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Abstract 

Background Microbiota are closely associated with human health and disease. Metaproteomics can provide a direct 
means to identify microbial proteins in microbiota for compositional and functional characterization. However, in-
depth and accurate metaproteomics is still limited due to the extreme complexity and high diversity of microbiota 
samples. It is generally recommended to use metagenomic data from the same samples to construct the protein 
sequence database for metaproteomic data analysis. Although different metagenomics-based database construc-
tion strategies have been developed, an optimization of gene taxonomic annotation has not been reported, which, 
however, is extremely important for accurate metaproteomic analysis.

Results Herein, we proposed an accurate taxonomic annotation pipeline for genes from metagenomic data, 
namely contigs directed gene annotation (ConDiGA), and used the method to build a protein sequence database 
for metaproteomic analysis. We compared our pipeline (ConDiGA or MD3) with two other popular annotation pipe-
lines (MD1 and MD2). In MD1, genes were directly annotated against the whole bacterial genome database; in MD2, 
contigs were annotated against the whole bacterial genome database and the taxonomic information of contigs 
was assigned to the genes; in MD3, the most confident species from the contigs annotation results were taken as ref-
erence to annotate genes. Annotation tools, including BLAST, Kaiju, and Kraken2, were compared. Based on a syn-
thetic microbial community of 12 species, it was found that Kaiju with the MD3 pipeline outperformed the others 
in the construction of protein sequence database from metagenomic data. Similar performance was also observed 
with a fecal sample, as well as in silico mixed datasets of the simulated microbial community and the fecal sample.

Conclusions Overall, we developed an optimized pipeline for gene taxonomic annotation to construct protein 
sequence databases. Our study can tackle the current taxonomic annotation reliability problem in metagenomics-
derived protein sequence database and can promote the in-depth metaproteomic analysis of microbiome. The 
unique metagenomic and metaproteomic datasets of the 12 bacterial species are publicly available as a standard 
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benchmarking sample for evaluating various analysis pipelines. The code of ConDiGA is open access at GitHub 
for the analysis of microbiota samples.

Keywords Taxonomic annotation, Metaproteomics, Metagenomics, Microbiota, Mass spectrometry

Background
The human body is composed of both human cells and 
many different microorganisms. Through host-micro-
biota interactions, microbes are closely associated with 
various diseases, including luminal diseases, immune 
diseases, metabolic diseases, and neurodegenerative 
diseases. To understand the role of microorganisms in 
human health and disease, it is necessary to character-
ize the changes in composition as well as the functional 
dynamics of microbiota. With the development of next-
generation sequencing (NGS) techniques, metagenom-
ics has greatly facilitated the study of microbiota [1, 2]. 
While metagenomics provides information on the com-
position and functional potential of microbiome, the 
method cannot reveal proteins actually expressed in the 
microbiome [3, 4]. Proteins, as biomolecules performing 
various functions within organisms, should be identified 
and quantified directly for microbiota function study.

During the past years, mass spectrometry (MS)-
based metaproteomics has been emerging as a powerful 
approach to understanding the functions of microbial 
communities [5–9]. Compared to traditional proteomics 
of a single organism or simple mixtures, metaproteom-
ics of microbiota faces challenges of high complexity and 
taxonomic diversity, wherein dozens or even hundreds of 
species can present in a sample with wide dynamic range 
variations, making the proteomic analysis extremely diffi-
cult [3, 10]. In shotgun proteomics, peptide identification 
relies on matching tandem mass spectra with protein 
sequences in a database. A crucial step in metaproteom-
ics is to choose a suitable protein sequence database. An 
incomplete database can result in the missing of some 
key proteins, while a database with too large search space 
can result in limited detection sensitivity and high false 
discovery rates [11–13].

To date, the database-building strategies in metapro-
teomics include mainly (i) refining public proteome 
sequence databases, e.g., NCBInr [14] and UniProtKB/
Swiss-Prot [15], using mass spectrometric data [16–20]; 
(ii) filtering public proteome sequence databases using 
taxonomic information by 16S rRNA sequencing [13, 
21, 22]; and (iii) constructing sample-specific proteome 
sequence databases by whole-genome sequencing [10, 
12, 13]. Among the different strategies, sample-specific 
database construction by metagenomics sequencing 
has been considered the best choice and employed in 
many metaproteomic studies [12, 23–26], wherein the 

databases contain only protein sequences specific to 
samples and hence can offer the best-fit search space to 
explore the protein expression of a particular microbiota 
and to improve the overall proteome coverage. However, 
accurate taxonomic annotation of metagenomics data, 
which acts as a key role in the construction of protein 
sequence databases, remains a challenging task [10, 26]. 
Currently, there are three major taxonomic annotation 
strategies, i.e., read-level annotation, gene-level annota-
tion, and contig-level annotation. Different approaches 
for taxonomic annotation of genes result in significantly 
divergent results in the downstream metaproteomic stud-
ies [12, 24]. There is, to date, no consensus on a robust 
and reliable approach for gene taxonomic annotation.

