 (960) 358 (28.5–89.3) 580 (440) 552 (243.7–896.8) 500 (530) 407 (87–501)

Omega 3 (mg) 2260 (1470) 1958 (−1166–3068) 2990 (2320) 1958 (1307–4779) 3110 (3600) 1535 (1200–1942)

Omega 6 (mg) 1790 (3320) 418 (28.8–1624) 1010 (1040) 438 (283.3–1672) 3820 (4250) 2477 (198–4951)

Sugar (g) 96.7 (59.1) 68.9 (54.8–134.2) 83.2 (43.9) 80.2 (67–95.5) 103.6 (38.4) 97.4 (81.7–121.7)

Fiber (g) 28.4 (11.7) 22.5 (20.2–34.7) 31.3 (30.2) 23.2 (17.3–29.4) 36.5 (20.2) 28.8 (24.2–40.2)

Cholesterol (mg) 358 (348.7) 263.6 (59.4–453.4) 346.5 (194.6) 288.6 (196.1–466.1) 443.1 (269.3) 442.6 (186.3–638.6)

Butyrate (mg) 470 (740) 212.5 (39.8–578) 690 (690) 573.5 (283.5–929) 480 (470) 366 (194–518)

As described fully under the methods section, dietary components amongst groups were compared by PERMANOVA, BMI comparison utilized Kruskal-Wallis test,
while VO2peak and age were compared using a 1-way ANOVA test
BMI body mass index, MUFA monounsaturated fatty acid, PUFA polyunsaturated fatty acid, SD standard deviation, IQR interquartile range
*A significant (P < 0.01) pairwise difference amongst the other two groups using a Bonferroni alpha correction procedure

Fig. 1 Dietary patterns amongst fitness groups. Scores of the two first components of the PCA of dietary data for all 39 subjects are presented.
Each circle represents one participant, colored based on their CRF fitness levels. A lack of distinct clustering amongst groups suggests comparable
dietary patterns amongst groups
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CRF levels do not promote distinct clustering of beta
diversity data
Overall, 207 genera from 14 phyla were represented
across all participants (Table 3). The HI group included
representation from 173 genera, while the AVG and
LOW groups were made up of 152 and 153, respectively.
PCoA plots constructed using Bray-Curtis (Fig. 3);
weighted and unweighted unifrac dissimilarity indices
(Additional file 7) did not show group clustering based
on fitness levels. Clustering of our dataset based on the
CH index favored a two cluster partitioning (Additional
file 8) rather than the proposed three enterotypes [30].

Protein intake and age but not CRF explain overall
community composition
The global RDA model which selected sex, age, and pro-
tein as meaningful explanatory variables was significant
(P = 0.005) as assessed by Monte Carlo Permutation
Procedure (MCPP) (1000 permutations). A total of
12.7 % of the overall variation in taxon composition was

attributed to these explanatory variables, of which the
majority were explained by the first and second axes
(Fig. 4) which accounted for 7.9 and 2.3 % of the total
variation, respectively. The RDA indicated that VO2peak
did not significantly explain beta diversity at any taxo-
nomic resolution, whereas total protein intake was sig-
nificant at each resolution tested (Additional file 4). In
addition, age, sex, and the omega6-omega3 ratio (n6:n3)
were also marginally significant explanatory variables,
though only at particular taxanomic resolutions. In
Fig. 4b, we highlight 19 genera that were significantly
correlated with one or both of the first two RDA axes.
Amongst these, Bacteroides was strongly associated with
protein intake along RDA2 while Odoribacter, Rikenella-
ceae, Oscillospira, and an unclassified RF39 were most
strongly correlated with age along RDA1. Other genera
that strongly aligned with RDA1, but not correlated with
any explanatory variables, included Blautia and unclassi-
fied genera from Lachnospiraceae, Christensenellaceae,
Ruminococcaceae, and Clostridiales.

Table 2 Multiple regression summary table of species richness data

Variables Unstandardized coefficients Standardized coefficients t P

B Std. error Beta

VO2peak 5.36 2.47 0.37 2.17 0.037*

Relative fat intake 432.46 250.10 0.26 1.72 0.094

Sex♂ 24.70 51.23 0.08 7.54 0.63

Result of multiple regression test showing VO2peak as the only significant variable in predicting species richness (SR). The B coefficient represents the amount of
change in SR along its 95 % confidence intervals per unit change of VO2peak (ml/kg/min). The standardized coefficients show VO2peak as the strongest variable
to influence SR variability. Model adjusted R2 = 0.20. P value = 0.01
*Statistical significance

