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A critical assessment of the “sterile womb”
and “in utero colonization” hypotheses:
implications for research on the pioneer
infant microbiome
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Abstract

After more than a century of active research, the notion that the human fetal environment is sterile and that the
neonate’s microbiome is acquired during and after birth was an accepted dogma. However, recent studies using
molecular techniques suggest bacterial communities in the placenta, amniotic fluid, and meconium from healthy
pregnancies. These findings have led many scientists to challenge the “sterile womb paradigm” and propose that
microbiome acquisition instead begins in utero, an idea that would fundamentally change our understanding of
gut microbiota acquisition and its role in human development. In this review, we provide a critical assessment of
the evidence supporting these two opposing hypotheses, specifically as it relates to (i) anatomical, immunological,
and physiological characteristics of the placenta and fetus; (ii) the research methods currently used to study microbial
populations in the intrauterine environment; (iii) the fecal microbiome during the first days of life; and (iv) the generation
of axenic animals and humans. Based on this analysis, we argue that the evidence in support of the “in utero colonization
hypothesis” is extremely weak as it is founded almost entirely on studies that (i) used molecular approaches with an
insufficient detection limit to study “low-biomass” microbial populations, (ii) lacked appropriate controls for contamination,
and (iii) failed to provide evidence of bacterial viability. Most importantly, the ability to reliably derive axenic animals via
cesarean sections strongly supports sterility of the fetal environment in mammals. We conclude that current scientific
evidence does not support the existence of microbiomes within the healthy fetal milieu, which has implications for the
development of clinical practices that prevent microbiome perturbations after birth and the establishment of future
research priorities.
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Background
The gastrointestinal tract of humans is colonized by a
dense microbial community that has co-evolved with its
host to become a vital component of our biology. The
host-microbiome interrelationship is therefore consid-
ered a mutualistic symbiosis, with the human body pro-
viding sustenance and an adequate physical environment
for the microbial populations, while the microbes

execute essential functions, such as aiding in immune
system development and providing defense against
enteric infections [1].
Research in both animal models and humans suggests

that the process of microbial colonization is especially
significant during early life, as this period constitutes a
critical window for immunological and physiological de-
velopment [2, 3]. Given the importance of microbial
symbionts to their host’s development and survival,
mechanisms must be in place to facilitate their reliable
transmission [4]. Symbiont transmission has been well-
established in many host-microbial symbioses, especially
in invertebrates (i.e., insects, nematodes, and the Hawaiian
squid Euprymna scolopes) where it ranges from being
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strictly vertical (maternal) to horizontal (transmission be-
tween members of the same species or the environment)
[5]. In contrast to these models of symbiosis, the modes of
transmission for the more complex microbiomes of
humans and other vertebrates are more intricate and in-
completely understood. Considering the importance of
the pioneer infant microbiota for human development
and biology, it is essential that we elucidate the exact
mechanisms by which this community is acquired,
the time-points when colonization events occur, and
the endogenous and exogenous factors that influence
these events.
The degree of sterility of the fetal environment and

the possibility of in utero microbiome transfer have been
debated for almost 150 years [6]. In the second half of
the last century, the field reached a consensus that the
fetus was maintained in a sterile state [7]. According to
this concept, which has been referred to as the sterile
womb paradigm [4], microbes are acquired both verti-
cally (from the mother) and horizontally (from other
humans or the environment) during and after birth.
However, there is now a multitude of recent studies
employing modern sequencing technologies that have
challenged the traditional view of human microbiome
acquisition. These studies propose that neither the fetus,
the placenta, nor the amniotic fluid are sterile, and that
acquisition and colonization of the human gastrointes-
tinal tract begins in utero [8–10]. If this “in utero
colonization hypothesis” proves correct, there would be
major repercussions on our understanding of the estab-
lishment of the pioneer human microbiome, its role in
human health and the role of environmental, lifestyle,
and clinical factors that affect its assembly and function.
This concept would also have significant implications on
how we view the fundamental aspects of host-microbial
symbiosis in humans as well as clinical practices such as
cesarean sections (C-sections), which are currently
thought to disrupt transmission of microbes [11].
In this review, we first describe the scientific evidence

in support of both the “sterile womb” and in utero
colonization hypotheses. We then compare and critically
assess the two opposing ideas and discuss the limitations
of the research supporting each of them. We especially
put effort into the historic perspective on this topic, with
equal focus on both the older literature and more recent
studies. Based on this assessment, we conclude that
most of the evidence is in support of the “sterile womb
hypothesis,” and we discuss the implications for clinical
practice and future research.

The traditional view: the sterile womb paradigm
Most studies that established the sterile womb paradigm
date back to research that employed traditional culture-
based methods and microscopy, which despite their

limitations are still considered valid today. As early as
1885, Theodor Escherich described the meconium (the
earliest stool from an infant) to be free of viable bacteria
[7], suggesting that the human fetus develops within a
sterile environment (Fig. 1a). Later, two additional, inde-
pendent studies conducted in 1927 and 1934 (n = 100
and n = 50, respectively) using sterile diapers for collec-
tion both found 62% of meconium samples from healthy
pregnancies to be negative for bacteria by aerobic and
anaerobic culture [12, 13]. The observed time frame for
meconium expulsion ranged from a few minutes to 26 h
after birth, with 50% of the meconiums expelled 5 to
10 h post birth [13]. Interestingly, the 1934 study
reported a positive correlation between the detection of
bacteria and time elapsed between birth and meconium
passage [13]. Some recent studies utilizing molecular ap-
proaches also suggest that the majority of meconium
samples from healthy pregnancies are negative for bac-
teria (Table 1). In one study [14], meconium samples
from 66% (n = 15) of newborns evaluated showed
evidence of bacteria based on fluorescence in situ
hybridization (FISH), while only 7% were positive by
PCR. Interestingly, four out of the five samples that were
delivered within 500 min of birth showed no detectable
bacteria by FISH, supporting the association between
time of meconium passage and bacterial detection.
Overall, these studies suggest that early meconium har-
bors no detectable bacteria, while later samples do, indi-
cating the need to account for time elapsed post-birth
when investigating bacterial presence in these samples.
Seminal work by Harris and Brown [15] significantly