Results
Optimization of taxonomic annotations of genes based 
on simulated microbial communities
In this work, we developed an accurate gene taxonomic 
annotation strategy, namely contigs directed gene anno-
tation (ConDiGA, MD3, Fig. 1). Contigs assembled from 
metagenomic sequencing results were firstly annotated. 
Afterwards, the most confident species were selected, 
and a gene-level annotation was performed based on the 
reference genome of the selected species. Two commonly 
used annotation strategies were compared with the Con-
DiGA, including the MD1 pipeline of annotating genes 
directly against the whole bacterial genome database 
and the MD2 pipeline of taking the contig taxonomic 
annotation information as the corresponding gene taxo-
nomic information (Fig. 1). In all three pipelines, differ-
ent annotation tools, including BLAST [27], Kaiju [28], 
and Kraken2 [29], were compared. Referred to the work 
by Tanca et  al. [24], we also built a meta6FT database 
by six-frame translation of the contigs using MMseqs2 
[30], as well as a metaPA database where the amino acid 
sequences of the predicted genes were annotated using 
the UniProtKB/TrEMBL database using Protein BLAST.

We mixed 12 known bacterial species to derive a syn-
thetic microbial community (Supplementary Table  1) 
to benchmark the different protein sequence database 
construction strategies. We also included the Uniprot 
reference proteome at the species level (UP-S), genus 
level (UP-G) and family level (UP-F) for comparison. 
The detailed information in terms of the number of 
genes annotated and species annotated of the protein 
sequence databases built by the three pipelines are shown 
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in Supplementary Data 1, Supplementary Figs. 1, 2 and 3, 
and Supplementary Table 2. The Uniprot reference pro-
teomes of the 12 species are shown in Supplementary 
Table  3. From the perspective of database annotation, 
MD1_BLAST acquired the highest annotation rate of 
over 90%. However, MD1_BLAST also had a high error 

rate in annotation (Supplementary Table 2), and 122 spe-
cies were identified by the MD1_BLAST. The MD1 pipe-
line with all three annotation tools led to a significant 
number of false annotations at the species level. MD1_
Kaiju identified 157 species, and MD1_Kraken2 identi-
fied 52 species. MD2 was more accurate than MD1 in 

Fig. 1 A Benchmarking different protein sequence databases from metagenomics or from Uniprot reference proteome using a synthetic microbial 
community of 12 species. B Pipeline of three annotation strategies (MD1, MD2, and MD3)
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taxonomic annotation at the species level. MD2_BLAST 
identified 77 species, MD2_Kaiju identified 121 spe-
cies, and MD2_Kraken2 identified 33 species. The MD3 
is most accurate in taxonomic annotation at the species 
level. Since the genes were annotated based on a refined 
set of species, MD3 not only had a higher recall on gene 
annotations but also was robust against mis-assemblies. 
All the annotation tools with MD3 led to only 12 species 
being identified. However, it should be noted that MD3 
with BLAST had one mis-annotation, wherein Klebsiella 
variicola was annotated instead of Lactobacillus aci-
dophilus. Two close relatives of Klebsiella variicola, i.e., 
Klebsiella aerogenes and Klebsiella pneumoniae, were 
included in the synthetic community, which can explain 
the mis-annotation by MD3 with BLAST.

We then compared the different protein sequence data-
bases by the different annotation strategies on the analy-
sis of the metaproteomic data of the synthetic microbial 
community. It should be noted that the protein sequences 
in all the databases by MD1, MD2, and MD3 were the 
same, and only the annotation results were different, 
because the different pipelines shared the same gene pre-
diction strategy. The proteins without annotation infor-
mation at species level were labeled as unknown in the 
databases. Protein group identification results are shown 
in Table 1 and Supplementary Data 2. The identification 
results using the UP-S were considered as the reference. 
Generally, the numbers of protein groups identified for 
the 12 target species using the MD3-based databases 

were significantly higher than those using the MD1- 
and MD2-based databases. As for the annotation tools, 
BLAST performed better overall, but Kaiju-MD3 man-
aged to become the most efficient strategy, which led to 
the identification of 13,537 protein groups for the 12 tar-
get species. In contrast, the UP-S only led to 12,604 pro-
tein groups identified for the 12 target species. Figure 2A 
and B show the numbers of protein groups and peptides 
identified for the 12 target species using the databases 
of Kaiju with the MD3 pipeline (shown as MG), UP-S, 
UP-G, UP-F, and Meta6FT. The results by the UP-G, 
UP-F, and Meta6FT databases were not comparable to 
those by the MD3-based databases. For further analysis, 
we compared the protein groups identified for each spe-
cies using MD3_Kaiju, MD3_BLAST, MD3_Kraken2, and 
UP-S (Fig. 2C). The numbers of protein groups assigned 
to each species using the MD3-based databases were 
basically consistent with those using the UP-S except for 
K. pneumonia and Lactobacillus acidophilus. The num-
ber of protein groups identified for K. pneumonia using 
MD3_Kaiju and MD3_Kraken2 was higher than that 
using UP-S. UP-S database was constructed using the 
reference stains, which can be different from the strains 
in our synthetic microbial community. By metagenomic 
sequencing, it is possible to identify some proteoforms 
with sequence variations not included in UP-S. Based 
on the benchmarking with the synthetic microbial com-
munity of 12 species, it was demonstrated that the MD3 
pipeline is most suitable for annotating genes in the 

