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Abstract

Background: Obesity and type 2 diabetes (T2D) are major public health concerns worldwide, and their prevalence

has only increased in recent years. Mexican Americans are disproportionately afflicted by obesity and T2D, and rates
are even higher in the United States-Mexico border region. To determine the factors associated with the increased

risk of T2D, obesity, and other diseases in this population, the Cameron County Hispanic Cohort was established in

2004.

Results: In this study, we characterized the 165 gut community of a subset of 63 subjects from this unique cohort.

while being depleted in T2D patients.

We found that these communities, when compared to Human Microbiome Project subjects, exhibit community
shifts often observed in obese and T2D individuals in published studies. We also examined microbial network
relationships between operational taxonomic units (OTUs) in the Cameron County Hispanic Cohort (CCHC) and
three additional datasets. We identified a group of seven genera that form a tightly interconnected network
present in all four tested datasets, dominated by butyrate producers, which are often increased in obese individuals

Conclusions: Through a combination of increased disease prevalence and relatively high gut microbial
homogeneity in the subset of CCHC members we examined, we believe that the CCHC may represent an ideal
community to dissect mechanisms underlying the role of the gut microbiome in human health and disease. The
lack of CCHC subject gut community segregation based on all tested metadata suggests that the community
structure we observe in the CCHC likely occurs early in life, and endures. This persistent ‘disease’-related gut
microbial community in CCHC subjects may enhance existing genetic or lifestyle predispositions to the prevalent
diseases of the CCHC, leading to increased attack rates of obesity, T2D, non-alcoholic fatty liver disease, and others.
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Background

Obesity is a major public health problem worldwide and
the number one risk factor associated with multiple dis-
eases, including type 2 diabetes (T2D). T2D is currently
the most prevalent endocrine disease in the world and
is estimated to afflict 430+ million people by 2030 [1].
T2D is a multifactorial disorder, with pathogenic contri-
butions from genetics, the environment, and lifestyle [2,3].
Accumulating evidence shows metabolic diseases like T2D
develop because of chronic, low grade, systemic inflamma-
tion that leads to disruption of the normal gut microbiota
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[4]. Recent studies have revealed gut microbiome signa-
tures associated with obesity and T2D patients [5,6]. Two
independent studies in European and Chinese populations
revealed increased abundances of opportunistically patho-
genic Clostridium species and decreased abundances
of butyrate-producing Roseburia, Faecalibacterium, and
Eubacterium species associated with T2D patients [7,8].
Karlsson et al. [7] also found increased abundances of
Lactobacillus gasseri and Streptococcus mutans predictive
of insulin resistance while Qin et al. [8] found enrichment
in Escherichia coli associated with current T2D patients.
There is mounting evidence that the structure of the
gut microbial community has significant implications
for health and disease, and therapeutic manipulations
of these communities can have immediate effects [9-14].
For example, in mice, deficiency of Toll-like receptor 5
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(TLR-5), an innate immune sensor of flagellin, results in
mice that mimic the symptoms of metabolic syndrome
including hyperlipidemia, hypertension, and insulin re-
sistance [15]. These symptoms were induced in wild-type
germ-free mice upon fecal transfer from the TLR-5
deficient donors. Likewise, there is evidence that direct
alteration of the gut microbiome through fecal trans-
plantation can temporarily reverse many of the symptoms
associated with metabolic syndrome and other diseases
including ulcerative colitis, irritable bowel syndrome, and
chronic fatigue syndrome [12,14,16]. Diet can have a
major impact on the composition of the gut microbial
community and has been implicated in the establishment
of gut enterotypes, which are distinct microbial com-
munity signatures driven by the differential abundance
of certain key taxa [17]. However, once established,
enterotype-defining taxa appear to be resistant to modifi-
cation through dietary intervention [18], suggesting that
events early in life establish enduring signatures in the gut
microbial composition [19]. However, studies in animals
and humans implementing dietary interventions aimed at
improving metabolic markers have noted non-enterotype-
defining shifts in the gut microbiome associated with
improved health [13,20-23]. For example, Akkermansia
muciniphila, a closely adherent mucin-degrading bacter-
ium, is depleted after administration of a high-fat diet and
is strongly negatively associated with obesity and T2D
[24]. Dietary supplementation of mice with A. muciniphila
reversed the high-fat-diet effects, such as inflammation
and insulin resistance, presumably through improved gut
barrier function. As a result, there is mounting enthusiasm
for altering the microbiome through changes in lifestyle,
diet and/or probiotics to help prevent and alleviate many
of the disease risks associated with obesity and T2D.
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Americans of Mexican descent (MAm) are at an in-
creased risk of obesity and T2D compared to all Americans
(Am) nationally (MAm 39.1% BMI =30, T2D 12.8%) (Am
35.7% BMI =30, T2D 8.3%) [25-27]. Diabetes in Hispanics
occurs earlier (mean age of diagnosis 49.4 years for
Hispanics, 53.8 years for all Americans), manifests with
higher complication rates, and attacks at nearly twice the
rate of non-Hispanic whites (WAm) (T2D 12.8% MAm,
T2D 7.6% WAm [28]). Mexican Americans living along
the United States (US)-Mexico border are at even greater
risk of developing T2D compared to Mexican Americans
nationally (15.7% along the border vs. 12.8% nationally)
[29-33]. This likely has roots in the genetic makeup
of this population, lifestyle, diet, and socioeconomic status
among other factors.