shaped the concept of a sterile amniotic cavity by inves-
tigating the presence of cultivable bacteria in the amni-
otic fluid of women undergoing C-sections. All women
in labor for less than 6 h (n = 28) tested negative for bac-
teria, while positive cultures were obtained from those
in labor for more than 6 h (n = 22). Subsequent culture-
based studies of amniotic fluid confirmed sterility during
a healthy pregnancy [16, 17]. Specifically, bacterial cul-
ture of amniotic fluid samples obtained by abdominal
puncture (n = 44) or by transcervical aspiration (n = 8)
showed no growth in 96 and 50% of the cases, respect-
ively [16]. Because fetal infection was absent, and
because the positive samples were monocultures of
Staphylococcus albus, Streptococcus, or yeast, the author
concluded that any colonies detected resulted from con-
tamination during collection and that his results upheld
the notion of sterile amniotic fluid. Complementary to
this finding, an independent investigation found an asso-
ciation between the presence of Mycoplasma hominis in
the amniotic fluid and the incidence of spontaneous
abortions, thereby reinforcing the notion that the presence
of bacteria in the amniotic fluid should be considered an
infection [17]. More recent culture-based studies reported
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over 90% of amniotic fluid samples tested to be sterile
[18–20]. The occasional presence of a bacteria was inter-
preted to be due to subclinical (without maternal or fetal
morbidity) [18, 19] or clinical infections [20], the latter
supported by the fact that all positive cases presented
symptoms of post-partum infection and pre-labor rupture
of membranes [20]. Subsequent research has found that
the amniotic fluid, meconium, and placental tissue contain
no detectable bacteria under healthy progression of preg-
nancy [21–25]. When bacteria have been detected in the
fetal environment, those results were obtained under cir-
cumstances where a predisposition to infection or preg-
nancy complications was suspected [21–25].
Because the overwhelming majority of research consist-

ently supported the sterile womb paradigm in healthy preg-
nancies, later investigations into the microbiology of
amniotic fluid were mostly limited to cases of pregnancy
complications. These studies included cases of preterm
labor (where 15% of samples were positive, n = 166) [26],
preeclampsia (9.6% positive samples, n = 62) [27], small-for-
gestational-age pregnancies (6% positive samples, n = 52)

[28], preterm pre-labor membrane rupture (50% positive
samples, n = 204) [29], and neonatal sepsis (57% positive
samples, n = 36) [30]. Despite complications, 68% of the
samples still tested negative for bacteria (as measured by
cultures, polymerase chain reaction (PCR), sequencing
technologies, or a combination of these methods) ([22–26],
as reviewed by DiGiulio [31]).
Because the placenta is generally considered a barrier

to protect the fetus from microbial pathogens that in-
vade the blood stream of the mother [32, 33], studies
directly aimed at the determination of a “placental
microbiome” in healthy pregnancies are scarce. Instead,
microbial studies were, for the most part, focused on
complications of pregnancy or the birth process, such as
spontaneous abortions (21 and 24% positive aerobic and
anaerobic cultures, respectively; n = 47) [34], or sus-
pected or confirmed cases of infant infection (33% posi-
tive cases, n = 33 and 32% positive cases, n = 72, as
reported by [35, 36], respectively). However, even during
these complications, the placentas were often found to
not contain viable bacteria. In particular, Aquino and

Fig. 1 Schematic representation of the opposing concepts by which human microbiota is acquired early in life. a In the sterile womb paradigm,
the placenta, amniotic fluid, and fetal gut remain sterile during a healthy pregnancy, and the early microbiome is acquired during and after birth.
Accordingly, the gut microbiota of infants born vaginally resemble the microbiota of the mother’s vagina, while the microbiota of infants born by
cesarean section are similar to the mother’s skin microbiota. b The “in utero colonization hypothesis” proposes that some microbial members of
the infants’ gut microbiome are acquired before birth, probably via contact with a placental microbiome, which has been suggested to originate
from the mother’s gut or oral microbiome
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colleagues reported positive bacterial cultures (in the
subchorionic fibrin of placentas) for only 11 out of 33
placentas (33%) from pregnancies where there was a sus-
pected underlying infection and for only one of 46 (2%)
healthy controls [35]. The authors concluded that most
placentas are sterile, and if bacteria are present, they
might originate through contamination during expul-
sion. Although these studies were not aimed at the
determination of a “placental microbiome” in healthy
pregnancies per se, their findings do reinforce the idea
that bacteria are not present in the healthy fetal
environment.

