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Abstract 

Background By analyzing the proteins which are the workhorses of biological systems, metaproteomics allows us 
to list the taxa present in any microbiota, monitor their relative biomass, and characterize the functioning of complex 
biological systems.

Results Here, we present a new strategy for rapidly determining the microbial community structure of a given 
sample and designing a customized protein sequence database to optimally exploit extensive tandem mass spec-
trometry data. This approach leverages the capabilities of the first generation of Quadrupole Orbitrap mass spectrom-
eter incorporating an asymmetric track lossless (Astral) analyzer, offering rapid MS/MS scan speed and sensitivity. We 
took advantage of data-dependent acquisition and data-independent acquisition strategies using a peptide extract 
from a human fecal sample spiked with precise amounts of peptides from two reference bacteria.

Conclusions Our approach, which combines both acquisition methods, proves to be time-efficient while process-
ing extensive generic databases and massive datasets, achieving a coverage of more than 122,000 unique peptides 
and 38,000 protein groups within a 30-min DIA run. This marks a significant departure from current state-of-the-art 
metaproteomics methodologies, resulting in broader coverage of the metabolic pathways governing the biological 
system. In combination, our strategy and the Astral mass analyzer represent a quantum leap in the functional analysis 
of microbiomes.
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Background
Microbial communities are challenging biological sys-
tems due to the diversity of their components, their 
dynamics in time and space, intricate and redundant 
functional capabilities, and their myriad of possible inter-
actions and networks. Microbiome research has seen 
many advances in establishing the nature of their com-
ponents, pointing at key functionally relevant species, 
and predicting their functions based on metagenomics 
information [1]. By identifying proteins and monitor-
ing their quantities, metaproteomics is a methodology 
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that provides crucial information on the structural com-
ponents, enzymes, and informational messengers of 
microorganisms, as well as on the host response, if any 
[2]. In addition to identifying the metabolic pathways in 
action and assessing their level of activity by means of 
their quantities, the methodology makes it possible to 
trace them back to the specific organisms that produced 
the corresponding proteins thanks to peptide sequences 
established by high-resolution tandem mass spectrom-
etry. Metaproteomics therefore has a key role in deep-
ening our knowledge of microbiomes, compared with 
methodologies limited to cataloguing microorganisms 
and genomic potential. Moreover, thanks to its extreme 
speed, this methodology could become an attractive new 
diagnostic tool for human medicine and the environment 
[3].

Microbiome research is strongly influenced by method-
ological advances. Recent developments in tandem mass 
spectrometry, acquisition strategies, and interpretation 
tools have great potential to transform metaproteom-
ics into a high-performance methodology for deepening 
knowledge of microbial functioning. Metaproteomics 
grapples with an enormous amount of complex data, 
including giant databases of protein sequences built from 
metagenomic data or large numbers of sequenced organ-
isms. Metaproteomics is also confronted with an excep-
tionally high number of proteins and variants from the 
sample, making the identification of common peptides 
easier than specific ones. Last, the lack of comprehen-
sive coverage of the protein sequence database tends to 
decrease the outcome of the interpretation. Very recently, 
Stewart et  al. [4] described the development of a new 
mass spectrometer that combines a powerful Orbitrap 
mass-resolving quadrupole, a novel ion processor recti-
linear ion trap [5], and a revolutionary conceptual ana-
lyzer called Asymmetric Track Lossless (Astral) analyzer, 
enabling faster acquisition of high-resolution MS/MS 
spectra and high sensitivity compared with state-of-the-
art mass spectrometers. The results demonstrated by this 
novel instrument for proteomics are promising in terms 
of depth of analysis with 10,000 groups identified from a 
HeLa peptide extract over a single 48-min run [4]. Such 
performance was further documented for comprehensive 
analysis of proteome post-translational modifications [6], 
plasma proteome [7], minimal cells [8], and single-cell 
proteomics [9]. Given these substantial improvements, in 
the present study, we explore its performance for profil-
ing highly complex samples using a specific standard of 
human fecal material spiked with precise amounts of two 
bacterial proteomes. To fully exploit this new technology, 
we propose a novel workflow for metaproteomics, based 
on reliable proteotyping of microorganisms from short 
data-dependent acquisition (DDA), designing a specific 

database selecting the most valuable genomes, recording 
of high-density datasets in data-independent acquisition, 
and interpretation for increased coverage of the key play-
ers in the microbiota.