The US-Mexico border region comprises a diverse
mixture of economies and disease burdens owing to the
very unique countries that lie on either side. Driving this
dichotomy is the greater than fivefold disparity be-
tween the GDP-per-capita of these two countries [34].
To identify the important risk factors for obesity and
T2D of Mexican Americans living in the lower Rio
Grande Valley, the Cameron County Hispanic Cohort
(CCHC) was established in 2004 [35] (Figure 1). Over-
all, members of this community have much higher
obesity (50.9% BMI =30, 9.0% BMI 240) and T2D rates
(28.0%) versus the average American population (35.7%
BMI 230, 6.3% BMI 240, T2D 8.3%) [36-38]. These statis-
tics reflect the general trend of Mexican Americans living
along the entire US-Mexico border [27]. Participants in
this study were slightly heavier but had lower T2D rates
than the CCHC as a whole (60% BMI >30, 12.9% T2D).
The CCHC represents the first exclusively Mexican
American group from a border city with poor overall
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Figure 1 Location of Cameron County, Texas. MEX, Mexico; TX, Texas.
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health. In light of the previously described recent studies,
and the disproportionately increased prevalence of T2D
and obesity in this population, we sought to characterize
the gut microbiome in 63 subjects belonging to the
CCHC. For this study, we chose to utilize Human Micro-
biome Project (HMP) stool data for comparative analysis
[39-41] (Figure 2) (Figure 3). The 300 participants of the
HMP were subjected to a lengthy list of exclusion criteria
and here represent a healthy Western microbiome [42].
Using the HMP stool data as a reference will help deter-
mine associations with the gut microbial structure and
increase our understanding about the observed predis-
position to obesity and T2D in the CCHC.

Results and discussion

16S rRNA gene sequencing

16S rRNA gene profiling of 63 CCHC subjects revealed
that no taxa is significantly associated with any clinical
measure evaluated in this study (after correcting for
multiple comparisons). These included BMI, age, choles-
terol, waist-to-hip ratio, diabetes status, triglycerides, sex,
fasting glucose, and others (complete metadata included
in Additional file 1). We found this apparent high level of
homogeneity across subjects surprising, as the variance
between subjects of the CCHC was about one third of that
observed between HMP subjects.