In utero colonization hypothesis: the womb is not
sterile and microbial colonization of the infant
begins prior to birth
Most of the evidence supporting the sterile womb para-
digm was generated with traditional microscopy or
culture-based techniques, which are today considered
deficient for assessing a microbiome. Researchers have
therefore turned to molecular approaches, such as next-
generation sequencing, and recent studies have pro-
duced evidence (summarized in Table 1) that challenges
the sterile womb paradigm. Reports employing these
techniques propose that bacteria are not only present
within the fetal environment in healthy full-term preg-
nancies [8, 9, 37, 38], but that they also constitute a pla-
cental microbiome that jump-starts the colonization of
the fetus [8–10] as part of its normal developmental
process [39]. Additionally, it has been suggested that the
uterus contains its own microbiome that can contribute
to fetal colonization, as the placenta develops from both
fetal trophoblasts and maternal decidua (the inner lining
of the uterus) [40, 41].
After the early studies on the meconium discussed

above, microbiological research on the meconium ceased
for a period of over 30 years (reviewed by [3]) until Jime-
nez and colleagues reported 100% (n = 21) of meconiums
to be positive for bacteria by culture techniques [8]. The
development of molecular techniques and high-throughput
sequencing spurred additional research on the microbiol-
ogy of the meconium. Virtually all of these studies reported
that over 90% of samples tested were positive for the pres-
ence of bacteria (Table 1), thereby seeding the idea that the
placenta and the environment in which the fetus develops
are not sterile.
As stated before, there are no historical studies known

to us that were performed with the sole purpose of dir-
ectly assessing the microbiology of the amniotic fluid
from healthy pregnancies delivered at term. However, re-
search that studied associations between microbial infec-
tion/invasion and pregnancy outcomes have occasionally
included samples from uncomplicated pregnancies.
Several independent studies showed that Mycoplasma

hominis and Ureaplasma urealyticum, which are among
several organisms highly correlated with preterm deliver-
ies [42–44], have also been detected by culture methods
or standard PCR in asymptomatic pregnancies that
ended in healthy deliveries [45–48].
Recently, Collado and colleagues [10] aimed to specif-

ically investigate microbial prenatal and neonatal trans-
fer in an array of maternal and fetal/newborn samples
from 15 full-term, healthy mother-infant pairs that sub-
mitted to elective C-section. Using 16S rRNA pyrose-
quencing, culture techniques, quantitative PCR (qPCR)
and DGGE, the authors detected microbial populations
in the amniotic fluid that were low in abundance, rich-
ness, and diversity that shared similarities with microbial
populations found in the placenta. Enterobacter and
Escherichia/Shigella were the most prevalent genera
present in both placenta and amniotic fluid, followed by
Propionibacterium. Similarities between the microbial
populations found in the colostrum and meconium were
also noted. The authors subsequently hypothesized that
maternal intestinal microbes may be selectively trans-
ported to the mammary gland, the placenta, and the amni-
otic fluid, thereby contributing to an initial colonization of
the fetal intestine in utero.
Aagaard and colleagues [9] were the first to use Illu-

mina sequencing to comprehensively characterize the
placental microbiome in over 300 subjects, including
those with healthy pregnancies, preterm births, and
cases with history of antepartum infection. The authors
estimated that they isolated up to 0.002 mg of bacterial
DNA per 1 g of placental tissue and detected a lowly
abundant but “metabolically rich” microbiome that in-
cluded Fusobacterium spp., Neisseria lactamica, Neisseria
polysaccharea, Rhodococcus erythropolis, Propionibacter-
ium acne, Streptomyces overmitilis, Bacteroides spp.,
Prevotella tannerae, Eschericia sp. 4_1_408, and Escheri-
chia coli (with the latter being the most abundant). This
microbiome clustered with the mothers’ oral microbiota
via Bray-Curtis analysis, was associated with a “remote
history of antenatal infection”, and was enriched in spon-
taneous preterm births. These findings prompted the au-
thors to propose that bacteria translocate by
hematogenous spread from the mother’s oral cavity into
the placenta and colonize the fetus in utero (Fig. 1b).
In a subsequent analysis of the same samples,
Aagaard and colleagues additionally concluded that
the preterm placental microbiome and its metabolic
profile vary with gestational weight gain [49].
In addition to sequencing and PCR, two types of

microscopy-based methods have also been applied to de-
tect bacteria in placental tissues: FISH and classic hist-
ology. Using these methods, two independent research
groups [37, 38] showed that placentas from shorter
gestational age deliveries were more likely to harbor
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intracellular bacteria compared to full-term placentas.
Doyle and colleagues [50] complemented this finding by
using Roche 454 FLX sequencing when they reported an
increased frequency and a wider spectrum of bacteria
present in preterm relative to full-term placentas.
Together, the studies above challenge the sterile womb

paradigm in that they provide evidence for bacteria in
the healthy in utero environment. Proponents of a fetal
microbiome suggest several routes of bacterial access to
the placenta, including ascension from the lower genital
tract, entry through the mother’s bloodstream, or active
transport of microbes by immune cells from the gut or
oral cavity (Fig. 1b). It has also been proposed that the
fetal-placental environment has evolved to facilitate
the establishment of a diverse microbiome that fur-
ther plays a role in the acquisition and assembly of
the infant’s gut microbiome through in utero trans-
mission of microbes [4, 39, 51].

Pondering the two hypotheses
Although the sterile womb paradigm was generally
agreed upon until around 10 years ago, the alternative
hypothesis is experiencing a renaissance. As there is cur-
rently no clear consensus, we next evaluated the avail-
able evidence in support of each model. Several aspects
must be taken into consideration; these include the ana-
tomical, immunological, and physiological features of
the placenta, the immunological status of the fetus, the
limitations of the research methods used to study micro-
bial populations, the microbiome during the very first
days of life, and the evidence provided by the generation
of germ-free animals (including humans).