Table 1 Identification results of protein groups for the 12 target species from the synthetic microbial community using different 
databases

BLAST Kaiju Kraken2 MetaPA Meta6FT UP-S UP-G UP-F

Species name MD1 MD2 MD3 MD1 MD2 MD3 MD1 MD2 MD3 —— —— —— —— ——

Bacteroides fragilis 808 805 810 247 786 809 800 809 788 22 4 808 39 410

Citrobacter freundii 1266 1294 1322 214 557 1290 103 113 1309 293 30 1335 361 8

Clostridium butyricum 1078 1057 1000 327 785 1000 1082 1082 1000 226 18 996 1 286

Enterobacter asburiae 1198 1224 1204 85 294 1197 602 1141 1221 233 29 1210 222 1

Enterococcus casseliflavus 80 134 612 133 597 612 136 320 607 81 4 578 158 200

Enterococcus faecalis 490 489 498 137 319 491 476 491 489 134 5 480 286 362

Escherichia coli 1476 1266 1559 208 377 1515 284 486 1495 845 76 1397 571 685

Klebsiella aerogenes 624 564 630 496 696 649 606 791 713 292 91 751 8 10

Klebsiella pneumoniae 1505 891 1488 377 875 2676 183 209 2477 904 591 1756 192 254

Lactobacillus acidophilus 987 954 0 948 991 991 984 991 991 346 20 985 314 359

Morganella morganii 1592 1595 1577 307 1259 1540 1594 1597 1572 470 11 1569 932 999

Pseudomonas aeruginosa 772 770 783 55 102 767 57 182 767 54 9 739 73 94

Target 12 species 11,876 11,043 11,483 3534 7638 13,537 6907 8212 13,429 1734 400 12,604 3157 3668

Other species 869 644 1081 241 259 0 144 45 0 8218 2496 —— 2842 2336

Unannotated 1107 2165 1288 10,077 5955 315 6801 5595 423 3900 888 —— —— ——

Total 13,852 13,852 13,852 13,852 13,852 13,852 13,852 13,852 13,852 13,852 3784 12,604 5999 6004
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construction of metagenomics-derived database for 
metaproteomic analysis, and the MD3 strategy plus Kaiju 
served the best among all the tested methods.

Benchmarking the performance of ConDiGA on fecal 
sample
To test the performance of the ConDiGA pipeline 
in real microbial communities, a stool sample from 
a healthy volunteer was collected and processed for 
metagenomic and metaproteomic analyses. Pro-
tein sequence databases were constructed from the 
metagenomic sequencing results using the MD1, MD2, 
and MD3 pipelines with the annotation tools of BLAST, 
Kaiju, and Kraken2. The detailed information in terms 
of the number of genes annotated and species identified 
of the protein sequence databases are shown in Sup-
plementary Data 3 and Supplementary Table  4. From 

the perspective of taxonomic annotation, MD3_Kaiju 
showed the highest annotation rate of over 60%, fol-
lowed by MD2_Kaiju and MD3_BLAST with 51.41% 
and 44.67%, respectively. As depicted in Fig.  3A and 
Supplementary Data 4, the numbers of identified pro-
tein groups with taxonomic annotation employing the 
MD3 pipeline with all three annotation tools tremen-
dously exceeded the ones with the MD1 and MD2 pipe-
line. The best performance was again obtained with 
the MD3 pipeline and the Kaiju-based annotation, 
where > 90% of the identified protein groups were suc-
cessfully annotated at the species level. When consid-
ering the species identified by the different pipelines, 
the MD3 showed the best consistency with the differ-
ent annotation tools, i.e., BLAST, Kaiju, and Kraken2. 
With the MD3 pipeline, MD3_Kaiju identified the 
largest number of species (143 species) and covered 

Fig. 2 Numbers of A protein groups and B peptides identified for the 12 target species from the synthetic microbial community using different 
databases. C Numbers of protein groups identified from each species using the databases constructed with the MD3 pipeline and the UP-S 
reference database
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the majority of the species identified by MD3_BLAST 
(71.3%, 57/80) and MD3_Kraken2 (64.4%, 47/73) 
(Fig. 3B).

To further analyze the stool sample, we conducted a 
comparative investigation of functional and taxonomic 
features at metagenomic (MG) and metaproteomic (MP) 
levels. Metagenomic and metaproteomic results based 
on the MD3_Kaiju were annotated using KEGG Orthol-
ogy (KO) through the GhostKOALA website. Figure 4A 
shows the comparison of the KO functional annotation 
between the MG and MP in terms of metabolism, genetic 
information processing, and environmental information 
processing. Notably, the KO annotation results by the 
two meta-omics methodologies were mostly consistent. 
Carbohydrate metabolism, (protein forming) amino acid 
metabolism, and energy metabolism were the top three 
abundant metabolism categories according to MP, while 
MG suggested carbohydrate metabolism, metabolism 

of other amino acids, and energy metabolism as the top 
three. This result highlighted the divergence between 
metagenomics and metaproteomics in revealing func-
tional potential of microbiota.