Materials and methods
MetaP reference sample
Deinococcus proteolyticus and Balneola vulgaris [10] 
were cultivated at 20°C with agitation at 140 rpm agita-
tion in LB and Marine broth, respectively. Cells were 
harvested at the stationary phase by centrifugation. 
Human fecal material was obtained from a healthy adult 
donor. Proteins were extracted and proteolyzed into pep-
tides with trypsin as previously described [11]. Peptides 
obtained from the two bacteria and the fecal material 
were quantified using the Pierce Quantitative Peptide 
Assays and Standards (Thermo Fisher Scientific) accord-
ing to the manufacturer’s instructions, and then mixed 
at a ratio of 2:1:97 for D. proteolyticus: B. vulgaris: fecal 
material to obtain the MetaP reference sample.

Orbitrap Astral mass spectrometry
NanoLC-MS/MS analysis was performed on an Orbitrap 
Astral MS coupled to a Vanquish™ Neo UHPLC system 
(Thermo Scientific™), interfaced with an EASY-Spray™ 
nano-source, and equipped with an IonOpticks-TS ana-
lytical column (25  cm × 75  µm) stabilized with a Heater 
THOR Controller (IonOpticks). The four gradients used 
were developed with 0.1% formic acid/99.9%  H2O (Elu-
ant A) and 0.1% formic acid/80% acetonitrile/19.9%  H20 
(Eluant B): 8–35% B in 18 min followed by 35–45% B in 
2 min (20 min gradient), 8–35% B in 25 min followed by 
35–45% B in 5 min (30 min gradient), 8–35% B in 52 min 
followed by 35–45% B in 8  min (60  min gradient), and 
3–17% B in 56 min followed by 17–25% B in 21 min and 
25–34% in 12 min (90 min gradient), followed by a col-
umn wash at 95% B for 9 min and re-equilibration. Pep-
tides (125  ng) were directly injected into the column. 
In DDA mode, the Orbitrap Astral MS was operated in 
positive mode with a fixed cycle time of 0.5 s with a full 
scan range of 400–1500  m/z at a resolution of 120,000. 
The automatic gain control (AGC) was set to “custom”, 
with a normalized AGC target of 300% and a maximum 
injection time of 50  ms. Precursor ion selection width 
was set at 2 Da. Peptide fragmentation was triggered by 
higher-energy collisional dissociation (HCD) with an 
HCD collision energy set at 30%. Fragment ion scans 
were recorded with the Astral analyzer with a scan range 
of 110–2000 m/z. In DDA mode, 30 min and 60 min gra-
dients were tested in injection triplicates. In DIA mode, 
the Orbitrap Astral MS was programmed at the high-
est MS resolution (240,000) with a full scan range of 
380 − 980  m/z. The normalized AGC target was set at 
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500%. For DIA measurements, the window width was set 
to 2 Da for the 15-min and 90-min gradients with a maxi-
mum injection time of 3 or 5 ms, respectively. This width 
was set at 3 Da for the 15 min, 30 min, and 60 min gradi-
ents with a maximum injection time of 3 ms, 7 ms, and 
7  ms, respectively. The loop control function was acti-
vated (N = 100). The acquisition range was 150–2000 m/z 
after fragmentation of the isolated ions using HCD with 
25% normalized collision energy (NCE). In DIA mode, 
15 min, 30 min, 60 min, and 90 min gradients were tested 
in analytical triplicate. A quantity of 125  ng of peptides 
was injected per analytical run.