A. Anatomical, physical, and immunological
considerations

The two main functions of the placenta are nourish-
ment of the fetus and its protection from microbial
pathogens. Accordingly, the placenta has several ana-
tomical, physiological, and immunological features that
prevent bacterial colonization.

(i) Anatomical and physiological barriers

The materno-fetal barrier contains two anatomically
distinct elements, the chorioallantoic placenta and the
chorioamnion. This barrier is formed at the placental
level by the villous syncytiotrophoblast, a layer of spe-
cialized epithelial cells differentiated from underlying
mononuclear cytotrophoblasts (Fig. 2). The syncytiotro-
phoblast actively invades the uterine wall and eventually
forms the outermost fetal constituent of the placenta
and the placental villi. This important epithelial layer
also forms an interface between maternal blood and

embryonic extracellular fluid to mediate oxygen and nu-
trient transfer between maternal capillaries and the fetus’
environment. Additionally, the syncytiotrophoblast acts
as a continuous cell without intercellular barriers, disal-
lowing maternal or bacterial cells to squeeze through
intercellular junctions and into the fetal bloodstream.
This provides a critical first level of structural protection
against invasion of maternal cells carrying foreign anti-
gens and bacterial pathogens [52–55].
Additionally, a basement membrane separates the syn-

cytiotrophoblast from connective tissue containing fetal
capillaries (Fig. 2). This placental membrane constitutes
a second physical obstacle that potential microbial in-
vaders must overcome to infect the developing fetus
[33]. A third level of protection is provided by extravil-
lous trophoblasts (EVTs). EVTs invade the decidua,
functioning to anchor the placenta into the uterine wall
[56] (Fig. 2). Besides being co-localized with natural
killer cells, macrophages, and leukocytes, EVTs also pro-
vide innate defense mechanisms [57] and possess bac-
tericidal properties [53, 55]. Importantly, EVTs also send
tolerogenic signals to maternal leukocytes to prevent
immune-mediated damage to the placenta [57].
Together, the syncytiotrophoblast, the EVT, and the

basement membrane constitute the physical barrier that
averts the passage of bacteria into the amniotic sac and,
consequently, the fetus. Only bona fide bacterial pathogens
(for example, Listeria monocytogenes, Brucella abortus, and
Toxiplasma gondii) possess the factors necessary for suc-
cessful invasion of these barriers, subversion of the immune
response, and establishment in the placenta as viable
organisms. For example, L. monocytogenes uses specific
virulence structures such as internalins (InlA and InlB), the
hemolysin listeriolysin O, and the actin assembly-inducing
protein ActA to cross the intestinal, placental, and blood-
brain barriers [58]. The requirement for these structures to
successfully invade mammalian cells has been demon-
strated by introducing them into commensal bacteria using
plasmid vectors [59]. Together, these findings indicate that
only pathogens and not commensals are capable of bypass-
ing the materno-fetal anatomical barriers and establishing
in the fetal environment.

(ii) Immunological barriers

Numerous immune cells and effector molecules are
present in the placenta to ensure protection against bac-
terial invaders. For example, toll-like receptors (TLR) 1
through 10, which are important in recognizing molecular
patterns and facilitating immune responses, are present in
the human placenta [60, 61], and their expression is regu-
lated both spatially and temporally depending on gestation
period [62]. Additionally, the female reproductive tract
constitutively expresses antimicrobial peptides (AMP).
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These AMPs serve as crucial immune effectors for the
placenta and fetal membranes during pregnancy by pro-
viding a chemical barrier to ascending infections [63]. The
concentrations of some AMPs are increased during late
gestation, while others are released directly into amniotic
fluid and the fetal compartment during parturition to help
defend the neonate against infection [64–66].
Other important immune effectors present in the

placenta include immunoglobulins (e.g., IgG, IgA, and
IgM), which play multiple important roles in regulating
the course of a normal pregnancy [67, 68]. In the mater-
nal part of the placenta, immunoglobulins protect the
mother against paternal antigens present in the fetus,

while in the fetal part, immunoglobulins protect the
fetus against macromolecules and infectious agents
originating from the mother [67]. Interestingly, most
placental IgG are bound to both the trophoblastic base-
ment membrane and the surfaces of the syncytiotropho-
blast [69]. In contrast, IgM is located in the placental
villous structures [70]. In particular, all of these immu-
noglobulins can be found as components of the outer
layers of the placenta, and this location is likely a key in
protecting against bacteria trying to gain access. Indeed,
the presence of AMPs in the chorionic and amniotic
membranes and immunoglobulins in the placenta could
explain why researches have not been able to find viable

Fig. 2 Schematic representation of the anatomical, physiological, and immunological placental barriers designed to limit microbial invasion. Three
main types of cells on the fetal side of the placenta prevent access of bacterial invaders to the fetal circulation: the syncytiotrophoblast, the cytotrophoblasts,
and the extravillous trophoblasts (EVT). The basement membrane also serves as a physical barrier that averts bacterial invasion. Additionally, maternal
immune cells and immunoglobulins (not depicted) are near the EVTs to aid in the defense against microbial insults
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bacteria in placentas from healthy, full-term deliveries.
Rather than live bacteria, what may be present in placen-
tal tissues is simply bacterial products created by the
antimicrobial actions of AMPs and immunoglobulins.
Altogether, the placental epithelium possesses a series