Fig. 2 Correlation between VO2peak and species richness (SR). Result of a multiple regression model showing a significant association between
VO2peak and SR when holding all other variables constant. Shaded area represent 95 % confidence intervals
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CRF is associated with distinct microbiome functions rather
than abundances of specific bacterial taxa
Results of our GLMs suggest that, overall, genus abun-
dances vary significantly in relation to our exploratory
variables (model P = 0.003) with VO2peak and sex identi-
fied as significant factors (P < 0.002). After stringent ad-
justments for multiple testing, the univariate follow-up
tests revealed no significant response amongst the 50 in-
dividual taxa included. Without adjusting for multiple
testing (and keeping in mind the increased potential for
type-1 errors), several taxa exhibited positive relation-
ship with VO2peak (P < 0.05). These include, Coprococ-
cus, Roseburia, Adlercreutzia, and unknown members of
Clostridiales, Lachnospiraceae, and Erysipelotrichaceae.
We further explored whether the functional composition
of the microbiomes were associated with CRF. Similar to
the beta diversity analyses, no clear group clustering
emerged based on CRF classification alone (Additional
file 9). The RDA, however, showed that the variables

VO2peak, sex, fiber, and sugar intake collectively had a
marginally significant role in explaining compositional
variation in functional categories (MCPP P = 0.063)
(Additional file 4). Overall, 15.5 % of the total variation
of the functional category composition was accounted
for by these explanatory variables, of which 11 and 2.2 %
were accounted for by the first and second axes, respect-
ively (Fig. 5a, b). Of the 274 functional categories ob-
served across all participants, we identified 65 significant
categories. A complete list of the 65 identified functional
categories is presented in Additional file 10. The RDA
plots illustrate a pattern of VO2peak and fiber intake
explaining variation amongst participants with high CRF
levels. VO2peak was most strongly correlated with
KEGG functional categories: sporulation, bacterial motil-
ity proteins including proteins involved in flagella assem-
bly, and chemotaxis while negatively correlated with
lipopolysaccharide (LPS) biosynthesis and LPS biosyn-
thesis proteins. Total sugar intake was strongly corre-
lated with the transporters, ABC transporters, and
transcription factors while inversely associated with
membrane and intracellular structural molecules and
pore ion channels. Sex of participants did not play a
significant role in any of the described parameters. Given
the importance of SCFAs in gut health, we had a priori
interest in “fatty acid biosynthesis” despite its exclusion
from the RDA selection process. We found VO2peak to
be positively correlated (P = 0.046, Spearman’s rho =
0.322) with fatty acid biosynthesis (Fig. 6). Thus, to
understand which SCFAs correlated with VO2peak, we
quantified fecal SCFAs via GC.

Fig. 3 Beta diversity amongst fitness groups. PCoA plot of genus abundance data based on Bray-Curtis dissimilarity measure shows no clear
clustering when grouped according to CRF levels

Table 3 Identified known taxa across fitness groups

LOW AVG HI Total

Phylum 14 12 11 14

Class 28 23 23 31

Order 44 38 41 52

Family 76 73 79 92

Genus 153 152 173 207

Summary of the number of identified taxa across all participants as
categorized based on their VO2peak levels
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CRF is positively correlated with fecal butyric acid
RDA triplot corresponding to fecal SCFAs as con-
strained by our exploratory variables is presented in
Fig. 7. The global model selected sex, age, carbohydrate
intake, and VO2peak as significant (MCPP P = 0.001) ex-
planatory variables. Overall, 30.1 % of the total variation
of SCFA data could be explained by these variables of

which 17.9 and 11.9 % were accounted for by RDA1 and
RDA2, respectively. Along RDA1, age was strongly posi-
tively correlated with valeric acid and to a lesser degree
with hepatonoic and caproic acid, both which were
strongly inversely correlated with carbohydrate intake.
Along RDA2, VO2peak was strongly correlated with bu-
tyric acid which is represented mainly across HI and

Fig. 5 RDA correlation biplots of predicted metagenomics functions constrained by selected explanatory variables. The sites and explanatory
variables (a) and genera (b) plots are presented separately for clarity; however, they are derived from the same RDA model, note the difference in
axes scales. RDA1 and RDA2 which explain over 13 % of the total variation in data are plotted. The global model’s P value was calculated using
the Monte Carlo Permutation Procedure (MCPP). In plot A, subjects are color coded according to their CRF for illustrative purposes only as
groupings were not included in the model. Black circles represent centroids for the categorical variable sex