Data interpretation for proteotyping organisms
Tandem mass spectrometry proteotyping was performed 
with each DDA dataset as previously described [12]. The 
top 100,000  MS/MS spectra were selected using Scan-
ranker [13]. These MS/MS spectra were interpreted 
using Mascot version 2.6.1 (Matrix Science) against the 
NCBInrS database [12]. Peptide sequences were mapped 
to taxa at the species, genus, family, order, class, phy-
lum, and superkingdom taxonomical ranks, as previously 
described [14], resulting in Taxon-to-Spectrum Matches 
(TSMs). TSMs and taxon-specific peptide sequences 
(spePEP) were used for the taxonomic identification of 
genera. Subsequently, a second round of search was ini-
tiated against a database derived from NCBInr encom-
passing all the identified genera and their descendants to 
identify the species.

DB48 database creation
The most abundant species identified by proteotyping 
were used to create a specific-sample database. A total of 
48 organisms were selected, and their annotated protein 
sequences were downloaded from NCBI, and merged in 
a single fasta file, resulting in the DB48 database, com-
prising 437,578 protein entries and totaling 169,873,349 
amino acids. The DB48 spectral library for DIA inter-
pretation was deposited in Figshare and is directly avail-
able for download (https:// figsh are. com/ artic les/ datas et/ 
DB48_ Spect ralLi brary_ predi cted_ specl ib/ 24638 913).

Data metaproteomics interpretation
The acquired DDA raw data file (60  min, replicate 
3) was processed with Proteome Discoverer™ v3.1 
software, using eventually SEQUEST™ with CHI-
MERYS™ search algorithms. Standard parameters were 
applied, with Carbamidomethylation of cysteines as 
fixed modification, Oxidation of methionines as vari-
able modification, target FDR for PSMs and peptides 
of maximum 1%, minimum peptide length of 6, and 
FDR for proteins of 1%. DIA raw files were interpreted 
using DIA-NN 1.8.1 [15]. Deep learning-based spectral 

library generation was conducted in silico based on 
the DB48 database. A maximum of 2 missed cleav-
ages were allowed, 2 variable modifications (oxidation 
of methionines and acetylation of the N-terminus), 
peptide length ranging from 7 to 30 residues, precur-
sor charge of 2 and 3, m/z range from 400 to 1008, and 
fragment ion range from 200 to 1800  m/z. Automatic 
inference mode was selected for precursor and MS1 
accuracy. Match between replicate runs and no shared 
spectra functions were activated. Protein inference was 
conducted based on protein names.

Functional profiling of the host, microbiota, and spiked 
bacteria
The main protein within each identified protein group 
was employed for functional analysis, where the pro-
tein sequences were compared against the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database [16] 
using GhostKOALA tool [17]. KEGG orthologous (KO) 
terms were then assigned to KEGG pathways. In order 
to evaluate the depth of functional analysis, a percent-
age of pathway coverage was calculated by dividing the 
number of observed KO terms by the total number of KO 
terms in the pathway. Averaged protein abundance was 
used to quantify the weight of each pathway attributed to 
the host or microbiota. The contribution of each taxon 
within a function was illustrated using Circos tool [18]. 
The mapping of Deinococcus proteolyticus and Balneola 
vulgaris KO terms on the KEGG metabolic pathways was 
done with iPath 3.0 [19].

Orbitrap Exploris 480 mass spectrometry and data 
processing
The metaP standard was analyzed in triplicates on an 
Orbitrap Exploris 480 (Thermo Scientific™) tandem mass 
spectrometer coupled to a Vanquish™ Neo pump mod-
ule (Thermo Scientific™). Peptides were desalted on a 
reverse-phase PepMap 100 C18 μ-precolumn (5  mm, 
100  Å, 300  mm i.d. × 5  mm, Thermo Scientific™) and 
separated on a 50-cm EasySpray column (75  mm, C18 
1.9  mm, 100  Å, Thermo Scientific™) at a flow rate of 
0.250 μL/min using a 90-min gradient (5–25% B from 0 
to 85 min, and 25–40% B from 85 to 90 min) of mobile 
phase A (0.1% HCOOH/100%  H2O) and phase B (0.1% 
HCOOH/100%  CH3CN). DDA mode was activated with 
a full mass scan from 375 to 1500 m/z, an MS resolution 
of 120,000 and a MS/MS resolution of 15,000. Only pep-
tides with 2 or 3 positive charges were selected for frag-
mentation with a dynamic exclusion time of 20 s and an 
isolation window of 0.7 m/z.