of anatomical, physiological, and immunological features
to prevent and combat microbial threat. Many other epi-
thelial sites that harbor resident microbiomes also have
these features. However, when entertaining the idea of a
microbiome associated with the human fetus, one
should consider that several immune system compo-
nents needed to facilitate an “incident-free” prenatal
interrelationship with the microbiome are not yet in
place or mature in the fetus. Significant differences be-
tween the neonatal and adult immune system include a
reduction in serum complement activity, decreased abil-
ity to produce antibodies against bacterial polysaccharide
antigens, and increased numbers of naïve T cells and
antigen-presenting cells with a correspondingly naïve
functional program [71, 72]. Apart from a limited subset
of AMPs that are expressed in distinct fetal compart-
ments [66], fetuses do not have the immunity needed to
successfully overcome bacterial invasion. Additionally,
studies documenting the limited immune functions of
very premature newborns indicate that the complex im-
mune system necessary for the development of immuno-
logical tolerance to a microbiome would not be present
in a fetus [72, 73, 74]. Finally, intestinal permeability is
higher during the first 2 days of life for preterm infants
as compared to healthy term infants [75], suggesting that
the fetal gut would permit bacterial translocation and
promote encounters with an underdeveloped immune
system. Although there may be some evidence, albeit in-
consistent, for the presence of bacterial DNA in placen-
tal and amniotic fluid samples of healthy pregnancies, it
is not at all clear how an immunologically immature
fetus would successfully control viable bacteria to pre-
vent infections (and mortality) and develop normally.

B. Methodological considerations

Most of the studies that established the sterile womb
paradigm are based on microbial culture, which fails to
detect viable but non-cultivable microbes. DNA-based
PCR and sequencing methods overcome this limitation,
and it is possible that bacteria detectable by these
methods in the fetal-placental environment and meco-
nium do represent viable, metabolically active organisms
that are non-cultivable. However, one must also consider
that these molecular methods have inherent limitations.
First, even if bacterial DNA is detectable, the organisms
could be dead. This consideration is especially relevant
for the placenta, as an important role for this tissue is
the removal of microbes and their components that

might be present in the blood [76]. Additionally, for
research to successfully challenge the sterile womb para-
digm, a demonstration of microbial viability is essential,
as sites can be sterile even while containing bacterial
DNA. Very few groups have demonstrated viable micro-
organisms in the fetal environment despite these studies
employing culture methods that readily grow bacteria
from other parts of the body [77–83]. In the case of
Satokari and colleagues [84], the authors could not cul-
ture bacteria detected by molecular methods (Bifidobac-
terium and Lactobacillus) even though these are readily
cultivable organisms. Although the authors attribute this
result to freezing the samples prior to processing, they
also ponder the possibility that only bacterial products
including DNA, rather than living bacteria, are present
in the placenta. In fact, freezing samples before process-
ing has been performed in many culture-based studies
of microbiomes, and although it reduces bacterial
counts, it normally does not prevent cultivation. In the
case of Collado and colleagues [10], identification of bac-
teria cultured from the placenta and amniotic fluid of
newborns delivered by C-section was limited to multiple
isolates of Propionibacterium and Staphylococcus spe-
cies, and one isolate each of Streptomyces and Lachnos-
piraceae. Propionibacterium and Staphylococcus species
are ubiquitous normal skin commensals and could
therefore originate from contamination (see below).
Importantly, the authors reported that Enterobacter and
Escherichia/Shigella were the most abundant genera de-
tected in placenta and amniotic fluid samples. However,
they were not able to recover these organisms by culture
methods despite the relative ease in cultivating these
bacterial groups. Taken together, these findings and
other current data do not support the existence of live
bacteria in the placenta.
An even more important methodological consideration

is that DNA-based assessments of low microbial biomass
samples (such as the placenta, amniotic fluid, and meco-
nium) are extremely prone to confounding findings from
contaminant DNA. In fact, studies have demonstrated
that sequence-based analyses of samples with low DNA
levels are not reliable because reagents, consumables,
and components of DNA extraction kits contain bacter-
ial DNA [85–91]. Work by Salter and colleagues [90]
has systematically demonstrated that the lower the
amount of bacterial DNA in a sample, the higher the
proportion of sequences that can be attributed to con-
tamination. The authors provided a list of bacterial taxa
commonly present in reagents and consumables that are
detected in negative controls (Fig. 3). Interestingly,
around 36% of the total species reported by Aagaard and
colleagues [9] as “the placenta microbiome” overlap with
taxa on this list. Although some researchers do report
the use of controls, such as sequencing of non-template
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extractions [9], even these have been criticized as not
sufficient [76], and most studies on the microbiota of
the fetal-placental environment do not report the use of
any controls [10, 38, 49, 50, 84, 92]. Clearly, lack of ap-
propriate controls leaves the findings on fetal micro-
biomes extremely doubtful. This notion was recently
reinforced by Lauder and colleagues [91] who systemat-
ically compared sequencing data obtained from placental
samples with those from different contamination con-
trols including sterile swabs, air swabs (swabs exposed to
the air of the clinical laboratory), and extraction blanks
from two different DNA isolation kits (blank tubes as a
source of possible extraction/reagent contaminants).
This study revealed that placenta samples contained
exactly the same marginal amounts of bacterial DNA as
the extraction blanks, and that the bacterial communities

detected clustered closely with the contaminant commu-
nity of the respective DNA isolation kit. Most importantly,
no bacterial lineages were identified as unique to or
present at greater abundances in placental samples when
compared to contamination controls.
Apart from preventing the contamination of DNA,

avoiding sample contamination per se is also a signifi-
cant challenge when studying low-abundance and low-
diversity bacterial communities. Samples for the study of
the in utero environment are collected within a clinical
setting (hospital, emergency room, delivery or operating
room), making it difficult, if not impossible, to avoid
sample contamination during collection and processing.
In addition, the cleanliness of the tissue processing en-
vironment is particularly important in laboratories where
bacterial cultures are also routinely handled. Accordingly,

