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Abstract 

Background The gut microbiota is recognized as a regulator of brain development and behavioral outcomes 
during childhood. Nonetheless, associations between the gut microbiota and behavior are often inconsistent 
among studies in humans, perhaps because many host‑microbe relationships vary widely between individuals. This 
study aims to stratify children based on their gut microbiota composition (i.e., clusters) and to identify novel gut 
microbiome cluster‑specific associations between the stool metabolomic pathways and child behavioral outcomes.

Methods Stool samples were collected from a community sample of 248 typically developing children (3–5 years). 
The gut microbiota was analyzed using 16S sequencing while LC‑MS/MS was used for untargeted metabolomics. 
Parent‑reported behavioral outcomes (i.e., Adaptive Skills, Internalizing, Externalizing, Behavioral Symptoms, Develop‑
mental Social Disorders) were assessed using the Behavior Assessment System for Children (BASC‑2). Children were 
grouped based on their gut microbiota composition using the Dirichlet multinomial method, after which differences 
in the metabolome and behavioral outcomes were investigated.

Results Four different gut microbiota clusters were identified, where the cluster enriched in both Bacteroides 
and Bifidobacterium (Ba2) had the most distinct stool metabolome. The cluster characterized by high Bifidobacterium 
abundance (Bif ), as well as cluster Ba2, were associated with lower Adaptive Skill scores and its subcomponent Social 
Skills. Cluster Ba2 also had significantly lower stool histidine to urocanate turnover, which in turn was associated 
with lower Social Skill scores in a cluster‑dependent manner. Finally, cluster Ba2 had increased levels of compounds 
involved in Galactose metabolism (i.e., stachyose, raffinose, alpha‑D‑glucose), where alpha‑D‑glucose was associated 
with the Adaptive Skill subcomponent Daily Living scores (i.e., ability to perform basic everyday tasks) in a cluster‑
dependent manner.

Conclusions These data show novel associations between the gut microbiota, its metabolites, and behavioral out‑
comes in typically developing preschool‑aged children. Our results support the concept that cluster‑based groupings 
could be used to develop more personalized interventions to support child behavioral outcomes.

Keywords Gut microbiota, Cluster, Child, Neurodevelopment, Gut‑brain axis, Alberta Pregnancy Outcomes and 
Nutrition (APrON) Study, Sociability, Internalizing, Externalizing
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Background
There is growing recognition that the gut microbiota 
during early life can influence neurodevelopmental and 
behavioral outcomes [1, 2]. Many studies have reported 
links between the gut microbiota and behavioral out-
comes in children; however, many of these associations 
are inconsistent among studies. For instance, one study 
reported a negative association between alpha diver-
sity and internalizing problem scores (i.e., behaviors 
directed inward such as anxiety or depression) on the 
Child Behavior Checklist (CBCL) in preschool-aged chil-
dren [3], while another study reported a positive asso-
ciation between alpha diversity and behavioral problems 
measured using the CBCL during the first 2 years of life 
[4]. A more recent article also reported differential sex-
dependent associations between alpha diversity at 2 years 
of age with Adaptive Skill scores (i.e., emotional expres-
sion and control, daily living skills, and communication 
skills) measured using the Behavioral Assessment System 
for Children (BASC-2) at 3 years of age [5].

In tandem, specific gut microbial taxa have been 
linked to behavior, social skills, and cognition [6]. For 
instance, Bifidobacterium sp. SV1, Bacteroides vulga-
tus SV11, and Streptococcus sp. SV217 is positively 
associated with Adaptive Skill scores measured using 
the BASC-2 at 3  years of age in boys, but not girls, 
whereas Klebsiella sp. SV20, Clostridium sp. SV41, 
and Haemophilus sp. SV415 are negatively associated 
[5]. In addition, reduced fecal Prevotella abundance at 
12 months of age is associated with internalizing prob-
lems at 2  years of age [4]. There is a negative associa-
tion between B. fragilis and B. thetaiotaomicron relative 
abundance with externalizing behaviours (i.e., behav-
iors directed outwards such as aggression or hyper-
activity) measured using the CBCL in children at 5 to 
7  years of age [7], whereas Prevotella abundance dur-
ing childhood was positively associated with external-
izing behaviors measured using the CBCL at 6 years of 
age [8]. Overall, various associations have been identi-
fied between the composition of the gut microbiota and 
behavioral outcomes throughout childhood, although 
discrepancies across studies remain. Some of the noted 
inconsistencies at the gut microbial composition level 
could be explained by the fact that microbial processes 
can be performed by multiple different bacteria (i.e., 
functional redundancy) [9]. Metabolomics analysis 
could be used to enhance the understanding of the link 
between microbial processes and behavioral outcomes. 
Discrepancies between studies could further result 
from individual variability in how the gut microbiome 
signals to the brain, and stratifying individuals based 
on their gut microbiota or diet may provide insights 

into such individualized relationships, and perhaps also 
more effective microbiota-targeted interventions across 
several disorders [10–13]. Overall, it is important that 
we understand the associations between the gut micro-
biome and child behavior, as child behavior is strongly 
predictive of mental health status in later life [14, 15], 
and identifying (gut microbiome) interventions during 
early life that support child development may therefore 
improve mental health outcomes in later life.

One method that has expanded our understanding 
of the role of gut microbiota in health and disease is to 
stratify individuals into groups based on the composi-
tion of their gut microbiota, also often called clusters 
[16, 17]. In adults, this typically results in three to four 
distinct clusters, which are often characterized by higher 
relative abundances of the bacterial taxa Prevotella, 
Bacillota (previously Firmicutes), and Bacteroides, where 
the latter cluster is often split into clusters Ba1 and Ba2 
[17]. These clusters have already been linked to specific 
health outcomes in adults, such as cluster Ba2 being 
associated with increased systemic inflammation, lower 
cardiac vagal function, reduced quality of life scores, 
and increased odds for obesity, type 2 diabetes, Crohn’s 
disease and depression [18–23]. In children, a cluster 
enriched in Bifidobacterium and Enterobacteriaceae at 
2.5  months of age was associated with elevated scores 
in the temperament trait of regulation using the Infant 
Behavior Questionnaire-Revised (IBQ-R) at 6 months of 
age [24]. Interestingly, one article reported that the rela-
tive abundance of Bacteroides spp. negatively correlates 
with plasma branched-chain amino acids in the clus-
ter enriched in Bacteroides specifically [25], suggesting 
that some relationships between the gut microbiome 
and host physiology might be cluster-dependent. This 
is supported by the finding that associations between 
the gut microbiome and diet, or even drug metabolism, 
vary widely between individuals [26, 27]. Therefore, 
cluster-based groupings may allow us to identify asso-
ciations between the gut microbiome and host physiol-
ogy/behavior that would be difficult to identify without 
stratifying a study population. Understanding individu-
alized microbiota-gut-brain axis associations may allow 
for tailored microbiota-targeted interventions for indi-
viduals, which may in turn enhance treatment efficacy 
across a number of disorders.