https://figshare.com/articles/dataset/DB48_SpectralLibrary_predicted_speclib/24638913
https://figshare.com/articles/dataset/DB48_SpectralLibrary_predicted_speclib/24638913
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Mass spectrometry proteomics data
Mass spectrometry proteomics data have been deposited 
to the ProteomeXchange Consortium via the PRIDE part-
ner repository under the dataset identifiers PXD045838 
(Orbitrap Astral DDA dataset), PXD046290 (15 and 
30  min Orbitrap Astral  DIA files), PXD046320 (60 and 
90  min Orbitrap Astral DIA  files), and PXD047139 
(90 min Orbitrap Exploris 480 DDA files).

Results
DDA‑based proteotyping to identify the most abundant 
organisms in the sample
NanoLC-MS/MS runs were carried out with 125  ng of 
the MetaP reference sample specifically created for this 
test of the Orbitrap Astral tandem mass spectrometer, 
using 30  min and 60  min gradients, in triplicate each. 
Proteotyping interpretation of these six datasets against 
a generic NCBInr-derived database encompassing pro-
tein sequence information from 50,995 different species 
was limited to the best 100,000 MS/MS spectra for each, 
as assessed by the Scanranker tool. This first round of 
searching was exploited to identify observable genera in 
each dataset. A database comprising all the descendants 
of the identified genera was built for each dataset and 

used to perform a second search to identify organisms 
at the species taxonomical rank. The species identified 
in these six independent analyses are listed in Table S1, 
along with the corresponding number of taxon-specific 
peptides and Taxon-to-Spectrum Matches (TSMs) at the 
various taxonomical ranks. Table  S2 provides a reliable 
list of the 9 phyla, 44 genera, and 56 species that were 
proteotyped through the merging of these results, along 
with their respective contribution to protein biomass 
(Fig. 1). The overall TSMs signal decreases slightly when 
moving down the taxonomical hierarchy, from 100% at 
the phylum level to 96.8% at the family and 96.5% at the 
genus level, respectively. A more pronounced decrease 
is observed when moving from the genus to the species 
level (89.8%). This indicates that the genus level is well 
covered by the representative reference genomes in the 
database used for the proteotyping, while lower sequence 
coverage is observed at the species level. The proteo-
typing specificity of this taxonomical rank is therefore 
slightly lower compared to higher taxonomical ranks. 
Remarkably, for Deinococcus proteolyticus, Balneola vul-
garis, and Homo sapiens, whose sequenced genomes are 
present in the database, no decrease is observed along 
the taxonomical ranks (Fig.  1). The largest decrease in 

Fig. 1 Relative proteotyping signals for different taxonomical ranks grouped by identified phylum. Protein biomass estimated based on the TSMs 
signal assigned to these microorganisms is grouped per phylum at various taxonomical ranks
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the ratio is observed for Ascomycota and Actinobacte-
ria, suggesting that the proteotyped species within these 
two phyla are only weakly representative. Given that their 
overall contributions are small, this has minimal impact 
on the results. In fact, the global TSMs signal, which rep-
resents 90% of the initial value, underscores the relevance 
of the species level across most phyla.