Fig. 3 Venn diagram of bacterial genera hypothesized to contribute to the infant gut microbiome. Aagaard and colleagues [9] hypothesized that
bacteria translocate from the mother’s oral cavity into the placenta, contributing to in utero colonization of the fetal gut. They further suggest that placentas
contain low abundance communities of commensal bacteria. However, 36% of the bacterial genera found by Aagaard and colleagues [9] also appear on the
list of contaminants found in reagents by several independent research groups as reported by Salter and colleagues [90]. Not all genera were included for
each individual microbiome due to space constraints. Genera found in the infant gut [2, 101, 102, 105, 148] include taxa described in both vaginally and
cesarean section-delivered babies [101, 105] and show a substantial overlap with genera found in the adult gut microbiome [145–147], but little overlap with
taxa found in the placenta [9, 91] or as contaminants [85–91]
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processing and storage time also seem to influence results.
For example, Jimenez and colleagues [8] reported that
their samples clustered by time of processing, as half of
them were processed at the time of collection while the
rest were processed 4 days after collection.
Furthermore, the method of infant delivery can also

influence the degree of sample contamination and
should be considered during study design. Vaginally de-
livered placentas are exposed to vaginal microbes during
expulsion, and findings, in our opinion, can therefore
not be used to argue for in utero colonization, nor
should they be compared to tissues extracted via C-sec-
tion. As an example, Jones and colleagues evaluated fetal
and placental tissues from 74 preterm and full-term C-
section and vaginal deliveries [93]. They found 30 and
43% of these tissues to be positive for bacterial DNA
using qPCR. However, once the authors stratified the tis-
sues by delivery mode, none of the full-term C-section
placentas were found to be positive.
Overall, the molecular techniques used to study the

fetal microbiome have inherent limitations due to their
susceptibility to false positives because of contamination.
In this respect, it is important to consider the limit of
DNA that can be reliably detected by these methods.
Even in studies that supported the presence of a placen-
tal microbiome, DNA concentrations were acknowl-
edged to be very low [9, 10]. Therefore, only techniques
capable of detecting less than 100 bacterial cells per
gram of sample are likely to provide reliable results.
However, even PCR methods, despite the fact that they
can (in theory) detect one single DNA template, fre-
quently have detection limits of 104 to 106 cells per gram
when applied to samples with complex matrices [94, 95].
Although detection limits of high-throughput sequen-
cing technologies in low-biomass samples have not been
established, it is likely that they are not sufficient to reli-
ably detect the low amounts of DNA in these samples
(e.g., in the presence of contaminating DNA). Culture
methods do possess the required detection limit, but as
described above, most studies did not result in positive
results. We therefore conclude that the in utero
colonization hypothesis rests on studies that used mo-
lecular approaches with an insufficient detection limit to
study “low-biomass” microbial populations and further
lacked appropriate controls for contamination while
failing to provide evidence of bacterial viability.

C. Interpreting results from the study of the very early
neonate’s microbiome

The repeated detection of microbes in meconium is
frequently offered as evidence in support of the in utero
colonization hypothesis. However, it should be recog-
nized that only a small subset of meconiums contains

detectable microbes [3, 12–14, 96]. Even if microbes are
detected, bacteria in the first stool of the newborn could
be the result of postnatal colonization, especially if the
meconium is expelled long after delivery. Experiments
with germ-free mice have shown that bacterial
colonization is rapid, with bacterial species detectable
8 h after the initial exposure of the mice to conventional
housing, and bacterial counts becoming equivalent to
those of conventional mice after 24 h [97]. If the “germ-
free human” supports microbial growth similarly to that
of a germ-free mouse, then a rapid colonization process
would also be expected to occur in the neonatal gut.
Hansen and colleagues [14] argued that there is a
“meconium colonisation interval” that provides sufficient
opportunity for the microbes to multiply between rup-
ture of the membranes during birth and the time when
the meconium is delivered and processed. In support of
this idea, microbial colonization of the meconium has
repeatedly been shown to increase with time of passage
[12, 13, 14], indicating that colonization occurs ex utero.
Accordingly, studies that do not categorize and differen-
tiate this period of time in their analyses report a higher
number of positive cases [92, 98, 99].
In addition, the composition of the pioneer infant

microbiome supports the sterile womb paradigm. If ster-
ile in utero, initial inoculation of microbes is contingent
upon the process of childbirth and subsequent environ-
mental exposure (Fig. 1A) with the first major microbial
exposure for a vaginally born infant occurring in the
birth canal. This step is bypassed during C-sections, and
delivery mode (vaginal delivery versus C-section) would
therefore heavily influence the microbial composition
[100–106]. In contrast, if a subset of the early micro-
biome were acquired in utero, then bacterial populations
should be present in the infant gut that overlap with
those found in the placenta/meconium, and their pres-
ence should be independent of delivery method. Some
studies report that the meconium contains bacteria simi-
lar to those found in amniotic fluid [10], and authors
have proposed that fetal gut colonization could occur
through ingestion of amniotic fluid that contains bac-
teria [8, 98, 107]. However, the vast majority of the lit-
erature demonstrates that the pioneer gut microbiome is
heavily influenced by birth method and later dominated
by species that are characteristic gut microbes, while mi-
crobes detected in the fetal environment are absent
(Fig. 3). Several studies have reported significant differ-
ences in the diversity and composition between vaginally
versus C-section-delivered infants [101, 105, 106, 108],
with vaginally born infants harboring an early micro-
biome that resemble that of the vagina, while the micro-
biomes of C-section infants reflect those of the human
skin [101, 109]. Dominguez-Bello and colleagues showed
that the bacterial communities of vaginally delivered