The relative taxonomic abundance at the metaprot-
eomic level was computed by summing the quantitative 
information of all the identified peptides of each species, 
and the relative taxonomic abundance at the metagen-
omic level was calculated by counting the number of 
genes assigned to each species (Supplementary Data 5). 
The cladogram in Fig. 4B depicts the relative abundance 
discrepancies between MP and MG by calculating the 
 log2 MG/MP abundance ratio. The results showed that 
the abundance differences existed at different taxa lev-
els. MP and MG abundance were generally consistent at 
order level and levels beyond order, while their distin-
guishment appeared frequently below order level. As an 
example, in the Bacteroidaceae family, the family-level 

Fig. 3 A Bar plots of the numbers of protein groups with and without taxonomic annotation identified from the stool sample using the MD1, 
MD2, and MD3 pipeline-based databases. B Venn diagrams of the species identified from the stool sample using the MD1, MD2, and MD3 
pipelines-based databases
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Fig. 4 Comparative analysis of function and taxonomy at the metagenomic (MG) and metaproteomic (MP) levels. A KEGG functional annotation 
by MG and MP. The labels for the function terms are displayed in an order the same as the stacked bar charts. B Taxa abundances by MG and MP. 
Colors indicate the  log2 ratio of relative abundance measured by MG/MP
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MG/MP ratio was close to one, while the MG abundance 
was higher in Phocaeicola genera and the MP abundance 
was higher in Bacteroides genera. These results indicated 
that within the same family, the relative abundance of dif-
ferent species by metagenomics and metaproteomics can 
display heterogeneity. The relative abundance by MG is 
closely related to the cell copy of a species, while the rela-
tive abundance by MP shows the total protein amount of 
a species. The relative abundance discrepancies between 
MP and MG have also been reported by Tanca et al. [31].

Benchmarking on in silico mixed metagenomic and 
metaproteomic data
To further demonstrate the annotation sensitivity and 
accuracy of the ConDiGA strategy, we computationally 
mixed the data of the synthetic microbiota community 
with the data of the stool sample. The metagenomic data 
were mixed at the reads level while the metaproteomic 
data were mixed at the MS raw data level. Metagenom-
ics-derived protein sequence databases were constructed 
using the MD1, MD2, and MD3 pipelines with the anno-
tation tools of BLAST, Kaiju, and Kraken2. The detailed 
information in terms of the number of genes and species 
annotated in the protein sequence databases is shown in 
Supplementary data 6 and Supplementary Table 5. Con-
sidering the gene annotation ratio, Kaiju-MD3 remained 
the best choice. All the annotation strategies based on the 
MD3 pipeline successfully recovered the 12 species from 
the mixed metagenomic datasets, while the rankings of 
the 12 species in the databases considering the number of 
annotated genes for each species were varied by the dif-
ferent methods (Supplementary Table 6).

The metagenomics-derived protein sequence databases 
were then used to analyze the in silico mixed MS data of 
the synthetic community and the fecal sample. As shown 
in Fig. 5, Table 2, and Supplementary data 7, in general, 
the MD3 strategy performed the best and significantly 
better than the MD1 and MD2. For BLAST, although the 
numbers of protein groups identified for the 12 species 
were comparable among the different pipelines of MD1, 
MD2, and MD3. The numbers of protein groups identi-
fied from the other species, i.e., from the fecal sample, 
were significantly lower with the MD1 and MD2 pipe-
line compared to the MD3 pipeline. In the mixed data, 
the 12 species can be viewed as the high abundant ones. 
Such results indicated that BLAST with MD1 and MD2 
pipelines in protein sequence database construction were 
less sensitive to low abundant species compared to the 
MD3 pipeline. Among all the methods, the database by 
MD3 with Kaiju performed the best. We also merged the 
protein sequence databases of the synthetic microbiota 
community and the stool sample (merged database) for 
further comparison, where both databases were built by 

the MD3 pipeline with the Kaiju annotation using the 
metagenomic data separately. As shown in Fig.  5 and 
Table 2, the protein sequence database built from the in 
silico mixed metagenome data provided a performance 
similar to the merged database. We have also compared 
the species identified from the mixed metaproteome 
data or from the fecal metaproteome data. As shown in 
Fig. 5B, more than 78% species identified from the fecal 
sample were recovered from the mixed metaproteome 
data using the protein sequence database built by the 
MD3 pipeline with different annotation tools (BLAST, 
Kraken2, and Kaiju), which further illustrated the robust-
ness and stability of the MD3 pipeline. Among the 
three tools, Kaiju with MD3 showed the highest recov-
ery (81.1%, 116/143) of species from the fecal sample. 
All these results demonstrated the effectiveness of the 
MD3 strategy in protein sequence database construc-
tion from metagenome data and again illustrated that 
the MD3 with Kaiju can provide the optimal taxonomic 
annotation.