In the CCHC subjects, we found significantly ele-
vated levels of organisms belonging to the Firmicutes
(P<0.001, FDR <2%) and Actinobacteria (P <0.001,
FDR <2%) phyla, while there were significantly fewer
Bacteroidetes (P < 0.001, FDR <2%) compared to subjects
in the HMP (Table 1) (Figure 4). At the family level, the
CCHC showed significantly increased Lachnospiraceae
(P <0.001, FDR <1%), Veillonellaceae (P < 0.001, FDR <1%),
Coriobacteriaceae (P <0.001, FDR <1%), Ruminococcaceae
(P<0.002, FDR <1%), and Prevotellaceae (P < 0.005,
FDR <2%) compared to HMP subjects. Significantly
decreased families include Bacteroidaceae (P < 0.001,
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FDR <1%) and Rikenellaceae (P <0.001, FDR <1%). For
those operational taxonomic units (OTUs) assignable to a
genus, many of the significant differences occur in genera
previously reported as associated with obesity and/or
T2D. The groups of significantly increased genera in
the CCHC include Prevotella (P <0.003, FDR <4%),
Collinsella (P <0.001, FDR <2%), Roseburia (P < 0.001,
FDR <2%), Streptococcus (P <0.001, FDR <2%), and
Dialister (P <0.003, FDR <4%). Those significantly de-
creased in the CCHC include Bacteroides (P < 0.001,
FDR <2%), Alistipes (P < 0.001, FDR <2%), and Parabac-
teroides (P <0.001, FDR <2%). Many differences between
the CCHC gut microbial community and HMP subjects
noted above tend to mirror shifts often observed in stud-
ies comparing subjects who are obese or have T2D versus
healthy controls. However, while T2D and obesity are per-
vasive in the CCHC, many members who were examined
in this study are not obese or diabetic (40% BMI <30,
87.3% HbAlc <6). This suggests that the gut micro-
biome may be a contributing factor to the development
of metabolic disease or that the microbial community
structure may serve as a predictive biomarker of meta-
bolic disease onset.

In this subset of CCHC members compared to the
HMP, we find significantly increased Coriobacteriaceae,
and specifically the genus Collinsella (Figure 5). These
shifts are strongly correlated with high low-density lipo-
protein levels and high total cholesterol in both human
and animal studies [43,44]. For example, the observation
was made decades ago that germ-free animals have higher
serum cholesterol [45]. Individuals with borderline-high
total cholesterol (=200 mg/dL) and high total cholesterol
(2240 mg/dL) are more prevalent in these CCHC study
subjects compared to Mexican Americans nationwide
(CCHC 50% and 22.2% versus all Mexican Americans
46.4% and 14.3%, respectively). Additionally, a higher
proportion of CCHC subjects in this study have elevated
LDL cholesterol (2130 mg/dL) versus Mexican Americans
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Figure 2 16S rRNA sequence principle coordinates analysis (PCoA) plots of CCHC and HMP stool samples. (A) Comparison of stool
samples from the CCHC and HMP analyzed using the unweighted UniFrac metric. (B) Same stool samples as in 1A analyzed using the weighted
UniFrac metric; HMP n =213, CCHC n=63. CCHC, Cameron County Hispanic Cohort; HMP, Human Microbiome Project; PC, principal coordinate.
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Figure 3 Phylum level analysis of CCHC and HMP subject stool samples. HMP n =213, CCHC n=63.
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nationally (CCHC 30.2% versus all Mexican Americans
27.7%). Members of the Coriobacteriaceae family respond
to dietary interventions involving grain sorghum lipids
and dietary whole grains that decrease cholesterol absorp-
tion by the host [21,46]. Coriobacteriaceae levels were
negatively associated with improved metabolic and im-
munological markers after dietary intervention [21]. Simi-
larly, studies also noted significantly higher Collinsella in
omnivores compared to vegetarians [47] and significant
reductions of Collinsella on a low-carb weight loss diet

Table 1 16S rRNA relative abundance comparison between
CCHC and HMP subject stool samples

CCHC HMP P value q value

Phylum

Firmicutes 56.7% 38.1% <0.001 <0.02
Bacteroides 37.2% 57.0% <0.001 <0.02
Actinobacteria 1.28% 0.28% <0.001 <0.02
Family

Lachnospiraceae 26.8% 17.6% <0.001 <0.01
Veillonellaceae 3.10% 1.46% <0.001 <0.01
Coriobacteriaceae 1.22% 0.23% <0.001 <001
Ruminococcaceae 20.6% 14.3% <0.01 <0.01
Prevotellaceae 12.1% 44% <0.01 <0.02
Bacteroideaceae 17.8% 40.2% <0.001 <0.01
Rikenellaceae 1.64% 535% <0.001 <0.01
Genus

Prevotella 11.9% 4.10% <0.01 <0.05
Collinsella 1.09% 0.16% <0.001 <0.02
Roseburia 1.37% 0.95% <0.001 <0.02
Streptococcus 0.68% 0.05% <0.001 <0.02
Dialister 0.55% 0.13% <0.01 <0.05
Bacteroides 17.7% 39.8% <0.001 <0.02
Alistipes 151% 5.10% <0.001 <0.02
Parabacteroides 1.92% 4.58% <0.001 <0.02

P and g values were calculated via metastats (http://metastats.cbcb.umd.edu/
detection.html).