Perez-Muñoz et al. Microbiome  (2017) 5:48 Page 12 of 19



newborns were dominated by Lactobacillus, Prevotella,
or Sneathia species—all of which were also found in the
mother’s vagina [101]. In contrast, the gut microbiota of
infants delivered by C-section was dominated by the
skin commensals Staphylococcus, Corynebacterium, and
Propionibacterium [101]. Bäckhed and colleagues also
reported that the gut microbiomes of infants born via
C-section were dominated by skin and oral microbes as
well as bacteria from the surrounding environment,
while gut microbiomes of vaginally delivered infants
were enriched in classical gut microbes (Bacteroides, Bifi-
dobacterium, Parabacteroides, and Escherichia/Shigella)
[105]. The authors further established that 72% of the
early colonizers of vaginally delivered neonates could be
traced back to the gut microbiota of their own mother,
while this number was only 41% for C-section infants.
Together, these studies convincingly show that delivery
method strongly affects microbiome composition in neo-
nates, while delivery method-independent microbial
taxa originating from the placenta/amniotic fluid have
not been reported. These findings support the con-
cept of a sterile infant gut that is colonized by mi-
crobes acquired during and after birth, dependent on
the environmental exposure.

D. Considerations from the derivation of germ-free
mammals

The strongest evidence against the existence of micro-
biomes in the fetal environment stems from the science
of gnotobiology. Gnotobiology is the study of animals
raised and maintained in an environment in which all
microorganisms are either defined or excluded [110].
The science of gnotobiology is founded on our ability to
derive germ-free animals via C-sections and subse-
quently raise the offspring in a sterile environment.
The first axenic animals were reported as early as the

end of the nineteenth century [111], but it took until the
1940s to consistently derive axenic rodents successfully
and maintain them for successive generations [112–114].
The first germ-free progenitors were generated by the
labor-intensive process of C-section and hand-feeding
with a sterilized artificial diet inside an aseptic isolator
until maturity, after which a breeding colony was estab-
lished [114]. Since then, a wide variety of animals have
been successfully derived germ-free over the past
70 years, including mice, rats, guinea pigs, rabbits, dogs,
cats, pigs, lambs, calves, goats, baboons, chimpanzees,
and marmosets [115–122], demonstrating that the ability
to derive germ-free animals is not unique to only rodent
species. Currently, both commercial companies and uni-
versity animal facilities routinely offer derivation as a
service to the research community. Germ-free offspring
can be generated from non-germ-free stock by embryo

transfer and aseptic hysterectomy (Fig. 4), and aseptic
hysterotomy. To perform the hysterectomy in mice,
donor females are euthanized when parturition is
imminent, and the intact pregnant uterus is aseptically
harvested, clamped, introduced into a germicidal bath,
and finally transferred into a sterile isolator. After re-
moval from the uterus, the pups are warmed, dried to
stimulate their breathing, and then placed under the
care of an axenic foster mother [123–125]. Hysterotomy
is usually performed to generate large axenic animals
with the intent of maintaining the breeding potential of
the female. In this scenario, a sterile canopy with gloves
is attached to the mother’s abdomen prior to the sur-
gery. Using sterile gloves, the surgeon makes an incision
in the uterus and removes the placenta and amniotic
sac, which are then transferred into a second sterile iso-
lator so the fetus(es) can be revived in an aseptic envir-
onment [116, 119].
During hysterotomies and hysterectomies, either the

intact pregnant uterus or its entire contents (including
the placenta, the amniotic sac, and the fetus), respect-
ively, are removed and transferred to generate germ-free
animals. The success of these procedures provides clear
evidence against the existence of a microbiome in the
placenta and fetus. If microbes were present, even at low
abundance, they would colonize the offspring and rap-
idly grow to detectable levels. This phenomenon can be
observed during accidental contaminations that occur
(very much to the dismay of the researchers) in germ-
free animal facilities. The derivation process may involve
the treatment of the non-germ-free donor female with
antibiotics to reduce her microbial load prior to the hys-
terectomy [125]. However, oral administration of anti-
microbial agents directly to the offspring is not applied,
nor would this practice succeed in generating axenic off-
spring from animals that are already colonized. The fact
that axenic animals can be derived and maintained de-
void of microbes under sterile conditions provides very
compelling evidence that, in most mammalian species,
in utero transfer of the microbiome does not occur.
Supporters of the in utero transmission hypothesis

often argue that the bacteria present in the fetal environ-
ment would potentially not colonize a germ-free host or
remain undetectable after birth. However, this phenomenon
is unlikely. Almost any bacterium quickly and irreversibly
colonizes germ-free mice because there is no competition.
Others also argue that animals are not humans, and that
fetal microbiomes might be unique to humans due to
physiological and anatomical differences. However, germ-
free humans (although rare) have been established using
protocols similar to those employed during the generation
of large axenic mammals via aseptic hysterotomy [125–
127]. This procedure has been applied in suspected cases of
severe immune deficiency of the fetus [128]. The first
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germ-free human was delivered by performing a C-section
inside a sterile canopy attached to the mother’s abdomen,
which prevented exposure to environmental contaminants
[126]. Gram stains of feces and aerobic and anaerobic cul-
tures of swabs from both the infant and the isolator sur-
faces confirmed the germ-free status of the infant [126, 129,
130]. The published cases report axenic status from 6 days
to 3 months after which the subjects were either removed
from the axenic isolators or microbial contamination was
detected [126, 127, 129, 131]. Although axenic humans are
very rare for obvious reasons, the fact that they have been
generated makes it extremely unlikely that humans are col-
onized with bacteria in utero.