Fig. 4 Bacterial abundance RDA correlation biplots constrained by selected explanatory variables. The sites and explanatory variables (a) and
genera (b) plots are presented separately for clarity; however, they are derived from the same RDA model, note the difference in axes scales.
RDA1 and RDA2 which explain over 10 % of total variation in beta diversity are plotted. The global model’s P value was calculated using the
Monte Carlo Permutation Procedure (MCPP). In plot A, subjects are color coded according to their CRF levels for illustrative purposes only as
groupings were not included in the model. Black circles represent centroids for the categorical variable sex
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AVG fitness participants. Proprionic and acetic acid on
the other hand were inversely correlated to VO2peak
and were represented across an area with more LOW
fitness participants. Sex of the participants as repre-
sented by centroids on the triplot did not play a major
role in observed variance.

Discussion
CRF is considered a better predictor of mortality than
clinical variables including established risk factors such

as smoking, diabetes, and hypertension [32, 33]. Its role
as a possible indicator of intestinal microbial diversity,
however, has not been investigated. Our regression
model showed that ~20 % of variation in gut bacterial
alpha diversity could be explained by VO2peak alone; in
fact, VO2peak stood as the only variable that signifi-
cantly contributed to increased alpha diversity. The pri-
mary findings from this study suggest that CRF is a good
predictor of gut microbial diversity in healthy humans,
outperforming several other variables including sex, age,

Fig. 6 Correlation between VO2peak and fatty acid biosynthesis. Spearman correlation plot showing a positive relationship between VO2peak and
the functional category “fatty acid biosynthesis.” rho Spearman’s correlation coefficient

Fig. 7 RDA correlation triplot of SCFA abundance data constrained by selected explanatory variables. RDA1 and RDA2 which explain over 29 % of
the total variation in SCFA data are plotted. Subjects are color coded according to their CRF for illustrative purposes only as groupings were not
included in the model. Black circles represent centroids for the categorical variable sex. The global model’s P value was calculated using the
Monte Carlo Permutation Procedure (MCPP)
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BMI, and dietary components. Although no single bac-
terial taxon or group of taxa showed significant variation
in abundance in relation to CRF levels, the overall func-
tion of the microbiome in high CRF individuals seems to
favor an increase in chemotaxis-related genes and de-
creased LPS biosynthetic pathways. In addition, a strong
positive correlation was observed between VO2peak and
fecal butyric acid, a SCFA associated with gut health [2].
In support of this, when results from the multivariate
GLMs were explored without adjustment for multiple
testing, abundances of key butyrate-producing members
from Clostridiales, Roseburia, Lachnospiraceae, and
Erysipelotrichaceae genera were found to be significantly
associated with VO2peak (P < 0.05). These results suggest
an important role of these taxa in relation to increased
butyrate production amongst more aerobically fit indi-
viduals; however, future studies should test these ideas
under controlled settings.
A recent study by Clarke et al. showed increased gut

community richness amongst professional rugby players
compared to sedentary BMI-matched and non-matched
populations [13]. Due to extreme dietary differences
amongst their groups, however, the contribution of
physical fitness could not be isolated from possible diet-
driven influences. For example, it has been shown that
increased species richness as a result of voluntary wheel
running in mice is only robust under high-fat but not
low-fat feeding conditions [11], highlighting the import-
ance of the background diet. In our study, we minimized
the potential influence of diet as a confounding factor by
examining LOW, AVG, and HI fitness participants with
no significant differences in a comprehensive number of
dietary variables. In addition, we quantify fitness using
VO2peak, a measure of capacity for aerobic work and
the gold standard of CRF. In their study, Clarke et al.
highlighted the importance of protein intake by showing
its positive correlation with alpha diversity. Interestingly,
the magnitude of this correlation was comparable to our
correlation coefficient between VO2peak and alpha di-
versity in the absence of a correlation between protein
intake and alpha diversity. This may suggest that the re-
ported correlation between protein intake and alpha di-
versity may have been a secondary product of increased
CRF amongst the elite athletes. The mechanisms by
which physical activity may promote a rich bacterial
community are not known but likely involve a combin-
ation of intrinsic and extrinsic factors. For example,
physically active individuals are more likely to be ex-
posed to their environmental biosphere and follow an
overall healthy lifestyle and as so harbor a richer micro-
biota. Simultaneously, intrinsic adaptations to endurance
training can lead to changes in the GI tract, for example,
decreased blood flow, tissue hypoxia, and increased tran-
sit and absorptive capacity [34, 35]. These and other

potential adaptation mechanisms such as change in gut
pH may create an environmental setting allowing for
richer community diversity.
Beta diversity analysis of our cohort did not show dis-