Discussion
In this study, we compared three taxonomic annota-
tion pipelines to construct metagenomics-based protein 
sequence databases and assessed their performance in 
metaproteomics analysis using a lab-assembled micro-
bial mixture, a real-life stool sample, and the in silico 
mixed data of the two samples. To date, one widely used 
approach in constructing metagenomics-based protein 
sequence databases is based on annotation of predicted 
individual genes [12, 24, 26] (MD1 in this study). We 
found that this pipeline could result in a large number of 
annotated species not actually present in the sample due 
to inaccurate annotation on short genes. As annotations 
on long contigs are expected to be more reliable than 
those on short genes, we further used the second pipeline 
(MD2) for taxonomic annotation, where the taxonomy 
information of contigs was passed on to its genes. The 
risk of this pipeline is that reads from different species 
can be wrongly assembled to one contig due to the partial 
sequence similarity among species. As shown in Supple-
mentary Fig. 4, there was indeed a significant portion of 
contigs with more than one species information. There-
fore, we proposed the third annotation pipeline (MD3), 
named ConDiGA, which first selected the most confident 
species from the annotation results of contigs, and then 
performed gene-level annotation against these most con-
fident species. We compared the MD1, MD2, and MD3 
annotation strategies with BLAST, Kaiju, and Kraren2 
as the annotation tools through the synthetic microbiota 
community of 12 species. The results generally revealed 
that the MD3 pipeline outperformed the MD1 and MD2 
strategies not only in terms of the numbers of protein 



Page 9 of 14Wu et al. Microbiome           (2024) 12:58  

groups identified, but also in terms of the sensitivity and 
accuracy of annotations. As for the three annotation tools, 
BLAST performed better overall but Kaiju-MD3 managed 
to become the most efficient strategy. This circumstance 
remained consistent for the real-life stool sample where 
the annotation rate of MD3 was significantly higher than 
that of MD1 and MD2, which proved that the MD3 pipe-
line remained its advantages when it came to the analysis 
of complex real-life samples.

To further benchmark the ability to deal with complex 
samples, we computationally mixed the metagenome and 
metaproteome data of the synthetic microbiota com-
munity and the stool sample and performed annotation 
by the aforementioned three pipelines. Again, the MD3 

pipeline provided the most efficient and robust results. 
All 12 species were successfully recovered by the MD3 
pipeline with different annotation tools. The MD3 com-
bined with Kaiju achieved the largest number of protein 
groups annotated to the 12 species as well as to the other 
species from the fecal sample.

Conclusions
In summary, we proposed an accurate taxonomic anno-
tation pipeline based on metagenomic data for deep 
metaproteomics analysis, namely contigs directed gene 
annotation (ConDiGA), and demonstrated the impor-
tance of correct gene annotation in constructing pro-
tein sequence databases for metaproteomics. In our 

Fig. 5 A Bar plots of the numbers of protein groups identified from the 12 species of the synthetic microbial community, from the other species, 
and without taxonomic annotation information. The protein sequence database was generated from the mixed metagenome data of the synthetic 
microbial community and the fecal sample using the MD1, MD2, and MD3 pipelines with different annotation tools. The MS data were mixed 
from the synthetic microbial community and the fecal sample. A merged protein sequence database of the 12 species and the fecal sample 
was used as the reference. B Venn diagrams of species identified from the in silico mixed metaproteome dataset and the fecal metaproteome 
dataset. The protein sequence databases were generated from the mixed metagenome data of the synthetic microbial community and the fecal 
sample or from the fecal sample only using the MD3 pipeline with different annotation tools
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strategy of ConDiGA, the assembled contigs were firstly 
annotated and then the most confident species from the 
annotation results were selected by considering genome 
coverage as well as taxonomic abundance. The predicted 
genes were then aligned against the reference genomes 
of the selected species. As for the performance evalu-
ation of different annotation strategies, we compared 
current annotation strategies with ConDiGA on a syn-
thetic 12-species microbiota community, a real-life stool 
sample, and the in silico mixed data of the two samples, 
using three state-of-the-art annotation tools, i.e., BLAST, 
Kaiju, and Kraken2. We found that ConDiGA surpassed 
all other annotation strategies in multiple areas such as 
annotation coverage, annotation accuracy, and annota-
tion of low-abundance species. Our optimized taxonomic 
annotation pipeline can tackle the current problem of 
annotation reliability in metagenomics-derived protein 
sequence database and can promote the development of 
metaproteomics. The metagenomic and the metaprot-
eomic data of the 12 species benchmark sample, as well 
as the ConDiGA pipeline, are publicly available, which 
can be used for the evaluation of various data analysis 
pipelines as well as the analysis of microbiota samples.

