Skip to main content
Fig. 1 | Microbiome

Fig. 1

From: Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences

Fig. 1

Overview of the pathways linked to ethylene production (top panel), signal transduction (central panel), and response (bottom panel). Ethylene concentration determines plant resource allocation into growth, reproduction, and stress response [13]. The thick arrows show the main ethylene cascade, and the thin ones point to possible interaction with external and internal stimuli. We illustrate plant response with three well-investigated ethylene-dependent phenotypic adaptations. a Ethylene coordinates plant response against pathogens, such as hypersensitive response, preventing pathogen spread [20]. b Ethylene accumulation triggers escape strategy involving accelerated shoot growth in submerged plants, allowing them to regain atmospheric contact [82]. c Growth-reproduction tradeoffs: higher ethylene causes plants to invest more resources into seed production under harsh conditions that may compromise vegetative stage survival. SAM S-adenosylmethionine, ACC 1-aminocyclopropane-1-carboxylic acid, ACS ACC synthase, ACO ACC oxidase, C2H4 plant hormone ethylene, CTR1 constitutive triple response 1, EIN2 ethylene-insensitive protein 2, EIN3 ethylene-insensitive protein 3, EIL1 ethylene insensitive 3-like 1 protein, ERFs ethylene response factors

Back to article page