[48]. Together these observations show that Collinsella
and perhaps other members of Coriobacteriaceae are
often positively correlated with disease, particularly el-
evated cholesterol, and may be a worthwhile target for
behavioral, probiotic, and/or prebiotic manipulation or as
a diagnostic biomarker.

In addition, among our study subjects, we observe a
significantly higher Firmicutes:Bacteroidetes ratio com-
pared to the HMP (Figure 4). Higher fecal concentrations
of short-chain fatty acids (SCFA) in obese compared with
lean individuals have been attributed to a higher Firmi-
cutes:Bacteroidetes ratio [49]. In this study, significantly
more reads were identified as Lachnospiraceae and Rose-
buria (Firmicutes) in the CCHC subjects compared to the
HMP (Figure 6). Increased Lachnospiraceae in particular
has been associated with obesity, non-alcoholic fatty liver
disease (NAFLD), and protection from colorectal cancer
[50,51]. The protection from colorectal cancer is attrib-
uted to higher butyrate production, an ability harbored by
many species in the Lachnospiraceae family including spe-
cies of the genus Roseburia. Interestingly, these observa-
tions correlate with the observation that Hispanics living
along the Texas-Mexico border have significantly lower
rates of colorectal cancer than those living in non-border
counties [52]. In the CCHC, colorectal cancer ranks sev-
enth amongst women and sixth amongst men in inci-
dence, whereas colorectal cancer ranks second nationally
for Hispanics of both sexes [53]. None of the subjects in-
cluded in this study had colorectal cancer. Additionally,
NAFLD is found at much higher rates amongst the CCHC
members (46% of study subjects had elevated alanine ami-
notransferase), and Hispanic individuals in general [54].
These observations demonstrate the importance of under-
standing host/microbial relationships in order to prevent
unforeseen effects of targeted gut microbial community
manipulation, because gut microbial composition may be
concurrently protective of and predisposing to certain
diseases.

The Prevotellaceae family has exhibited strong positive
associations with obesity [55] and impaired glucose
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Figure 4 Breakdown of phylum level analysis showing the three most abundant phyla. Scatter plots representing 165 rRNA relative
abundance of the three most prevalent phyla: Firmicutes, Bacteroidetes, and Actinobacteria. Black bars represent mean relative abundance. All P values
were calculated by Mann-Whitney U test. HMP n = 213, CCHC n = 63. CCHC, Cameron County Hispanic Cohort; HMP, Human Microbiome Project.

tolerance [56], while having a negative association with
type 1 diabetes [57,58]. In the CCHC, subjects clustered
distinctly by their relative abundance of Prevotella into
two groups (Figure 7). Of note, Bergstrom et al. [19]
found a bimodal distribution of Prevotella apparent by
the third year of life, and Roager et al. [18] showed that,
in adults, this high/low Prevotella grouping remained
stable during a 6-month dietary intervention, even after
courses of antibiotics. Numerous recent studies have
linked high prevalence of this family to a predominately
plant-based diet [47,59-61]. However, it seems unlikely
that differences in diet are the sole explanation for the
bimodal distribution of Prevotella within the CCHC. All
of the CCHC subjects are from the same general neigh-
borhood, are of the same ethnicity, share similar socio-
economic status, and in some cases are family members.
Interestingly, family members were as often discordant
for high/low Prevotella grouping as concordant. This
suggests factors additional to diet may determine the

prevalence of Prevotella in the gut microbial community.
In the CCHC, the bimodal distribution was not explained
by age, sex, BMI, waist-to-hip ratio, income quartile, birth
country, total cholesterol, triglycerides, high blood pres-
sure, diabetes status, fasting glucose, or weight change
over 5 years (as percentage of body weight). This recurring
observation of sample division by high/low Prevotella
abundance remains intriguing; however, none of the
metadata we examined suggests a reason for the distinct

grouping.