Conclusions
In 1918, Arthur Kendall summarized the contemporary
knowledge on intestinal bacteriology in The American
Journal of the Medical Sciences [132]. He concluded that
“at birth the intestinal tract and intestinal contents are
normally sterile. The first indications of bacterial con-
tamination are recognizable several hours postpartum.
The early invaders are adventitious microbes, similar in
every respect to those commonly present in the infant’s
environment. They gain entrance to the alimentary canal

through the mouth, although the possibility of rectal in-
fection must be borne in mind.” After having reviewed
the available literature, we conclude that Kendall’s as-
sumptions are still valid, and that there is little evidence
to successfully challenge the sterile womb paradigm.
The recent findings that question this premise rely
mostly on (i) methodological approaches (PCR and next-
generation sequencing) that do not have the detection
limit necessary to study “low-density” bacterial popula-
tions, (ii) the use of methodological approaches that are
extremely susceptible to contamination without the in-
clusion of appropriate controls, (iii) the study of samples
collected in clinical settings where it is difficult to pre-
vent contaminations, and (iv) a flawed interpretation of
findings from early stool samples, which can contain mi-
crobial populations even if the fetus was sterile. Even
though the bacterial species identified by molecular
techniques in fetal environments are known to be readily
cultivable, bacterial culture (which does provide a suffi-
cient detection limit) is almost always negative. In our
opinion, only one study published to date has used ro-
bust controls and considered low DNA levels, and the
findings do not support the presence of a microbiome in
the placenta [91]. Moreover, the strongest evidence

Fig. 4 Schematic representation of the generation of axenic rodents by aseptic hysterectomy. In rodents, germ-free offspring are derived by aseptic
hysterectomy. Germ-free foster mothers housed in a sterile isolator are time-mated to become pregnant in synchrony with holoxenic (conventional)
females. Breeding pairs are mated on such a schedule that the aseptic hysterectomy of the donor mother can be performed a few hours before her
scheduled pupping and a few hours after the foster mother gives birth. To perform the hysterectomy, donor females are euthanized, and the uterus
is harvested and clamped, aseptically introduced into a germicidal bath, and then transferred into the sterile isolator where the foster mothers reside.
The pups are then revived and placed under the care of the foster mother [123–125]. If there are no germ-free foster mothers available, then pups
are hand-raised using sterile formula. Figure adapted from Hedrich and Hardy [125]
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against the hypothesis of a commensal placental micro-
biome comes from the successful generation of germ-
free animals via aseptic transfer of the entire uterus
(containing the placenta).
By writing this review, we aimed to contribute to the

discussion of this contested topic, as we are concerned
with the far-reaching implications that impact both our
basic understanding of host-microbe symbiosis in
humans, as well as important applied aspects such as
clinical decisions and funding priorities. Transmission
mode influences the mechanisms by which symbioses
and mutualistic interactions evolve, as well as the extent
to which environmental and lifestyle factors alter such
interactions. This understanding directly informs clinical
practices and recommendations, including the delivery
of infants via C-sections, which have been argued by
supporters of the in utero colonization hypothesis to be
less detrimental than previously thought. Such discus-
sions are not scientifically valid. Although medically
necessary C-sections should not be discouraged, this
procedure clearly influences establishment of the early
gut microbiome [106, 133–137] and is epidemiologically
linked to an increased risk for developing chronic dis-
eases later in life [134, 137–140]. Therefore, strategies to
prevent C-sections or their impact on the pioneer
microbiome remain important and should be researched
with the goal of preventing chronic diseases [102].
Further, it has been argued that the role of bacterial

communities in the in utero environment warrants add-
itional study [102, 141]. However, given the insufficient
evidence that such communities exist, we argue that
these efforts are likely futile. In our opinion, future stud-
ies (and resources) should instead focus on (i) the post-
natal acquisition of the gut microbiome and its
importance to health and (ii) the possible role of pre-
natal exposure of the fetus to microbial metabolites and
compounds that originate from the maternal gut micro-
biota. Indeed, a recent study elegantly showed that mi-
crobial metabolites in the fetal environment can have a
major impact on the development of the offspring [142].
Although the evidence does not support in utero
colonization, it does however suggest an association be-
tween the presence of bacterial DNA in the placenta and
preterm birth [38, 50]. Research regarding the role of
this DNA would be worthwhile, but such studies must
strictly control for DNA contamination during sample
collection and the DNA extraction process.
Self-correction is one of science’s most fundamental

principles—all findings must be subject to scrutiny and
verification to determine validity [143, 144]. If a finding
is incorrect, then replication will prove it as such.
Unfortunately, the scientific self-correction process is
slower than the transfer of information. Today, scientific
findings can move freely from professional journals into

the public realm (e.g., through social media), often be-
fore the scientific community has thoroughly discussed
and vetted the evidence. Indeed, some of the research
articles discussed in this manuscript were heavily cov-
ered in the public press. Because most members of the
non-scientific community are not equipped to critique
scientific findings, it is our responsibility to debate these
controversial topics and facilitate the self-correction
process. Failure to do so may ultimately compromise hu-
man health, damage scientific creditability, and poten-
tially contribute to the erosion of the public’s trust in
science. We hope that this review has contributed to
some degree to prevent the latter.
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