Methods
Bacteria culture and sample collection
The 12 microbial strains (Supplementary Table 1) used in 
this study were purchased from American Type Culture 

Collection (ATCC) or China Center of Industrial Cul-
ture Collection (CICC). After culture in tryptic soy broth 
(TSB), brain heart infusion (BHI), or De Man, Rogosa, 
and Sharpe agar (MRS), the concentrations of bacterial 
cells were measured using the plate counting method, 
and the optical density of bacterial solution determined 
at the wavelength of 595 nm  (OD595). The bacterial cul-
tures were then washed twice with phosphate-buffered 
saline (PBS) at pH 7.4 (Solarbio, Beijing, China) and 
stored at − 80  °C. The 12 bacterial strains were mixed 
with different cell numbers (Supplementary Table  1) to 
construct a synthetic microbial community. The fecal 
sample was collected from a healthy volunteer and stored 
at − 80 °C for the subsequent experiment.

Metaproteomic sample preparation
The synthetic microbial community mixture was resus-
pended in a lysis buffer containing protease inhibitor 
cocktail (EDTA-free, 1 ×), 20 mM Tris–HCl pH 8.8, 8 M 
urea, and 1% sodium dodecyl sulfate (SDS) and then 
sonicated (50 W, 20  Hz, 10  min) using an ultrasonic 
crusher in an ice bath. Next, the obtained solution was 
centrifuged (12,000 g, 10 min, 4 °C) to remove cell debris. 
Proteins in supernatant were quantified using a Pierce 
BCA assay Kit (Thermo Fisher Scientific, Waltham, MA, 
USA) prior to lyophilization. For proteolysis, 300  μg of 
proteins were dissolved in 300 μL 8  M urea and 6.1 μL 
0.5 M Tris-(2-carboxyethyl) phosphine (TCEP), followed 

Table 2 Identification results of protein groups from the in silico mixed metaproteome data of the synthetic microbial community 
and the fecal sample using different databases

The in silico mixed metagenome data were used to generated the protein sequence databases. A merged protein sequence database of the 12 species and the fecal 
sample was used as the reference

BLAST Kaiju Kraken2 Merged 
databases

Species name MD1 MD2 MD3 MD1 MD2 MD3 MD1 MD2 MD3

Bacteroides fragilis 509 428 526 152 421 523 511 540 537 486

Citrobacter freundii 938 756 670 123 410 964 58 89 977 926

Clostridium butyricum 696 682 666 158 429 662 699 699 669 640

Enterobacter asburiae 906 850 863 54 132 917 417 740 922 889

Enterococcus casseliflavus 56 107 369 66 356 384 80 237 384 360

Enterococcus faecalis 315 309 319 63 197 315 303 316 315 305

Escherichia coli 1075 948 1059 148 271 1164 174 219 1080 1030

Klebsiella aerogenes 500 434 456 355 460 506 489 515 511 467

Klebsiella pneumoniae 976 683 863 218 481 1277 109 109 970 1811

Lactobacillus acidophilus 743 747 748 542 748 748 742 748 750 720

Morganella morganii 1155 915 1153 171 718 1131 1158 1159 1147 1096

Pseudomonas aeruginosa 477 436 477 19 89 483 28 90 476 459

Target 12 species 8346 7295 8169 2069 4712 9074 4768 5461 8738 9189

Other species 1683 3277 8039 2274 4310 7851 3244 3158 6515 8090

Unannotated 7613 7070 1434 13,299 8620 717 9630 9023 2389 664

Total 17,642 17,642 17,642 17,642 17,642 17,642 17,642 17,642 17,642 17,943



Page 11 of 14Wu et al. Microbiome           (2024) 12:58  

by incubation for 1 h at 37  °C with shaking at 600 rpm. 
Following this, 18 μL iodoacetamide (IAA, 0.5 M) solu-
tion was added into the dissolved protein solution and 
incubated at room temperature for 45 min (in darkness). 
The proteins were precipitated using 1.5-mL pre-cooled 
acetone (− 20 °C) for 4 h and washed twice with the pre-
cooled acetone. After drying at room temperature, the 
proteins were redissolved in triethylammonium bicar-
bonate (TEAB) solution (200 μL, 0.1  M). For trypsin 
digestion, 6  μg of trypsin (Beijing Hualishi Technology 
Ltd, Beijing, China) was added into the protein solution 
and incubated for 16 h at 37 °C with shaking at 600 rpm. 
Finally, the obtained peptides were transferred to Mon-
oSpin C18 column (Tokyo Japan GL Sciences Inc) for 
desalting. After the desalting, peptides were quantified by 
Pierce quantitative colorimetric peptide assay (Thermo 
Fisher Scientific, Waltham, MA, USA).