OTU network analysis

The gut microbial environment is influenced by host
genetics, host diet, and other factors and may influence
the way the gut microbiota interact with each other and
the host [20,62]. We sought to determine whether OTUs
exhibited correlative associations across individuals in
the CCHC, possibly revealing biologically relevant rela-
tionships between taxa not discernable from other types
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Figure 6 Lachnospiraceae and Roseburia 16S rRNA relative abundance differences between CCHC and HMP stool samples. Tukey style
box plots of the differences in 165 rRNA relative abundance of the family Lachnospiraceae and the genus Roseburia between CCHC and HMP
subject stool samples. Statistical significance was evaluated by Mann-Whitney U test where **** =P < 0.0001; HMP n =213, CCHC n=63. CCHC,
Cameron County Hispanic Cohort; HMP, Human Microbiome Project.

of analysis. Among other applications, this information
can prove useful for in vitro manipulation of organisms
currently recalcitrant to culture [63,64] and will likely be
indispensible as probiotics and personalized medical
treatments are developed.

We incorporated two additional, unrelated datasets to
diversify the population for the OTU correlation analysis
to determine whether correlated OTUs could either
remain so across diverse populations, age groups, and
socioeconomic backgrounds or whether these correla-
tions may only hold true for certain population strata.
These additional datasets include a type 1 diabetes
cohort from Mexico [57] and an elderly cohort from
Ireland [65] (Figure 8). We identified 22 OTU pairs that
were positively correlated in at least three of the four
datasets, suggesting a mutualistic relationship or possibly
codependency (Figure 9). Additionally, these 22 OTU
pairs only comprise 11 distinct genera, with only 7 genera
contained in 18 of the pairings. This highlights a small
network of highly correlated OTUs present in the human
gut. Of these seven highly correlated OTUs, five belong to

the butyrate-producing family Lachnospiraceae, while the
remaining two belong to Ruminococcaceae. Of these seven
genera, all but one, Lachnospira, were significantly in-
creased in the CCHC compared to the HMP. Many of
these genera are noted for containing species that produce
butyrate through fermentation of hydrolyzed polysaccha-
rides and may explain the low rates of colon cancer seen
in this population. Additional studies have observed de-
pletion of these genera in T2D, suggesting that diminished
butyrate production in the gut may play a role in the
pathogenesis of T2D [66].

Negative correlations were less abundant and no OTU
pairs were negatively correlated across all four datasets;
however, there were nine pairs that were negatively cor-
related in two or three of the datasets. Many studies
have noted a strong co-exclusive relationship between
Prevotella and Bacteroides; however, these were only
strongly negatively correlated in two of the four datasets
(CCHC and T1D). In the two datasets in which there
was little correlation between Prevotella and Bacteroides
(HMP and elderly), Prevotella was present at very low
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Figure 7 Prevotellaceae and Prevotella 16S rRNA relative abundance differences between CCHC and HMP stool samples. Scatter plots
representing 16S rRNA relative abundance of the family Prevotellaceae and the genus Prevotella. Black bars represent mean relative abundance. All
P values were calculated by Mann-Whitney U test where **** =P < 0.0001; HMP n =213, CCHC n = 63. CCHC, Cameron County Hispanic Cohort;
HMP, Human Microbiome Project.
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Figure 8 Heat maps showing the strength of OTU correlations calculated by the SparCC algorithm. These heat maps represent the
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Human Microbiome Project

abundance across subjects. This suggests that the host
environment, such as differences imparted by genetic
factors or by diet, may tip the balance in a competition
between species as has been suggested for Prevotella. In
both the T1D (children) and elderly cohorts, we found
that strong OTU correlations, both positive and nega-
tive, were much less abundant. This may be explained

by the increased flux in the microbiota in the very young
and the very old as well as extreme interpersonal vari-
ability in these age groups [65,67].

Conclusions
Within the CCHC, there are no significant gut micro-
biome shifts associated with age, sex, disease status, or
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any other available measure. This suggests that the
often-reported ‘disease’ associated gut community shifts
we found in the CCHC manifest early and likely persist
for life. The youngest CCHC member of this analysis set
is 28 years old, thus sampling this population at earlier
time points would provide insight into the age at which
these observed signatures become apparent. Whether
causal or an effect of outside influences, this persistent
community structure might compound other predispos-
ing genetic or lifestyle factors, leading to the higher rates
of obesity, T2D, NAFLD, and other diseases observed in
the CCHC. However, this gut community structure may
contribute to the low rates of colorectal cancer observed
in the CCHC through increased production of butyrate,
suggesting that a particular gut microbiome composition
can be both predisposing and protective of different
diseases simultaneously. This highlights the need for a
more complete understanding of host/microbe relation-
ships when implementing targeted manipulation of the
human gut community.