As such, the objective of this study was to identify 
novel cluster-dependent associations between the gut 
microbiome and its metabolites (i.e., stool metabo-
lome) with behavioral outcomes in preschool children. 
Such findings could provide novel insights into micro-
biota-based personalized interventions for supporting 
behavior and mental health outcomes [13].
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Methods
Participant recruitment
Participants were drawn from the Alberta Pregnancy 
Outcomes and Nutrition (APrON) study [28, 29], an 
ongoing longitudinal cohort study that initially recruited 
pregnant individuals < 27 weeks gestation. Pregnant indi-
viduals were excluded if they could not read or speak 
English, were less than 16  years of age, or were plan-
ning to move out of the recruitment region prior to birth 
(which would prevent follow-up). At 3–4  years of child 
age, parents and children were invited to participate in a 
neurocognitive and behavioral assessment and collect a 
stool sample. Children were excluded if they were diag-
nosed with neurocognitive deficits (including suspected 
diagnosis of autism) or if they had recent antibiotic expo-
sure (2  weeks before the fecal sample collection). Chil-
dren were asked to provide assent and a parent or legal 
guardian provided informed written consent before sam-
ple and data collection. Ethics approval for this study was 
obtained from the Health Research Ethics Boards at the 
University of Calgary (E22101).

Assessment of child behavior
Child behavior was assessed using the parent-reported 
Behavior Assessment System for Children (BASC-2) [30]. 
The BASC-2 includes behavior scales for Adaptive Skills, 
Internalizing, Externalizing, Behavioural Symptoms, and 
Developmental Social Disorders (Table  1). The BASC-2 
is reliable and valid, with an item consistency in general 
norm samples with Cronbach’s alpha ranging from 0.87 
to 0.93 for the primary behavioral scales [30]. T scores 

were used in the analyses. The Adaptive Skills scale 
includes the subcomponents, Social Skills, Functional 
Communication, Daily Living, and Adaptability.

Stool sample collection and 16S rRNA amplicon 
sequencing
Child stool samples were collected by parents at home at 
3–5 years of age using a provided toilet cover along with 
a sterile 50-ml plastic conical collection tube and plas-
tic applicator. Collected fecal samples were temporarily 
stored in a home freezer (− 20 °C) for up to 24 h before 
transport to the study lab in a cooler surrounded by 
freezer packs. Fecal samples were stored at – 80 ◦C until 
further processing.

Fecal DNA was extracted using  FastDNA® Spin Kit 
for Feces (MP Biomedicals, Santa Ana, CA, USA) fol-
lowing the manufacturer’s instructions. 16S rRNA gene 
amplicon sequencing was performed using the MiSeq 
platform at the Centre for Health Genomics and Infor-
matics (University of Calgary, Calgary, Canada) as pre-
viously described [31]. The length of the amplicons was 
~ 460 bp. The PCR procedure was as follows: (1) 95 °C for 
3 min, (2) 25 cycles of 95 °C for 30 s, 55°C for 30 s, 72 °C 
for 30  s, (3) 72  °C for 5 min, (4) hold at 4  °C. The PCR 
amplification of the V3 and V4 region of the 16S rRNA 
gene was performed using manufacturer-recommended 
primers (Forward: 5′-TCG TCG GCA GCG TCA GAT GTG 
TAT AAG AGA CAG CCT ACGGGNGGC WGC AG-3′; 
Reverse: 5′-GTC TCG TGG GCT CGG AGA TGT GTA TAA 
GAG ACA GGA CTACHVGGGT ATC TAA TCC-3′).

Table 1 Interpretation of the behavioral scales

Behavioral scale Subcomponent Directionality Interpretation

Internalizing No Higher = more problems This composite reflects behaviors that are acted inwards (i.e., anxiety, 
depression, somatization)

Externalizing No Higher = more problems This composite reflects behaviors that are acted outwards (i.e., hyper‑
activity, aggression)

Behavioral symptoms No Higher = more problems This composite reflects the overall level of problem behavior (i.e., 
hyperactivity, aggression, depression, attention problems, atypicality, 
withdrawal).

Developmental social disorder No Higher = more problems Tendency to display behaviors characterized by deficits in social skills, 
communication, interests, and activities. Sometimes used to rate 
autism‑related behaviors.

Adaptive skills No Higher = more adaptive This composite summarizes appropriate emotional expression 
and control, daily living skills, and communication skills.

Social skills Yes, to adaptive skills Higher = more adaptive The skills necessary for interacting successfully with peers and adults 
in home, school, and community settings.

Functional communication Yes, to adaptive skills Higher = more adaptive The ability to express ideas and communicate in a way others can 
easily understand.

Daily living Yes, to adaptive skills Higher = more adaptive Skills associated with performing basic, everyday tasks in an accept‑
able and safe manner.

Adaptability Yes, to adaptive skills Higher = more adaptive The ability to adapt readily to changes in the environment.
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After a quality check with FastQC 0.11.5 and MultiQC 
1.0 primers [32], low-quality sequences were trimmed 
off the raw sequence reads using cutadapt 1.14 [33]. 
The trimmed reads were used to construct amplicon 
sequence variants (ASVs) using dada2 1.10.0 in R 3.5.1 
[34, 35]. Unless otherwise stated all dada2 functions were 
used with default parameters. Reads were first filtered 
with dada2::filterAndTrim with a max expected error of 
1. Error rates were learned for the forward and reverse 
reads separately and these error rates were used to infer 
exact sequences (error correct) for each sample from 
dereplicated, trimmed reads using pooled=TRUE for 
the dada2::dada. Following this, the forward and reverse 
reads were merged using dada2::mergePairs. Chimeras 
were removed with dada2::removeBimeraDenovo and 
taxonomy was assigned using the naïve Bayesian clas-
sifier [36], as implemented in dada2::assignTaxonomy 
trained with the Silva training set version 132 [37]. Spe-
cies-level assignment was done with dada2::addSpecies 
which uses exact matching to assign species where pos-
sible. ASVs were aligned with ssu-align 0.1.1 and a phylo-
genetic tree was constructed with FastTree 2.1.9 [38, 39]. 
Sequences matching mitochondria or chloroplast were 
removed along with any sequences that weren’t assigned 
to Bacteria. A filtered copy of the ASV sequence table 
was created that retained ASVs present (count >=  2) in 
at least 1% of the samples. This served to reduce noise for 
downstream analysis.

To calculate beta diversity, the ASV counts (filtered 
table) were normalized with a variance stabilizing trans-
form (using DESeq2 1.24.0) with size factors calculated 
using GMPR. Then sample-sample distances were deter-
mined with the Bray-Curtis metric and visualized with 
detrended correspondence analysis (DCA) [40, 41]. 
Alpha diversity (observed OTUs, phylogenetic diversity, 
Shannon diversity) and gut bacterial taxa, of which 74 
were detected that were present in more than 5% of all 
samples, were used in the analysis.