For human stool sample processing, differential cen-
trifugation was used to enrich microbial cells according 
to a previous report [7, 32]. Specifically, 0.5-g stool sam-
ple was mixed with 20 mL PBS and shaken for 30 min at 
25 °C and 100 rpm. Then, the suspension was first centri-
fuged at 500 g, 4 °C for 5 min to remove the large parti-
cles. Next, the supernatant was collected and subjected 
to high-speed centrifugation (12,000 g, 10 min) to collect 
the precipitates. The precipitates from the 500  g cen-
trifugation were subjected to the differential centrifuga-
tion strategy again. Then, the two precipitates from the 
12,000  g centrifugation were combined as the final col-
lected microbes. For protein extraction, the collected 
microbial precipitates were processed by liquid nitrogen 
grinding. The milled powder was dissolved in 0.5  mL 
lysis solution (100  mM dithiothreitol (DTT), 2% SDS, 
and 20 mM Tris–HCl pH 8.8). After heating at 95 °C for 
30 min, the dissolved protein solution was centrifugated 
at 12,000 g, 4 °C for 10 min to collect the supernatants. To 
remove SDS, pre-cooled acetone solution (− 20  °C) was 
added and incubated under − 20 °C for 4 h. The precipi-
tated proteins were collected by centrifugation and then 
washed twice using pre-cooled acetone. The obtained 
proteins were dried at room temperature and dissolved 
in 0.5-mL lysis buffer. The protein quantification method 
and proteolysis procedure were the same as those for the 
synthetic microbial community aforementioned.

LC–MS/MS analysis
For each sample, 10 μg of peptides was redissolved in 30 
μL solvent A (0.1% formic acid in water) and analyzed 
by a nanoESI timsTOF pro mass spectrometer (Bruker, 
Bremen, Germany) with a nanoElute® (Bruker Dalton-
ics) LC system. For each injection of the timsTOF pro 
MS analysis, 200-ng peptides were separated by a C18 

reversed phase analytical column with 1.6  μm resin 
(25 cm × 75 μm i.d., Ionopticks) by a 120-min gradient 
with phase A as 0.1% formic acid in water and phase B 
as 0.1% formic acid in 99.9% acetonitrile (Supplemen-
tary Table  7). The column flow rate was maintained 
at 300 nL/min with a column temperature of 50  °C. 
The instrument was operated in the data-dependent 
acquisition-parallel accumulation serial fragmenta-
tion (DDA-PASEF) mode with 10 PASEF scans per 
topN acquisition cycle and accumulation ramp times 
of 100 ms each. MS and MS/MS spectra were recorded 
from 100 to 1700  m/z with an ion mobility range (1/
K0) of 0.7–1.3 versus/cm2. Charge was set to 0–5. The 
“target value” was set to 10,000. The dynamic exclusion 
was activated and set to 0.4 min. The quadrupole isola-
tion width was set to 2 Th for m/z < 700 and 3 Th for 
m/z > 700.

Metagenomic sequencing and data analysis
DNA was extracted from the synthetic microbial com-
munity or the stool sample using HiPure Bacterial DNA 
Kits (Magen, Guangzhou, China) according to the man-
ufacturer’s instructions. The quality of the extracted 
DNA was detected using Qubit (Thermo Fisher Sci-
entific, Waltham, MA) and Nanodrop (Thermo Fisher 
Scientific, Waltham, MA). The extracted genomic DNA 
was firstly fragmented by sonication to a size of around 
350 bp, then end-repaired, A-tailed, and adaptor ligated 
using NEBNext ΜLtra DNA Library Prep Kit for Illu-
mina (NEB, Ipswich, MA, USA) according to the manu-
facturer’s preparation protocol. DNA fragments with a 
length of 300–400 bp were enriched by PCR. The PCR 
products were purified using an AMPure XP system 
(Beckman Coulter, Brea, CA, USA). The libraries were 
analyzed for size distribution by a 2100 Bioanalyzer 
(Agilent, Santa Clara, CA, USA) and quantified using 
real-time PCR. Genome sequencing was performed on 
an Illumina Novaseq 6000 sequencer (Illumina, Inc., 
San Diego, CA, USA) using the pair-end technology.

Raw reads from the Illumina platform were filtered 
using FASTP (version 0.18.0) with the following criteria: 
(1) removing reads with ≥ 10% unidentified nucleotides; 
(2) removing reads with ≥ 50% bases having phred qual-
ity scores ≤ 20; (3) removing reads aligned to the bar-
code adapter. After filtering, resulted clean reads were 
assembled using MEGAHIT (version 1.2.9) [33] (with the 
parameters k-min = 21 and k-max = 141). Genes were pre-
dicted based on the final assembled contigs using Meta-
GeneMark (version 3.38) [34] with the default parameters. 
The same method was applied to the synthetic microbial 
community dataset and the stool sample dataset.
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Taxonomic annotation and protein sequence database 
construction for metaproteomic analysis
In MD1, the predicted genes were directly annotated 
using the taxonomic classification tools of BLAST, 
Kraken2, or Kaiju. Nucleotide BLAST (blastn version 
2.13.0 +) was run with the parameters: -outfmt "6 qse-
qid sseqid staxids sscinames scomnames sskingdoms 
pident length qlen slen mismatch gapopen gaps qstart 
qend sstart send stitle evalue bitscore qcovs qcovhsp" 
and -max_target_seqs 1. The NCBI BLAST nt database 
was downloaded on 17 January 2023 and was used for 
the BLAST annotation. The command used included the 
following: blastn -db < db_path > -query final.contigs.fa 
-out final.contigs.fa.blastn.results.out -num_threads 32 
-outfmt "6 qseqid sseqid staxids sscinames scomnames 
sskingdoms pident length qlen slen mismatch gapopen 
gaps qstart qend sstart send stitle evalue bitscore qcovs 
qcovhsp" -max_target_seqs 1. The standard Kraken2 
index databases from https:// benla ngmead. github. io/ 
aws- index es/ k2 were used. Kraken2 (version 2.1.1) com-
mand used included the following: kraken2 –threads 56 
–db < db_path > –use-names –output kraken_res_0.1.txt 
–confidence 0.1 –report kraken_report_0.1.txt final.con-
tigs.fa. As the Kraken2 uses a k-mer-based approach to 
individually annotate the predicted genes, it can intro-
duce mistakes and result in a large number of annotated 
species not existing in the sample. To avoid this issue, the 
confidence parameter of Kraken2 was increased from 
0 (default value) to 0.1. The Kaiju Web server (avail-
able from https:// kaiju. binf. ku. dk/ server) was used with 
default parameters and the NCBI BLAST nr reference 
database was selected.