Amongst the 13 Eukaryota, the host Homo sapiens is 
logically the most abundant species, accounting for over 
16% of the protein biomass. Eleven species affiliated to 
Streptophyta phylum were detected, representing a total 
of 9.9% of protein biomass, with Glycine max, Helianthus 
annuus, and Oryza sativa being the most abundant resid-
ual food components. Only one species assigned to Asco-
mycota, Saccharomyces cerevisiae, was identified. Among 
the 43 bacterial species identified, Faecalibacterium 
prausnitzii, Anaerobutyricum halliii, and Coprococcus 
eutactus were the most abundant, accounting for 8.2%, 
7.3%, and 5.8% of protein biomass, respectively. The least 
abundant organism, Clostridium bartlettii CAG:1329, 
represented only 0.13% of the protein biomass but was 
reliably detected with 10 species-specific peptides in the 
best analytical run. No archaea were identified in this 
biological material sampled from a healthy young person 
on a meat-free diet. As expected, Firmicutes dominated 
the microflora with 33 identified species, accounting for 
58% of the protein biomass. Notably, the two spiked bac-
teria never reported in the fecal microbiota, Deinococcus 
proteolyticus and Balneola vulgaris, were identified with 
237 and 55 species-specific peptides in the best analyti-
cal run, respectively. They accounted for 5.22% and 1.01% 
of the protein biomass, respectively, as calculated from 
the TSMs signal assigned for the six interpreted data-
sets. While the second percentage corresponds very pre-
cisely to the expected added quantity of Balneola vulgaris 
(1%), the first value overevaluates the added quantity of 
Deinococcus proteolyticus (2%), indicating that the par-
simony rules for establishing TSMs should be improved. 
The dynamic range of taxa assessed by metaproteomics 
shows that a relatively small number of genera dominate 
the sample in terms of biomass, with five genera (Homo, 
Clostridium, Faecalibacterium, Coprococcus, and Anaer-
obutyricum) contributing to almost 50% of the protein 
biomass. Next, we built the DB48 protein sequence data-
base customized to represent only those organisms iden-
tified by tandem mass spectrometry proteotyping, which 
should account for the bulk of the protein biomass, i.e., 
97.25% of the total (Table S3).

Astral DDA current state‑of‑the‑art metaproteomics 
is improved
Due to the high diversity of peptides present in the 
MetaP standard, a large portion of the MS/MS spectra 

are expected to be chimeric, leading to a decrease in the 
assignment ratio. Preliminary testing was performed 
on a single 60-min DDA dataset (replicate 3) using the 
DB48 protein sequence database restricted to the most 
abundant organisms present in the sample. The new 
CHIMERYS algorithm (MSAID, Germany) integrated 
into Proteome Discoverer for the identification of chi-
meric spectra identified 158,716 PSMs, 42,996 peptide 
sequences, 27,628 proteins, and 12,480 protein groups. 
The ratio of MS/MS spectra assigned is 47.7% and the 
ratio of peptide sequences per protein group is 3.45, 
which are both rather high compared to most previously 
reported metaproteomics studies. This last interpretation 
demonstrates the high quality of the peptide prepara-
tion and proteolysis since 90.2% of the peptides have no 
missed cleavages, 9.5% of the peptides resulted from a 
unique missed cleavage, and only 0.3% are explained by 
two missed cleavages. In terms of precursor charge, 69.4% 
have 2 positive charges, 29.0% have 3 positive charges, 
and 1.6% have 4 charges. The differences in terms of 
assignation ratio and diversity of peptide sequence con-
firm the great benefit of artificial intelligence for inter-
preting very complex metaproteomics datasets. The 
Astral instrument performance was compared to the 
Orbitrap Exploris 480 using the exact same metaP refer-
ence sample. Each of the three 90-min DDA acquisition 
measurements generated an average of 94,751 (± 1.3%) 
MS/MS spectra, resulting after querying the DB48 in an 
average of 16,552 (± 3.2%) PSMs, 12,749 (± 2.3%) peptide 
sequences, and 3628 (± 0.9%) protein groups (Table S4). 
Those results are consistent with those reported for other 
human fecal samples using the same instrument but with 
a longer gradient [20]. In DDA mode, the performance of 
the Astral and CHIMERYS tool interpretation resulted in 
almost 10 times more PSMs, a threefold increase in the 
number of peptides and protein groups identified, with 
only two-thirds of the dedicated time to mass spectrom-
etry. Figure  2 shows the comparison between the two 
instruments in terms of protein coverage. These results 
indicate the new current state-of-the-art metaproteom-
ics that can be achieved based on DDA datasets acquired 
with the Orbitrap Astral tandem mass spectrometer.