Gut microbiota clustering was done using Dirichlet 
multinomial mixtures [42]. Clustering was performed 
using count data at the genus level, with no set abun-
dance/prevalence threshold (i.e., rare taxa were included). 
The optimal number of clusters was determined using 
Laplace approximation [42], which suggested a 4-clus-
ter approach (Fig. S1A–D). Even though the Bayesian 
Information Criterion (BIC) and Aikaike Information 
Criterion (AIC) suggested that a 2-cluster approach may 
be more optimal, the Laplace approximation was cho-
sen because the AIC and BIC can give misleading results 
[42, 43]. Comparison of the 2- and 4-cluster approaches 
showed considerable overlap in participant allocation 
between the approaches (Fig. S1E), suggesting that the 
4-cluster approach encompasses the 2-cluster approach 

while being more nuanced. Gut microbial beta diversity 
between clusters was investigated using a permutational 
analysis of variance (PERMANOVA).

LC‑MS/MS‑based metabolite quantification in fecal 
samples
Metabolomics analyses were performed at the Calgary 
Metabolomics Research Facility. For targeted short-
chain fatty acids analyses (i.e., acetate, propionate, 
butyrate, isobutyrate, valerate), samples were processed 
as previously discussed [44, 45], except for the following 
modifications related to the additional quantification of 
native isobutyric and valeric acids. In brief, SCFAs were 
extracted (1:2 ratio wet sample weight (mg) to extraction 
solvent (μL)) from fecal samples with ice-cold extraction 
solvent (50% water/acetonitrile, v/v) spiked with stable 
isotope-labeled internal standards (IS) (acetic acid-1,2-
13C2, 4  mM, final concentration; propionic acid-13C3, 
1 mM; butyric acid-1,2-13C2, 1 mM; isobutyric acid-d7, 
250  μM and valeric acid-d9, 500  μM), homogenized at 
30 Hz for 3 min with a tissue lyser (Qiagen), derivatized 
with N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 
hydrochloride (EDC) and aniline, then submitted to 
LC-MS/MS analysis. The UHPLC-MS platform consisted 
of a VanquishTM ultra-high-performance liquid chroma-
tography system coupled to a TSQ QuantumTM Access 
MAX triple quadrupole Mass Spectrometer (Thermo Sci-
entific) equipped with an electrospray ionization (HESI-
II) probe. In short, derivatized SCFAs were separated 
on a Hypersil GOLD TM C18 column (200 ×  2.1  mm, 
1.9  μm, Thermo Scientific) using a binary solvent sys-
tem composed of LC-MS grade water (A) and methanol 
(B) both containing 0.1% (%v/v) formic acid. The follow-
ing modified 21 min gradient was used: 0–1 min, 10%B; 
1–1.1  min, 40%B; 1.1–11  min, 40–98%B; 11–16  min, 
98%B; 16–16.5  min, 98–10%B; 16.5–21  min, 10%B. LC 
eluent was diverted to waste for the first 5 min of the run. 
The derivatized SCFAs were monitored with the mass 
spectrometer operating in positive ionization mode and 
selected reaction monitoring (SRM) mode. The following 
transitions, corresponding to the five derivatized native 
SCFAs and respective derivatized 13C- or deuterated 
standards, were monitored, with a scan time of 0.05 sec 
and a fixed collision energy of 14 eV (12C- or 13C-ana-
lytes): [M+H]+ m/z 136.07, 138.08, 150.09, 153.10, 
164.10, 166.11, 178.12 → m/z 94.06, or 18eV (deuterated 
analytes): [M+H]+ m/z 171.15, 187.18 → m/z 95.14. Data 
analyses, on the converted mzXML files, were conducted 
in MAVEN [46, 47], and the absolute quantification of 
native SCFA concentration was based on the 12C:IS sig-
nal intensity ratio and the respective internal standard 
concentration.
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For untargeted metabolomics analyses, fecal sam-
ples (100–200  mg) were diluted 5 times (w/v) into 50% 
methanol/water solution. First, diluted samples were 
homogenized using Tissue Lyser II (QIAGEN) and 
were then incubated on ice for 30  min for full extrac-
tion. Next, samples were centrifuged (approximately 
13,000 rpm) and 500 µl of supernatant was collected for 
metabolomic analysis. Q Exactive™ HF Hybrid Quad-
rupole-Orbitrap™ Mass Spectrometer (Thermo-Fisher) 
and Vanquish™ UHPLC System (Thermo-Fisher) were 
used to perform metabolomics runs. Chromatographic 
separation was done on a Syncronis HILIC UHPLC col-
umn (2.1 mm × 100 mm × 1.7 μm, Thermo-Fisher) using 
a binary solvent system at a flow rate of 600  μL/min. 
Analysis of metabolite data was done with El-MAVEN 
software package. Identification of metabolites was done 
by matching observed m/z signals (± 10 ppm) and chro-
matographic retention times to those observed from 
commercial metabolite standards (Sigma-Aldrich). An 
automated feature detection function in EL-MAVEN 
with a minimum signal intensity threshold of 50,000 sig-
nal intensity was used to generate raw untargeted data. 
Metabolite data was CLR-transformed.

Dietary assessment
Parents completed a 100-item semi-quantitative Food 
Frequency Questionnaire (FFQ) for their child at 3 years 
of age. The FFQ lists food items that are commonly eaten 
by preschool-aged children, and the parents indicated 
how often their children consumed each of the items. 
The parents also reported on foods that their children 
consumed that were not on the FFQ list [48]. The FFQ 
was used to generate a previously validated diet quality 
index score (DQI) where higher values indicate greater 
adherence to the recommended values from Canada’s 
Food Guide 2007 [49]. As the diets of children are rela-
tively stable at the ages of 3–4 [50], the dietary assess-
ments conducted at 3  years of age in this study can be 
considered as a proxy for dietary intakes at 4 years of age, 
the timepoint at which the gut microbiome of the study 
participants was assessed.

Statistical analysis
Gut microbiota cluster-dependent associations between 
the stool metabolome and behavioral outcomes were 
investigated as follows (see Fig. S2 for flowchart). Clus-
ter and sample characteristics were described and sam-
ple characteristics that differed between clusters were 
included as covariates in follow-up analyses. Differences 
in individual stool metabolites and metabolic pathways 
(identified using MetaboAnalyst) were subsequently 
investigated, as well as behavioral differences between 
clusters. Finally, gut microbiota-dependent associations 

between the stool metabolome and behavioral outcomes 
were investigated.