tinct clustering of bacterial communities based on fit-
ness categories. This contrasts with previous reports
[11], which showed distinct clustering resulting from
wheel running in mice, as well as those by Clarke et al.
who showed clustering of rugby players’ microbiota [13].
In addition to extreme dietary differences, several mech-
anisms may explain these discrepancies. Community
clustering amongst cohabited animals or the “cage-ef-
fect” is known to show high community structure
concordance [36, 37]; it is therefore plausible that this
phenomena extends to humans. As team members are
likely to spend extended periods of time together on and
off the field, there is an increased likelihood of microbial
exchange leading to distinct similar bacterial profiles.
Participants in the current study on the other hand did
not belong to a common organization and did not show
any detectable dietary differences. Other components of
fitness not accounted for in the current study such as
anaerobic capacity and resistance muscle training may
also influence community composition, though to date,
no existing work has examined these parameters in rela-
tion to gut microbiota.
Total protein intake was consistently seen as a signifi-

cant contributor to beta diversity at each taxonomic
rank tested, while sex and age were only influential be-
yond the phyla level. Unlike dietary carbohydrates and
fats, which are commonly studied, the role of protein in
the context of intestinal microbiota is considerably less
understood. Protein-rich diets have been associated with
prevalence of Bacteroides genus [38]. Echoing this, re-
sults from our RDA analysis showed a strong correlation
between protein intake and Bacteroides without bias to-
wards any specific fitness groups. Excessive fermentation
of dietary protein in the GI tract is generally considered
detrimental due to the production of toxic by-products
such as amines, phenols, indoles, thiols, and ammonia
[39, 40]. Further research however is needed to deter-
mine the synthesis kinetics and clinical consequence of
these by-products during increased nutritional status
and metabolic demands such as during prolonged exer-
cise training. The RDA results further showed significant
contribution of members of the Ruminococcaceae and
Lachnospiraceae, two of the most abundant families in
gut environments [41], in explaining community diver-
sity. These plant degraders persist in fibrolytic gut com-
munities and are considered an important component of
a healthy gut, while their depletion has been observed in
IBD patients [42, 43]. Ruminococcaceae and Bacteroides
were anticorrelated, likely reflecting the persistence of
these groups in plant carbohydrate- versus protein-rich
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gut environments, respectively. Interestingly, an unclas-
sified member of the Christensenellaceae family was seen
significantly correlated with age; this was true despite
the limited range of our participants’ age (18–35 years).
Though there is limited published work regarding its role,
a recent study identified Christensenellaceae as the most
heritable member of the gut microbiota and highlighted
their role in promoting a lean phenotyope [44].
An increase in CRF demands various phenotypic and

metabolic adaptations by the host which subsequently
may require adaptation by the commensal bacteria. The
results of our RDA showed that although VO2peak was
not significantly associated with variation in community
composition, it was associated with changes in the meta-
genomic functions of the microbiome. Functional
categories most strongly correlated with VO2peak were
related to bacterial motility (categories: bacterial motility
proteins, flagella assembly, and bacterial chemotaxis),
sporulation, and to a lesser extend the two-component
system which enables bacterial communities to sense
and respond to environmental factors. One possible
mechanism behind these associations may derive from
the observation that butyrate, which was more abundant
amongst fit participants, can modulate neutrophil
chemotaxis [45, 46]. VO2peak was inversely correlated
with LPS biosynthesis and LPS biosynthesis proteins
which were more aligned amongst less fit participants.
LPS is a major component of the cell wall of gram-
negative bacteria and is considered an endotoxin when
present in the blood. By binding to extracellular toll-like
receptor 4 (TLR4) found on many cell types, LPS elicits
strong inflammatory responses that may be detrimental
to the host. Continuous low-level translocation of LPS
into circulation can induce chronic low-level inflamma-
tory states that are associated with development of
obesity and other metabolic syndromes [47]. These in-
flammatory states are thought to derive to some extent
from inflammatory responses to blood LPS which is ele-
vated in sedentary humans [48]. Exercise training atten-
uates inflammation in part by reducing elevated blood
LPS [48]. The inverse relationship between VO2peak and
LPS biosynthesis pathways observed in the current study
therefore extends previous research, suggesting a benefi-
cial consequence of increased physical activity to derive
from decreased LPS biosynthesis. The findings here sug-
gest that the gut microbiota adapt to metabolic demands
of a physically active lifestyle, anchored around a set of
physiological functions.
Production of SCFAs is the primary result of carbohy-