In MD2, the assembled contigs were annotated instead 
of predicted genes using BLAST, Kraken2, or Kaiju with 
the same parameters as for MD1. Then, genes were anno-
tated according to the species label of the contigs they 
belong to.

In MD3, the assembled contigs were annotated using 
BLAST, Kraken2, or Kaiju with the same parameters 
as for MD1. For the synthetic microbial community, 
the species with relative sequence abundance > 0.5% 
and coverage ≥ 0.1% were selected as the most con-
fident species. For the fecal sample and for the in sil-
ico mixed data, the species with a relative sequence 
abundance ≥ 0.01% and genome coverage ≥ 0.1% were 
selected as the most confident species. Then, the pre-
dicted genes were annotated to one of the selected 
most confident species based on the best alignment 
from Minimap2 [35].

To build the Meta-PA database, we first predict the 
genes from the contigs using MetaGeneMark. The amino 
acid sequences of the predicted genes were annotated 

using the UniProtKB/TrEMBL database (downloaded on 
15th of December 2022 from https:// www. unipr ot. org/ 
help/ downl oads) using Protein BLAST (BLASTP version 
2.13.0 +).

To build the Meta-6FT dataset, we first processed the 
assembled contigs in an alternative way based on naïve 
six-frame translation. The Sequence Processor and 
Translator script from https:// cgpdb. ucdav is. edu/ DNA_ 
SixFr ames_ Trans lation/ was used to obtain the naïve 
six-frame translation. The command used included the 
following: python seqs_processor_and_translator_bin_
V118_AGCT.py final.contigs.fa final.contigs.xout DNA 6 
1 BIN 24. Results from all the six frames were combined 
to form one file meta.6FT.faa. Then, we used MMseqs2 
[30] (version 13.45111) to align sequences to the Uni-
ProtKB/TrEMBL database. The command used included 
the following: mmseqs createdb meta.6FT.faa target_seq; 
mmseqs search target_seq TrEMBL_mmseqs/uniprot_
trembl_db results./tmp/; mmseqs createtsv target_seq 
TrEMBL_mmseqs/uniprot_trembl_db results meta.6FT_
annot.tsv –full-header. Each gene was annotated with 
the species having the longest alignment with over 10% 
alignment fraction and over 10% sequence identity.

Metaproteome data analysis and bioinformatic analysis
Uniprot-based databases were built from the reference 
proteome of the used microbes at the species level, 
genus level, or family level. For species level Uniprot-
based database, the reference stains for each species 
shown in Supplementary Table  3 were used to con-
struct the database, while for the genus-level or family-
level Uniprot-based databases, all strains included in 
the corresponding genus or family were used to con-
struct the databases. The metagenomics-based data-
bases were translated from the annotated genes using 
MetaGeneMark (version 3.38) [34]. Database search-
ing for all metaproteomic data was carried out using 
PEAKS Studio (version X pro, Bioinformatics Solutions 
Inc., Canada). The metaproteomic data were searched 
with the following parameters: precursor ion tolerance 
15 ppm, fragment ion tolerance 0.05 Da, maximum of 
2 missed cleavage sites, carbamidomethylation (C) of 
cysteine as fixed modification, oxidation of methio-
nine and deamidation (NQ) as variable modification, 
trypsin as proteolytic enzyme, and 1% false discovery 
rate threshold at both peptide and protein group level. 
KEGG annotation was performed using the Ghost-
KOALA web server. Data visualization was conducted 
with R (version 3.5.1, https:// www.r- proje ct. org/) using 
the packages of ggplot2 (https:// github. com/ tidyv erse/ 
ggplo t2) and AntV G2 (https:// github. com/ antvis/ g2).

https://benlangmead.github.io/aws-indexes/k2
https://benlangmead.github.io/aws-indexes/k2
https://kaiju.binf.ku.dk/server
https://www.uniprot.org/help/downloads
https://www.uniprot.org/help/downloads
https://cgpdb.ucdavis.edu/DNA_SixFrames_Translation/
https://cgpdb.ucdavis.edu/DNA_SixFrames_Translation/
https://www.r-project.org/
https://github.com/tidyverse/ggplot2
https://github.com/tidyverse/ggplot2
https://github.com/antvis/g2
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