Differences in participant characteristics between 
clusters were assessed using a one-way analysis of vari-
ance (ANOVA). Differences in stool metabolites and 
behavior between clusters were assessed using Kruskal-
Wallis tests followed by Mann-Whitney tests. Differences 
in stool metabolome beta diversity between clusters 
were assessed using the Atchinson distance [51], where 
metabolite data was centered log-ratio transformed. 
Associations between gut microbial taxa, metabolites, 
and behavior were assessed using non-parametric Spear-
man correlations. MetaboAnalyst was used for metabolic 
pathway analyses, which groups individual metabolites 
into pathways and assesses whether metabolic pathways 
are associated with outcomes [52]. Controlling for covar-
iates in the behavioral outcome comparisons between 
clusters was performed using an analysis of covariance 
(ANCOVA). Because of the paucity of data guiding the 
selection of covariates that may be important to gut 
microbiota clusters at preschool age, we used a data-
driven approach for covariate selection by investigating 
which covariates differ between gut microbiota clusters 
using an ANOVA (p < 0.05). The following covariates dif-
fered between gut microbiota clusters and were included 
in the models: grain intake, ethnicity, gestational age at 
birth, and birth weight. Controlling for covariates in the 
cluster-specific associations between stool metabolites 
and behavioural outcomes was performed using par-
tial correlation analyses. Pathways of interest were also 
determined by manually identifying metabolites that 
are directly metabolized into each other using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
[53]. P values subsequently underwent a false-discovery 
rate (FDR) correction using the Benjamini and Hochberg 
method [54], where a q  <  0.05 was deemed significant. 
SPSS software version 26 (IBM Corp) was used for statis-
tical analyses.

Results
Cluster characteristics
Assessment of cluster distribution using Dirichlet mul-
tinomial mixtures revealed 4 clusters (Fig. S1) [42]. 
The 15 most important taxa contributing to the differ-
entiation of the clusters are displayed in order of their 
importance in Fig.  1A. Bacteroides, Bifidobacterium, 
and Faecalibacterium made the largest contributions 
to cluster separation. Cluster Sub was characterized by 
a high relative abundance of the genus Subdoligranu-
lum. The cluster Ba1 had a high relative abundance 
of the genera Bacteroides and Faecalbacterium. Clus-
ter Bif showed a high prevalence of Bifidobacterium, 
while cluster Ba2 was characterized by a high relative 
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abundance of Bacteroides and Bifidobacterium. The 
highest alpha diversity was observed for Sub, followed 
by Ba1, Bif, and finally, Ba2, which had the lowest 
diversity (χ2(3)  =  90.206, p  <  0.001; χ2(3)  =  118.471, 
p  <  0.001; χ2(3)  =  99.074, p  <  0.001, respectively) 
(Fig.  1B–D). Finally, beta diversity differed between 
the four clusters (Fig. 1E).

Parents of participants were predominantly white, 
highly educated (i.e., university degree or higher), and 
had a high annual income (i.e., $70,000–$99,9999 or 
higher) (Table  2, Table S1  provides an overview of all 
participants combined). Comparisons between the 
clusters revealed that the Sub and Ba1 clusters were 
predominantly white, while there were more non-
white individuals (e.g., Chinese, South-East Asian, 
Latin American) within cluster Bif and Ba2 (F (3, 
244) = 10.384, p < 0.001). In addition, cluster Ba2 was 
associated with a lower birth weight and gestational 
age (F (3, 243) =  4.751, p =  0.003; F (3, 243) =  4.721, 
p = 0.003, respectively), as well as an increased dietary 
intake of grain products (F (3, 197) = 2.966, p = 0.033).

Differences in the fecal metabolome between clusters
Analysis of stool metabolome beta diversity between 
the groups revealed that cluster Ba2 had the most dis-
tinct metabolome compared to the rest of the clusters 
(F1,245 = 10.74, p < 0.001), while clusters Sub, Ba1, and 
Bif were still statistically different from all other clus-
ters (F1,245 =  4.86, p =  0.008; F1,245 =  3.39, p =  0.035; 
F1,245  =  5.68, p  =  0.004, respectively) (Fig.  2A). In 
particular, the covariates ethnicity and diet quality 
explained a significant portion of the variance in the 
stool metabolome (F1,185 = 2.12, p = 0.006; F1,185 = 2.07, 
p =  0.007) (Table  S2). Analysis of the individual stool 
metabolites revealed that, of the 142 metabolites meas-
ured in the metabolomics assay, 44 metabolites were 
significantly different between the 4 clusters (Fig.  2B). 
Subsequent analyses grouping these metabolites into 
metabolic pathways using MetaboAnalyst detected 
a total of 50 metabolic pathways to which these 142 
metabolites could be assigned. Cluster Sub had 16 
metabolic pathways that were significantly differen-
tially abundant, while cluster Ba1 had 7 differentially 

Fig. 1 Gut microbiota composition differences between the four clusters. A Relative abundance differences between gut microbial taxa and their 
contributions to the cluster groupings were calculated. B–D Alpha diversity measures were compared between the clusters, and differences 
were assessed using Kruskal‑Wallis tests followed by Mann‑Whitney tests. Data are depicted as violin plots where the middle line is the median 
and the dotted lines are quartiles. E Differences in beta diversity were assessed, where individual dots are datapoints. Total n = 248, cluster sub is n 
= 81, Ba1 is n = 70, Bif is n = 53, Ba2 is n = 44. For the statistical significance, *p < 0.05; **p < 0.01; ***p < 0.001, * indicates a statistical difference 
compared to the sub cluster, # compared to the Ba1 cluster, $ compared to the Bif cluster
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abundant metabolic pathways, cluster Bif had 12 dif-
ferentially abundant metabolic pathways, and cluster 
Ba2 had 39 differentially abundant metabolic pathways 
(Fig. S3). It is also interesting to note that nucleotide 
levels were different between the clusters and that 
cluster Bif and Ba2 had lower levels of specific nucleo-
tides (Fig. S4).

Behavioral differences between the clusters
There were differences in Adaptive Skill scores between 
clusters (χ2(3)  =  13.799, p  =  0.003) (Fig.  3A) whereas 
Internalizing, Externalizing, and Behavioural Symptom 
scores did not differ between clusters (Fig. 3B, C, Fig. S3). 
Specifically, clusters Bif and Ba2 were associated with 
reduced Adaptive Skill scores (Sub vs Bif: U =  1593.5, 

Table 2 Sample characteristics

a Data are presented as the number (percentage) of the non-missing values unless otherwise indicated (n = 248)
b Data missing from 1 participant
c Antibiotic exposure during the first 3 years of life
d Data missing from 47 participants. Variables that are different between groups are highlighted in bold.