DIA metaproteomics increases significantly peptide 
coverage and protein detection
To investigate the Astral performance in DIA mode 
and assess the extent to which it improves the depth of 
metaproteome knowledge, DIA analyses with different 
LC–MS/MS acquisition parameters were carried out. 
We recorded triplicate analyses of the MetaP standard 
using gradients spanning 15, 30, 60, and 90  min. Data 
interpretation was performed with a spectral library 
generated in silico for DIA-NN, and the results were 
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presented either in normal mode or in heuristic pro-
tein inference mode. This last option avoids protein 
accession redundancies across multiple protein groups, 
giving more appropriate results for subsequent func-
tional analysis, albeit with a reduction in the num-
ber of protein groups listed. This data interpretation 
shows improved interpretation compared to the DDA 
dataset (Fig.  2) and high reproducibility between rep-
licates (Fig.  3). A total of 188,442 peptide sequences 
are observed when totaling the 18 analytical runs and 
59,242 peptide sequences are observed across all six 
conditions. For example, in the dataset acquired in 
30  min of gradient (2  Da fragmentation window and 
3 s injection time), 140,857 (± 396) precursors, 122,087 
(± 346) peptide sequences, and 38,528 (± 58) pro-
tein groups were observed in average per analytical 
run. When cumulating the three replicates, a total of 
124,546 peptide sequences and 38,987 protein groups 
were observed under these experimental conditions. 
Logically, the longer gradient tested, 90  min, resulted 
in a larger landscape with an average of 138,596 unique 
peptides and 44,204 protein groups. For the 60-min 
gradient, 118,262 peptide sequences and 37,934 protein 
groups were observed, thus a significant increase com-
pared to the 60-min gradient DDA CHIMERYS analysis 
with × 2.7 and × 2.4 fold change, respectively. Overall, 
these results emphasize the benefit of DIA analyses 
for peptide and protein identification. Noteworthy, the 
15  min gradient (2  Da–5  ms) performs very well with 
96,102 peptide sequences identified and 31,928 pro-
tein groups, with an average of 3.0 peptides per protein 
group.

Significantly improved panorama of metabolic pathways 
relies on extra‑large DIA peptidome landscape
To unveil the full potential of the Orbitrap Astral mass 
spectrometer to advance our understanding of diverse 
biological systems, we further explored the results of 
the 30-min DIA gradient (2 Da–3 ms), as it offers a good 
compromise between acquisition time and performance. 
The proteins identified were annotated using the KEGG 
database. Across the three analytical replicates, a total of 
25,283 distinct protein groups were successfully anno-
tated, with an average of 25,019 ± 33 protein groups per 
analytical run. Of these, 997 proteins originated from 
the host (18.1% of cumulated abundance), 2,036 proteins 
from the residual diet (8.2% of abundance), 20,418 from 
the microbiota (69.3% of abundance), while B. vulgaris 
and D. proteolyticus accounted for 743 and 1089 pro-
teins, 1.1 and 3.4% of abundance, respectively (Table S5). 
It should be noted that the latter two percentages are in 
relatively good agreement with the experimental design 
of the MetaP sample, indicating that cumulative protein 
abundance could be a good indicator for estimating the 
percentage biomass of each taxon. This also shows that 
the interpretation of the DIA and DDA datasets is fairly 
convergent when it comes to establishing the percentage 
biomass of a taxonomic unit, although here two different 
surrogate variables, namely protein intensity and TSM, 
were used.