Among other observations, we identified a core group
of taxa that appear to be tightly correlated across many
populations. A large portion of these taxa belong to the
butyrate-producing family Lachnospiraceae and were
found to be increased in relative abundance in the
CCHC compared to the HMP. This correlated group of
taxa is also often depleted in T2D patients, suggesting a
possible link between the metabolic functions of these
taxa and progression of T2D. Information about microbial

codependence will be indispensable in the creation of syn-
thetic communities for probiotics or other purposes.

Manipulation of the intestinal microbiome shows
promise as a therapy for many diseases; nonetheless, a
comprehensive understanding of the mechanisms of
action remains to be deciphered. Members of the CCHC
exhibit increased prevalence of obesity and T2D, which
make them an interesting population to utilize for un-
raveling related host/microbiome relationships. However,
this was a cross-sectional study and thus lacks the reso-
lution necessary to elucidate how the microbiome signa-
tures in the CCHC specifically impact these diseases.

Additionally, we found a higher level of gut microbiome
homogeneity within the CCHC compared with other
sampled populations such as the HMP (average variance
between CCHC subjects across phyla was more than
threefold lower than HMP subjects), perhaps making
the CCHC an ideal community to test prebiotic or pro-
biotic interventions. Future directions will include lon-
gitudinal sampling of CCHC members so that we may
assess the low variability and overall stability of the gut
microbiome signatures observed in this cohort and its
involvement in disease states.

Methods

A subset of participants from the original CCHC study
[35] were re-solicited for a follow-up visit and asked to
provide a stool sample. This follow-up visit occurred
approximately 5 years after the original study visit. Stools



Ross et al. Microbiome (2015) 3:7

were self-collected at home, delivered to the clinic, ali-
quoted into 50 mL tubes, mixed to a 50% suspension in
RNAlater (Invitrogen, Carlsbad, CA, USA) and stored at
-20°C within 24 h of collection. A total of 69 stool sam-
ples were delivered to Baylor College of Medicine for ex-
traction and sequencing, and sequence data was generated
for 63 of them. Samples for both the HMP and CCHC
studies were processed via the same protocols [39] and, in
most cases, by the same personnel. The samples were
thawed, vortexed, and a wide-bore tip was used to transfer
approximately 750 pL of the slurry to a MoBio PowerSoil
garnet bead tube (Mo Bio Laboratories, Carlsbad, CA,
USA). The stool was processed according to the kit in-
structions and eluted into 50 pL. 16S rRNA sequencing
was performed on the V1 to V3 region (primers 27f and
534r) and sequenced via Roche 454 pyrosequencing (454
Life Sciences, Branford, CT, USA) (average 12,900 reads/
sample). Raw fastq files have been deposited into SRA
(project accession SRP053023). Sequences were processed
using QIIME software [68]. Reads were quality trimmed
using default settings and normalized to 3,100 reads/
sample. All CCHC clinical metadata are included in
Additional file 1. OTUs were picked closed-reference
using uclust-ref against the Silva database release 111
at 97%. OTU network correlation analysis was performed
using 16S rRNA relative abundance data to identify clus-
ters of highly correlated OTUs. Iterations of the sparse cor-
relations for compositional data (SparCC) algorithm [69]
were used to generate correlation matrices in this analysis.
This algorithm is specifically designed to account for com-
positional effects often present in genomic survey data,
such as 16S rRNA sequence data. We chose the HMP
dataset to compare against, as this represents a standard
gut microbiome of a healthy population [39-41]. For our
analysis, we used all HMP stool samples that had 16S
rRNA V1 to V3 region data generated and also contained
at least 3,100 reads, which amounted to 213 samples.

Additional file

Additional file 1: CCHC clinical metadata. This file contains relevant
clinical metadata on the subjects included in this study.
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