Maternal characteristics Sub (n = 81) Ba1 (n = 70) Bif (n = 53) Ba2 (n = 44)

Age (years), mean (SD, range) 32.5 (4.0, 20.3–40.7) 31.7 (4.1, 22.4–44.4) 33.1 (4.1, 24.3–42.8) 32.5 (4.0, 25.5–40.5)

Education, N (%)

 Completed high school diploma 6 (7.4%) 4 (5.7%) 3 (5.7%) 1 (2.3%)

 Completed trade, technical diploma 13 (16.0%) 11 (15.7%) 12 (22.6%) 10 (22.7%)

 Completed university degree 40 (49.4%) 45 (64.3%) 28 (52.8%) 24 (54.5%)

 Completed post‑graduate degree 22 (27.2%) 10 (14.3%) 10 (18.9%) 9 (20.5%)

Annual household income, N (%)b

 < $20,000 3 (3.7%) 0 1 (1.9%) 1 (2.3%)

 $20, 000–$39,999 2 (2.5%) 4 (5.7%) 1 (1.9%) 1 (2.3%)

 $40,000–$69,999 7 (8.6%) 5 (7.1%) 9 (17.0%) 6 (14.0%)

 $70,000–$99,999 18 (22.2%) 20 (28.6%) 12 (22.6%) 7 (16.3%)

 > $100,000 51 (63%) 41 (58.6%) 30 (56.6%) 28 (65.1%)

Ethnicity, N (%)

 White 78 (96.3%) 66 (94.3%) 40 (75.5%) 30 (68.2%)
 Chinese 0 0 4 (7.5%) 6 (13.6%)
 South‑East Asian 0 2 (2.9%) 4 (7.5%) 1 (2.3%)
 Latin America 0 1 (1.4%) 3 (5.7%) 2 (4.5%)
 Other 3 (3.7%) 1 (1.4%) 2 (3.8%) 5 (11.3%)
Child characteristics

 Age (years), mean (SD, range) 4.35 (0.51, 3.06–4.95) 4.33 (0.45, 3.23–4.91) 4.47 (0.47, 3.05–5.00) 4.38 (0.47, 3.39–5.00)

 Male, N (%) 45 (55.6%) 37 (52.9%) 25 (47.2%) 23 (52.3%)

 Mode of delivery–vaginal, N (%)b 58 (71.6%) 52 (74.3%) 42 (79.2%) 35 (79.5%)

 Gestational age (weeks), mean (SD, 
range)b

39.6 (1.8, 33.7–41.9) 39.0 (1.5, 35.0–42.0) 39.3 (1.3, 35.6–41.4) 38.3 (2.5, 29.4–41.3)

 Birth weight (gram), mean (SD, range)b 3451 (594, 2468–5210) 3334 (520, 2215–4649) 3383 (550, 2260–4904) 3052 (632, 1200–4185)
 Antibiotic exposure–yes, N (%)c 36 (44.4%) 28 (40.0%) 18 (34.0%) 16 (36.4%)

BASC‑2, mean (SD, range)b

 Adaptive Skills (T score) 50.9 (8.4, 24–68) 53.2 (8.0, 32–67) 48.3 (7.8, 34–67) 49.7 (8.6, 30–68)

 Internalizing (T score) 47.5 (8.5, 33–66) 48.2 (7.5, 30–66) 48.7 (8.4, 32–67) 48.4 (7.6, 3166)

 Externalizing (T score) 49.9 (7.9, 38–74) 47.8 (8.5, 37–70) 49.4 (7.8, 36–66) 50.4 (7.7, 36–66)

 Behavioral symptoms (T score) 49.4 (8.3, 35–73) 48.2 (6.9, 36–65) 50.9 (6.9, 35–66) 50.5 (8.3, 37–67)

Diet, mean (SD, range)d

 Diet quality score 3.70 (0.58, 1.95–4.93) 3.72 (0.75, 1.96–5.74) 3.66 (0.73, 2.29–5.71) 3.67 (0.68, 2.15–4.92)

 Total energy intake (calories) 1540 (382, 614–2765) 1563 (397, 941–2736) 1644 (673, 924–4919) 1828 (1168, 761–5131)

 Vegetable and fruit (gram) 491 (196, 164–1032) 498 (214, 164–1304) 480 (291, 174–1793) 507 (328, 93–1793)

 Grain product (gram) 142 (64, 12.7–356) 135 (52, 48–356) 149 (108, 44–660) 185 (115, 56–522)
 Meat and alternatives (gram) 108 (44, 20–249) 117 (46, 39–251) 123 (66, 13–370) 106 (76, 11–425)
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Fig. 2 Stool metabolome differences between clusters. A Differences in beta diversity of the stool metabolome were assessed, where individual 
dots are datapoints. B 44 metabolites were found to be different using Kruskal‑Wallis tests followed by a Benjamini‑Hochberg correction, 
after which the relative differences of these metabolites were depicted in a heatmap. Total n = 248, cluster sub is n = 81, Ba1 is n = 70, Bif is n = 53, 
Ba2 is n = 44

Fig. 3 Behavioral differences between the four clusters. A–D The BASC‑2 was used to assessed differences in Adaptive Skills, Externalizing, 
Internalizing and Developmental Social Disorders between the clusters. E–H The Adaptive Skills Subcomponents (i.e., Social Skills, Functional 
Communication, Daily Living, Adaptability) were subsequently compared between the clusters. Statistical differences were assessed using 
Kruskal‑Wallis tests followed by Mann‑Whitney tests. Data are depicted as violin plots where the middle line is the median and the dotted lines are 
quartiles. The grey zones depict the scores at which a participant would be “at risk” for an associated disorder. Total n = 248, cluster sub is n = 81, 
Ba1 is n = 70, Bif is n = 53, Ba2 is n = 44. For the statistical significance, *p < 0.05; **p < 0.01; ***p < 0.001, * indicates a statistical difference compared 
to the sub cluster, # compared to the Ba1 cluster, $ compared to the Bif cluster
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p = 0.018; Ba1 vs Bif: U = 1149.0, p < 0.001; Ba1 vs Ba2: 
U =  1152, p =  0.024). In addition, cluster Bif was asso-
ciated with increased scores for Developmental Social 
Disorders (Sub vs Bif: U= 1583.5, p = 0.016; Ba1 vs Bif: 
U = 1308.5, p = 0.008) (Fig. 3D). No differences in Behav-
ioral Symptoms scores were observed (Fig. S5). The dif-
ferences in Adaptive Skill scores between clusters were 
explained by differences in the subcomponents including 
Social Skills, Functional Communication and Daily Liv-
ing (χ2(3) = 10.120, p = 0.018; χ2(3) = 17.901, p < 0.001; 
χ2(3) =  8.670, p =  0.034, respectively), but not the sub-
component Adaptability (Fig.  3E–H). Bif and Ba2 were 
associated with reduced Social Skill score compared 
to Ba1 (Ba1 vs Bif: U =  1316.0, p =  0.006; Ba1 vs Ba2: 
U = 1115.0, p = 0.013). In addition, Ba1 was associated 
with increased Functional Communication scores com-
pared to Sub (U = 2187.5, p = 0.015), while Bif was asso-
ciated with reduced Functional Communication scores 
compared to all groups (Sub: U  =  1617.0, p  =  0.016; 
Ba1: U = 1115.0, p < 0.001; Ba2: U = 782.5, p = 0.005). 
Finally, Bif was associated with reduced Daily Living 
scores compared to Ba1 (U = 1289, p = 0.004). As there 
were differences in gestational age at birth, birth weight, 
ethnicity, and grain intake, we used an ANCOVA to con-
trol for these covariates (Tables S3, S4, S5, S6, S7). Con-
trolling for covariates reduced the mean difference in 
Developmental Social Disorder Scores between the Sub 
and Bif clusters by 1.14 points (mean difference with-
out covariates =  3.00, p =  0.033; mean difference with 
covariates =  1.87, p =  0.256). Controlling for individual 
covariates revealed that this was predominantly driven 
by ethnicity and grain intake (mean difference when 
controlling for only ethnicity =  2.42; gestational age at 
birth =  2.91; birth weight =  2.93; grain intake =  2.54). 
Similarly, controlling for covariates reduced the mean 
difference in Developmental Social Disorder Scores 
between the Ba1 and Bif clusters by 1.00 points (mean 
difference without covariates  =  3.40, p  =  0.019; mean 
difference with covariates  =  2.40, p  =  0.148). Control-
ling for individual covariates revealed that this was pre-
dominantly driven by ethnicity and grain intake (mean 
difference when controlling for only ethnicity  =  2.87; 
gestational age at birth = 3.50; birth weight = 3.52; grain 
intake  =  2.71). Controlling for covariates reduced the 
mean difference in Functional Communication scores 
between the Sub and Bif clusters by 0.90 points (mean 
difference without covariates  =  2.38, p  =  0.076; mean 
difference with covariates  =  1.47, p  =  0.371). Control-
ling for individual covariates revealed that this was pre-
dominantly driven by grain intake (mean difference when 
controlling for only ethnicity =  2.17; gestational age at 
birth =  2.33; birth weight =  2.34; grain intake =  1.56). 
Similarly, controlling for covariates reduced the mean 