Notably, 71% (15,776 out of 22,250) of microbial pro-
teins and 89% (886 out of 997) of human proteins had 
existing KO annotations (Table  S5). Host and microbial 
proteins were found to be involved in 367 and 191 bio-
logical pathways, respectively, covering five functional 

Fig. 2 Venn diagram depicting the common and specific features of proteins and protein groups detected by three methodologies. The dataset 
used was acquired with a 60-min gradient (replicate 3) for chimerys DDA and DIA-NN DIA Orbitrap Astral, and 90 min gradient for Orbitrap Exploris 
480
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Fig. 3 DIA interpretation results for the five conditions tested in triplicate. A Average numbers of detected precursors and unique peptides 
for the three replicates, and accumulated unique peptides. B Venn diagram of unique peptides among the five conditions. C Average numbers 
of protein groups with or without heuristic inference, and accumulated protein groups when summing the three replicates
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Fig. 4 Abundance of all identified KEGG pathways for the host and the microbiota. A Host. B Microbiota. The proportion of the pathway depends 
on the protein biomass. The inner numbers represent the number of KO terms recorded in the pathways
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Fig. 4 continued
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categories: metabolism, genetic information process-
ing, environmental information processing, cellular pro-
cesses, and human diseases (Table  S6). Their general 
distribution is shown in Fig. 4. Interestingly, the general 
collection of ‘carbohydrate metabolisms’ KEGG path-
ways has both the highest abundance rate and the highest 
number of KO functions (544) for the microbiota. Even 
pathways including less abundant proteins, such as ‘cell 
motility’, show a depth of coverage of over 40% (Table S6). 
When we delved into the contributions of different 
microbial genera to the functional diversity of the gut, 
we observed that we were able to explore functions even 

within relatively less represented taxa, supporting the 
potential of the Orbitrap Astral instrument in shedding 
light on the peculiar role of the entire microbiota (Fig. 5).

Turning our attention to the spiked B. vulgaris and D. 
proteolyticus, annotation of their identified proteins, 
amounting to 743 and 1089, provided us with a func-
tional snapshot of 65% and 62% of their proteomic pro-
file, respectively. Figure 6 shows the overlap and specific 
coverage of their metabolic pathways. Although the 
amount of B. vulgaris is lower than that of D. proteolyti-
cus (1:2), we found that folate cofactor production and 
phenylpropanoid synthesis are important within the 

Fig. 5 Functional pathways and genera relationships The phylum of each of the 29 microbial genera identified in the dataset is indicated as well 
as the functional subcategories grouped per KEGG pathway category
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marine bacterium. Proteins for the metabolism of several 
amino acids (Histidine, Tryptophane, Valine, Leucine, 
and Isoleucine) and proteases are specifically detected in 
D. proteolyticus, in line with the characteristics reported 
for this bacterium and reflected in the species epithet.

Finally, host-specific proteins were annotated within 
367 KEGG-level 2 pathways, with signal transduction 
standing out as one of the most densely populated path-
ways in terms of KO annotations. The depth of coverage 
reached 33% for ‘Endocrine and other factor-regulated 
calcium reabsorption’ (Table S6). In this dataset, despite 
having low coverage, pathways known to play a crucial 
role in microbiota-host interaction, such as that related 
to the immune system function, are highly informative.

Discussion
The Orbitrap Astral next-generation tandem mass spec-
trometer, recently released by Thermo, is based on Orbit-
rap technology, a new ion processor rectilinear trap 
developed to rapidly inject ions obtained after precursor 
fragmentation [5], and the powerful Astral multi-reflec-
tion analyzer. This last device incorporates multiple oscil-
lations between two electrostatic mirrors, resulting in a 
total flight length for secondary ions exceeding 30  m. 
Its performance consists of a mass resolving power of 