drate fermentation under anaerobic conditions in the
gut. Butyric acid or butyrate is the most commonly stud-
ied of these SCFAs in regard to intestinal health. As the
primary food source of colonocytes, butyrate plays an
important role in gut homeostasis and health. It has

been shown to possess anticancer and anti-inflammatory
properties [49] and be involved in gut motility [50, 51],
energy expenditure [52], intestinal permeability [53], and
appetite control [54], while a decrease in butyrate levels
has been suggested in etiology of ulcerative colitis [55].
We observed a strong positive correlation between
VO2peak and fecal butyrate levels, which could not be
accounted for by ingested dietary butyrate or its sub-
strate, fiber. This suggests that the microbial profiles
of physically fit individuals favor butyrate producing
taxa leading to increased fecal butyrate. This is in ac-
cordance with Matsumoto et al. who observed in-
creases in butyrate levels in cecum of rats exposed to
5 weeks of wheel running [10].

Conclusions
The primary findings from this correlative study suggest
that gut microbial diversity in healthy humans is associ-
ated with aerobic fitness and that dietary protein moder-
ates microbial community composition. They further
suggest that adaptation of the microbiota to demands of
increasing physical fitness is anchored around a set of
functional cores rather than specific bacterial groups. In
particular, the microbiome profile of fit individuals ap-
pears to favor butyrate production, a common indicator
of gut health, potentially through increases in Clostri-
diales, Roseburia, Lachnospiraceae, and Erysipelotricha-
ceae genera. Overall, our findings are consistent with a
role for physical activity in promoting gut intestinal
health via associated changes in the microbial commu-
nity composition. Based on these findings, we encourage
further research on the use of aerobic exercise prescrip-
tion as an adjuvant therapy in prevention and treatment
of dysbiosis-associated diseases.
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Additional file 1: Sample food survey. A detailed description of all
foods and supplemented consumed by the subjects was written during
the interview and later analyzed using FoodWorks nutrient analysis
software (Version16.0) by a research nutritionist. (PDF 162 kb)

Additional file 2: Heyward’s 2006 normal VO2max reference chart.
Subjects characterized as “Superior” or “Excellent” according to the
Heyward classification were grouped under the “HI” group, “Fair” and
“Good” subjects were placed into the “AVG” group, and “Poor” was
renamed to “LO.” (TIF 2121 kb)

Additional file 3: Sampling depth rarefaction curves. Rarefaction curves
of all subjects at 97 % similarity levels shown as a function of Shannon
diversity index and number of sequence tags sampled. (TIF 823 kb)

Additional file 4: Predictor variables included in the RDA models. A
manual pre-screening of dietary variables based on existing literature and
categories of interest was initially carried. Next, a combination of “both”
forward and backward stepwise inclusion selection method using vegan’s
ordistep function was used on the remaining 23 variables plus VO2peak,
Sex, BMI, and Age. (TIF 240 kb)

Additional file 5: Table summary of PERMANOVA for dietary intake
amongst different fitness groups. df degrees of freedom, SS sum of
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squares, MS mean of squares, Pr P value as computed by 999
permutations. (TIF 101 kb)

Additional file 6: Correlation matrix of various alpha diversity matrices.
A correlation matrix using Spearman’s r showing strong correlation
between all alpha diversity matrices used. Species richness (S) was thus
used as a proxy for the response variable in the multiple regression
model. (TIFF 11074 kb)

Additional file 7: Beta diversity amongst fitness groups. Three
dimensional PCoA plots of genus abundance data transformed with
weighted (A) and unweighted (B) unifrac dissimilarity matrices show no
clear clustering based on CRF levels. (TIF 256 kb)

Additional file 8: Optimal clustering selection of bacterial data. The
number of optimal clustering of all data was determined using the
Calinski-Harabasz (CH) index. Optimal number of clusters did not
identify the classical three enterotypes but rather favored a two
cluster partitioning. (TIFF 11074 kb)

Additional file 9: Ordination of predicted metagenomic functions data.
PCA plot of centered functional category abundance data showing no clear
clustering of groups based on their CRF levels. Plots were created using
Statistical Analysis of Metagenomic Profiles (STAMP) tool. (TIF 398 kb)

Additional file 10: Significant functional categories included in RDA
model. A complete list of predicted functional categories and their
corresponding RDA 1–4 coordinates determined to be significant in our
RDA model. Using a series of Spearman correlations between each
category abundance data and RDA1 then RDA2 (alpha adjusted using
Bonferroni correction), we identified 65 significant categories out of a
total of 274. (DOCX 22 kb)
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