difference in Functional Communication scores between 
the Ba2 and Bif clusters by 0.83 points (mean difference 
without covariates  =  3.32, p  =  0.032; mean difference 
with covariates =  2.49, p =  0.195). Controlling for indi-
vidual covariates revealed that this was predominantly 
driven by grain intake (mean difference when controlling 
for only ethnicity = 3.39; gestational age at birth = 3.41; 
birth weight = 3.68; grain intake = 2.32).

Cluster‑dependent associations between galactose 
metabolism and daily living
We sought to identify associations between child behav-
ior and the gut microbiota/metabolome that were clus-
ter-dependent. As cluster Ba2 metabolome was most 
distinct compared to the other clusters, we subsequently 
identified the most altered metabolic pathway using 
MetabAnalyst, which was Galactose Metabolism (Adj. 
p < 0.001, impact = 0.129) (Fig. 4A–C). In this pathway, 
cluster Ba2 was enriched in the metabolites stachyose, 
raffinose and alpha-D-glucose (χ2(3) = 22.554, p < 0.001; 
χ2(3) = 18.605, p < 0.001; χ2(3) = 22.592, p < 0.001), but 
not D-glucose-1-phosphate, compared to the three other 
clusters (Fig.  4D–G). Finally, we correlated Daily Living 
scores, relative Bacteroides abundance, and the three 
galactose metabolism metabolites with each other in all 
the participants, only within the Bif cluster, or only within 
the Ba2 cluster (Fig. 4H–J). There was a significant asso-
ciation between Daily Living scores with relative Bacte-
roides abundance and alpha-D-glucose levels within the 
Ba2 cluster (rs = 0.189, p = 0.003; rs = 0.456, p = 0.002, 
respectively). Adjusting for ethnicity, gestational age at 
birth, birth weight, and child grain intake reduced the 
effect size of the association between alpha-D-glucose 
levels and Daily Living Scores (r = 0.311, p = 0.107). Con-
trolling for individual covariates revealed that this was 
predominantly driven by grain intake (controlling for only 
ethnicity: r =  0.365, p =  0.016; gestational age at birth: 
r = 0.332, p = 0.032; birth weight: r = 0.330, p = 0.031; 
grain intake: r =  0.310, p =  0.090). In addition, relative 
Bacteroides abundance and alpha-D-glucose levels corre-
lated within the Ba2 cluster (rs = 0.333, p = 0.029). These 
correlations were absent in the Bif cluster. It is also note-
worthy that the effect sizes for these associations were 
greater in the Ba2 cluster, compared to the entire popu-
lation (Daily Living scores vs relative Bacteroides within 
the entire population: rs =  0.187, p =  0.003; within the 
Ba2 cluster: rs = 0.333, p = 0.029).

Cluster‑dependent associations between the histidine 
to urocanate breakdown and social skills
Manual pathway curation of significantly altered 
metabolites between clusters using the KEGG data-
base revealed that 2 of these metabolites were directly 
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connected, where histidine is metabolized into uro-
canate [53]. The metabolomics analyses revealed that 
stool histidine levels were increased in cluster Ba2 
(χ2(3) = 39.113, p < 0.001), while urocanate levels were 
reduced (χ2(3) = 36.771, p < 0.001) (Fig. 5A, B). This is 
particularly noteworthy because the primary source of 
urocanate is the breakdown of histidine [53]. Calcu-
lating the turnover rate of histidine to urocanate sub-
sequently revealed that the turnover of histidine to 
urocanate was lowest for cluster Ba2 (χ2(3) =  52.562, 
p  <  0.001; the medians of non-normalized rates were 
Sub = 30.0, Ba1 = 4.5, Bif = 11.3, Ba2 = 1.8) (Fig. 5C). 
We subsequently correlated histidine, urocanate and 
their turnover rate with Social Skill scores and Devel-
opmental Social Disorder scores to investigate if there 
was a (cluster-dependent) association between the stool 
metabolome and social behavior (Fig.  5D–F). Indeed, 

there was a significant association between Urocanate 
and Histidine-Urocanate turnover rates with Social 
Skill scores (rs = 0.365, p = 0.015; rs = 0.388, p = 0.009, 
respectively), while Histidine-Urocanate turnover rates 
additionally correlated with Developmental Social Dis-
order scores (rs = −  0.316, p =  0.037). These associa-
tions were absent in the sample as a whole or in other 
clusters. Adjusting for ethnicity, gestational age at 
birth, birth weight and child grain intake did not affect 
the association between urocanate-histidine turno-
ver with Social Skill scores (r =  0.344, p =  0.073), but 
did modestly reduce the effect size of the association 
between urocanate-histidine turnover with Develop-
mental Social Disorder scores (r = − 0.271, p = 0.163). 
Controlling for individual covariates revealed that this 
was predominantly driven by ethnicity and grain intake 
(controlling for only ethnicity: r = −  0.272, p =  0.078; 

Fig. 4 Cluster‑dependent associations between Daily Living scores and stool galactose metabolism. A Relative Bacteroides abundances 
were compared between the clusters. B, C MetaboAnalyst was used to identify differentially abundant metabolic pathways in cluster Ba2, 
where galactose metabolism was observed as the most significant pathway. D–G The individual metabolites of this pathway were then compared 
between the clusters, which were stachyose, raffinose, alpha‑D‑glucose, and D‑glucose‑1‑phosphate. H Daily Living scores, relative Bacteroides 
abundances, and identified metabolites were subsequently correlated with each other using data from all participants, I only those part of cluster 
Bif, K or only those part of cluster Ba2. For A and D–J statistical differences were assessed using Kruskal‑Wallis tests followed by Mann‑Whitney tests. 
Data are depicted as violin plots where the middle line is the median and the dotted lines are quartiles. For the statistical significance of A–H *p < 
0.05; **p < 0.01; ***p < 0.001, * indicates a statistical difference compared to the sub cluster, # compared to the Ba1 cluster, $ compared to the Bif 
cluster. For I–K statistical significance was depicted as *p < 0.05. Total n = 248, cluster sub is n = 81, Ba1 is n = 70, Bif is n = 53, Ba2 is n = 44
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gestational age at birth: r = −  0.294, p =  0.059; birth 
weight: r = − 0.312, p = 0.041; grain intake: r = − 0.292, 
p = 0.111).

Next, we investigated if the gut microbiota played a 
role in the differential turnover of histidine to urocanate 
between the clusters. To this end, we correlated gut 
microbial taxa with histidine-urocanate turnover rates 
in the entire population, cluster Bif, and cluster Ba2 (Fig. 
S6). Of the 69 investigated taxa, 46 correlated with histi-
dine to urocanate turnover in the entire population (min 
rs = −  0.489, max rs =  0.466), 19 when only investigat-
ing the Bif cluster participants (min rs = −  0.442, max 
rs = 0.439), and 3 when only investigating the Ba2 clus-
ter participants (min rs = − 0.316, max rs = 0.339). These 
data suggest that the gut microbiota may be less involved 
in histidine-to-urocanate turnover for children with a 
Ba2 cluster, compared to the other clusters.

Finally, we investigated whether the relationship 
between Social Skills and Developmental Social Dis-
orders scores with urocanate levels and histidine-
urocanate turnover were also present in children with 
reduced histidine-urocanate turnover rates, or whether 
these relationships were specific to children in cluster 

Ba2. After selecting all participants (n  =  64) with a 
histidine-urocanate turnover rate > 2 (the median turn-
over rate for cluster Ba2 was 1.75), there was no corre-
lation between Social Skills and Developmental Social 
Disorders scores with either urocanate or histidine-
urocanate turnover rates (Fig. S7). Lastly, we inves-
tigated whether children with lower Social Skills or 
Developmental Social Disorders scores had altered lev-
els of urocanate and histidine-urocanate turnover rates. 
However, there were no differences in urocanate levels 
or histidine-urocanate turnover rates between children 
who had “at risk” scores for Social Skills or Develop-
mental Social Disorders (Fig. S8). These findings indi-
cate that the relationship between histidine-urocanate 
turnover and Social Skill scores is specific to cluster 
Ba2, as opposed to individuals with either low histi-
dine-urocanate turnover rates or Social Skill scores. 
And that increasing histidine-urocanate turnover for 
individuals with low histidine-urocanate turnover or 
Social Skill scores may less likely to improve Social Skill 
scores, compared to increasing histidine-urocanate 
turnover for individuals with a Ba2 gut microbiota 
cluster.

Fig. 5 Cluster‑dependent associations between Social Skills and stool histidine to urocanate turnover. A–C Relative levels of stool histidine 
and urocanate were quantified, after which the turnover rate was calculated by dividing urocanate by histidine levels (depicted as Log10 ratio 
in C). D Social Skill scores, Developmental Social Disorder scores, and identified metabolites were subsequently correlated with each other using 
data from all participants, E only those part of cluster Bif, F or only those part of cluster Ba2. For A–C statistical differences were assessed using 
Kruskal‑Wallis tests followed by Mann‑Whitney tests. Data are depicted as violin plots where the middle line is the median and the dotted lines are 
quartiles. For the statistical significance of A–C *p < 0.05; **p < 0.01; ***p < 0.001, * indicates a statistical difference compared to the sub cluster, # 
compared to the Ba1 cluster, $ compared to the Bif cluster. For D–F statistical significance was depicted as *p < 0.05. Total n = 248, cluster sub is n = 
81, Ba1 is n = 70, Bif is n = 53, Ba2 is n = 44



Page 12 of 16van de Wouw et al. Microbiome           (2024) 12:60 

Discussion
These data reveal novel insights into how the composi-
tion of the gut microbiota and its metabolites are asso-
ciated with child behavior during early life; therefore, 
expanding our knowledge of the microbiota-gut-brain 
axis. Cluster Ba2 showed a distinct stool metabolome 
and unique cluster-dependent associations between his-
tidine-urocanate metabolism and Social Skills, as well as 
galactose metabolism and Daily Living scores.

Our cluster analysis in preschool children revealed 
four distinct clusters characterized by high relative abun-
dances of Bacteroides, Subdoligranulum, and Bifidobac-
terium, while previous analyses in adults have identified 
3–4 clusters characterized by high relative abundances 
of Bacteroides, Prevotella, and Ruminococcaceae [16, 22, 
23]. These differences in cluster composition could be 
related to age, considering that the microbiota under-
goes change throughout childhood and even into adoles-
cence to a lesser extent [55]. Indeed, a key bacterial taxon 
within the cluster groupings of our analysis is Bifidobac-
terium, which was reported to be a key taxon for cluster 
groupings for infants during the first month of life [56]. 
In addition, another study reported a Bifidobacterium-
enriched cluster in children at 6–9  years of age [25]. 
The prevalence of the Bifidobacterium-dominant clus-
ter might be related to the relatively high abundance of 
Bifidobacterium species in infants and children, which 
gradually decreases until adulthood [55, 57, 58], likely 
explaining why Bifidobacterium-predominant clusters 
are frequently reported in studies investigating the child 
gut microbiota, but not in adults. It is also interesting to 
note that the cluster characterized by high Subdoligranu-
lum abundance (Sub) had the highest prevalence of Rum-
minococcus_1 and Rumminococcus_2, indicating that this 
cluster might closely resemble the Ruminococcaceae clus-
ter reported in adults. Finally, the cluster Ba2 observed in 
our dataset somewhat resembles the B2 cluster observed 
in adults, as it is characterized by low relative abundances 
of Faecalibacterium [17]. Overall, these data suggest that 
the observed clusters in this study may resemble the clus-
ters observed in adults, albeit still in a developing phase, 
as gut microbiota clusters start to reach a stable phase 
between 3 and 4 years of age [59]. As such, more research 
is warranted into the future developmental trajectories of 
gut microbiota clusters in developing children.

Cluster Bif was associated with increased scores for 
Developmental Social Disorders and reduced Adaptive 
Skills scores—specifically the subcomponents Social 
Skills, Functional Communication, and Daily Living. 
Even though we are unaware of any studies linking Bifi-
dobacterium abundances to child behavioral outcomes at 
preschool age, some studies show associations between 
Bifidobacterium abundances and temperament during 

the first year of life [24, 60–62]. Those studies suggest 
that elevated Bifidobacterium abundances are associ-
ated with temperament among infants, but because of 
the highly dynamic nature of the gut microbiota during 
infancy, it is not clear how those findings might relate to 
behavioral outcomes at preschool age. Taken together 
with the previous studies of infancy and the fact that the 
Bif cluster was associated with reduced Adaptive Skill 
scores and an increase in Developmental Social Disorder 
scores suggests that the link between behavior and Bifi-
dobacterium requires further investigation during child-
hood. Our data also show that cluster Ba2 was associated 
with reduced Adaptive Skill scores—specifically the sub-
components of Social Skills and Functional Communica-
tion. A Bacteroides-dominant cluster at 2.5  months old 
was associated with lower regulation scores on the IBQ-R 
[24]. In addition, a Bacteroides-dominant cluster at 1 year 
of age was associated with increased cognitive scores 
[63, 64]. Altogether, our finding showing that the Bif and 
Ba2 clusters are associated with poorer Adaptive Skills is 
not consistently observed across the literature, but these 
discrepancies may be explained by the age at which the 
gut microbiota was measured. Previous studies have 
predominantly focussed on the first 2 years of life, while 
our study investigated the gut microbiota at 3–4  years 
of life, which is important because the gut microbiota 
is believed to achieve an adult-like composition around 
3 years of age [55].

Cluster Ba2 had a more distinct stool metabolome 
compared to the other clusters. Our analyses revealed 
two metabolic processes that were associated with child 
behavioral outcomes, based on the MetabolAnalyst 
results and manual identification of metabolites that are 
directly metabolized into each other. These two meta-
bolic processes were histidine to urocanate metabolism 
and galactose metabolism. In addition, significantly fewer 
bacterial taxa correlated with histidine-urocanate turno-
ver rates for cluster Ba2. Similarly, the introduction of a 
specific pathogen-free microbiota to mice without any 
microbiota (i.e., germ-free) reduces fecal histidine levels 
and increases urocanate levels [65]. These data may sug-
gest a reduced involvement of the gut microbiota in his-
tidine-to-urocanate metabolism, which may ultimately 
result in the deficit of systemic urocanate levels and its 
downstream metabolites. It is also noteworthy that his-
tidine can be metabolized into histamine through his-
tidine decarboxylase [66], where histamine plays a key 
role in immune system functioning and has been linked 
to neuronal development [67], even though our study 
did not quantify histamine. As for galactose metabolism, 
the Ba2 cluster-specific association between Bacteroides 
relative abundances and stachyose, raffinose, and alpha-
D-glucose may suggest that these saccharides could 
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be a substrate for taxa within the Bacteroides genus in 
individuals who have a Ba2 gut microbiota cluster spe-
cifically. In tandem, cluster Ba2 was associated with an 
elevated grain intake and controlling for grain intake 
showed a modest reduction in the effect-size of the cor-
relation between alpha-D-glucose levels and Daily Living 
Scores, which is important because stachyose (a precur-
sor of alpha-D-glucose) is present in grains. Other studies 
have also reported that altered carbohydrate metabo-
lism is a unique feature of cluster Ba2 in adults [68, 69]. 
Finally, our metabolomics analyses revealed differences 
in nucleotide levels between the clusters, where Bif and 
Ba2 clusters showed lower levels. This could be linked 
to differences in stool bacterial load (i.e., the number of 
bacteria present per gram stool), as Ba2 has been associ-
ated with a lower bacterial load [18, 22]. Future studies 
should include the analysis of bacterial load to normal-
ize the relative gut microbial abundances. Overall, some 
of the metabolomic differences characterized within our 
results are largely in line with previous reports focussing 
on cluster analyses in adults.

The concept of gut microbiota clusters was initially 
highly debated as clusters are more continuous, rather 
than distinct gut microbiota compositions [70, 71]. Con-
sequently, an individual’s gut microbiota may switch 
clusters over time [70, 71]. Nonetheless, subsequent 
reports have shown that the overall cluster groupings and 
their functional metabolic capacity are replicable even 
between cohorts and different populations [68, 72]. In 
addition, cluster Ba2 has been repeatedly associated with 
negative health outcomes in adults, such as increased 
systemic inflammation, lower cardiac vagal function, 
reduced quality of life scores, and increased odds for 
obesity, type 2 diabetes, Crohn’s disease, and depression 
[18–23]. A cluster enriched in Faecalbacterium and Bac-
teroides abundance has been linked to reduced Receptive 
Language and Expressive Language scores assessed using 
the Mullen Scales of Early Learning at 2 years of age [73]. 
In tandem, our data reveals that cluster Ba2 is associ-
ated with reduced Adaptive Skill and Social Skill scores. 
Similarly, our analyses did not detect any differences in 
internalizing and externalizing behaviors, which is in 
line with previous work [8]. Overall, even though clus-
ter-based approaches for understanding the relationship 
between the gut microbiota and host physiology/behav-
ior have clear limitations, cluster-related findings tend 
to be consistent across populations, where cluster Ba2 is 
the most consistently associated with unfavorable health 
outcomes. If these unfavorable mental health outcomes 
associated with cluster Ba2 are consistent across different 
ages, then interventions for improving these behavioral 
outcomes in individuals with a Ba2 gut microbiome dur-
ing childhood may be associated with improved mental 

health outcomes at a later age, as these behavioral out-
comes have been shown to predict mental health out-
comes in later life [14, 74].

Strengths and limitations
A limitation of this study is the lack of repeated child 
stool sampling, as an individual’s gut microbiota may 
switch clusters over time [70, 71]. This study also used 
16S rRNA short-read sequencing, which results in a 
lower genomic resolution compared to whole genome 
sequencing. In addition, even though clustering methods 
are a useful tool to compress high-dimensional data, they 
can also lead to data loss. As such, more gut microbiota-
wide interaction analyses are warranted to understand 
the conditional effects of individual gut microbial taxa on 
host physiology and behavior. Another limitation is that 
participants were predominantly White and had a rela-
tively high socioeconomic status, which reduces the gen-
eralizability of the study results. A major strength of this 
study is the assessment of the child’s fecal metabolome, 
which is important because one of the primary ways in 
which the gut microbiota affects physiology is through 
the metabolites it produces [75].

Conclusions
Our data analyses reveal novel relationships between 
histidine-urocanate turnover with Social Skills and 
Developmental Social Disorder scores, as well as galac-
tose metabolism and Daily Living scores, both of which 
are only present in cluster Ba2. These results provide 
novel insights into conditional gut microbiome effects 
on microbial metabolism and child behavioral outcomes. 
Interestingly, baseline gut microbiome compositions may 
provide insights into treatment efficacy [10–13], as clus-
ters pre-intervention predict gut microbiome changes 
in response to nutritional interventions [76]. In addi-
tion, the Prevotella-to-Bacteroides ratio has been shown 
to predict body weight and fat loss changes induced by 
dietary interventions [77–79]. Furthermore, type 2 diabe-
tes patients with a high abundance of Bacteroides show 
a larger improvement in metabolic parameters following 
treatment with the type 2 diabetes medication Acarbose, 
compared to patients with high Prevotella abundance 
[80]. As such, this emerging data on the conditional 
effects of the gut microbiota or gut microbial clusters on 
interventions, physiology (e.g., stool metabolome), and 
health outcomes (e.g., behavior), may potentially lead to 
useful tools for personalizing microbiome-targeted inter-
ventions for improving health outcomes.
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