100,000 at the MS/MS scanning frequency of 200 Hz. The 
performance of this instrument has already been docu-
mented for various applications in human proteomics 
and for a simple mixture of peptides from three organ-
isms, where 14,000 proteins were reported for a 28-min 
gradient [6]. Here, we present for the first time the results 
obtained for a real-life metaproteomics sample. Although 
the peptide mixture obtained from a human fecal sample 
spiked with peptides from known bacteria is very com-
plex, the number of MS/MS scans over 60 min was over 
331 thousand in DDA mode, i.e. an average of 92 scans 
per second. The parameters used here were optimal for 
short gradients, but further optimization would definitely 
improve results for long gradients, for which more pep-
tide material could be used. This recorded dataset is of 
high quality, resulting in the identification of over 42,000 
unique peptides, but even better datasets were recorded 
in DIA mode, with the identification of over 122,000 
unique peptides in just 30  min. Information density is 
exceptionally high, with the size of the DDA 60 min and 
DIA 30 min raw files being ≈ 14 GB each. The three fold 
increase in unique peptides is not detrimental to the ratio 
of peptides per protein, indicating that the confidence 
in the DIA results should be in the same range as DDA 
results.

Fig. 6 Comparative KEGG metabolism landscape of B. vulgaris and D. proteolyticus. Colors distinguish the metabolic pathways shared 
between the two spiked bacteria and those specific to each
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The approach proposed here to take advantage of the 
large datasets recorded by the Orbitrap Astral tandem 
mass spectrometer is based on (i) a DDA survey of the 
sample to proteotype organisms without any a priori 
at the genus or species level using a generic database 
derived from the NCBInr database, (ii) the construction 
of a dedicated database representing, as far as possible, 
the organisms that contribute the most to protein bio-
mass, and (iii) the interpretation of large DIA datasets 
with a sample-specific database of limited size. Current 
strategies for interpreting DIA datasets based on large 
databases, such as metagenomic data acquired on the 
same sample [21] or a catalog dedicated to the gut micro-
biome such as MetaHit [22], face significant challenges 
due to the exceptionally large search space and computa-
tional limitations. The use of a peptide database gathering 
all peptides already identified in previous studies on the 
human gut microbiome is an interesting alternative that 
has recently been explored [23], but its a priori design 
may be detrimental to the characterization of atypical 
samples. Indeed, the two spiked bacteria used in the pre-
sent study, which were never reported in previous analy-
ses of the gut microbiome, would have been missed by 
conventional interpretation approaches. Here, proteotyp-
ing based on accurate and reliable taxonomic information 
derived from high-quality peptide sequences identifies 
the organisms present in the sample at genus, species, 
or even strain taxonomical ranks. This methodology has 
great potential for the rapid diagnostics of complex sam-
ples [3, 24], having the capacity to accurately estimate the 
biomass of each identified taxon [14]. It has been success-
fully applied to assess dysbiosis in the gut microbiome 
of COVID-19 patients [12], to identify keystone micro-
bial players in sentinel animals [25], or to determine the 
presence of pathogens on ancient human remains [26, 
27]. Tandem mass spectrometry proteotyping leads to a 
fine-grained taxonomy resolved metaproteomic strategy, 
as initially proposed for less complex samples [28]. Here, 
we constrained our proteotyping search to a subset of 
100,000 MS/MS spectra due to computational limits but 
obtained a similar landscape of organisms to select for 
database construction, regardless of the Orbitrap Astral 
dataset employed. Consequently, a quick Orbitrap Astral 
DDA survey of 15–20  min gradient would in principle 
be more than sufficient to rapidly create the customized 
database for the DIA interpretation. We are convinced 
that this two-stage approach is appropriate for the analy-
sis of such complex samples: (i) reliable taxonomic pro-
teotyping is used to select the most appropriate database, 
and then, (ii) classical proteomics interpretation is car-
ried out, each step being appropriately FDR-constrained. 
This procedure is by nature exactly the same as that 
used for classical proteomics: if a human or Escherichia 

coli sample is processed, the database chosen for inter-
pretation will be selected accordingly on the basis of the 
prior information available. Without prior knowledge, 
proteotyping will easily determine whether the sample 
contains human or enterobacterial proteins and the final 
database for proteomic interpretation will logically be 
customized. Although the database for metaproteomic 
interpretation of gut microbiome samples may not be 
comprehensive enough to encompass all protein variant 
sequences present in the sample, the strategy we propose 
is highly effective, as demonstrated in the present study. 
The results of such a strategy will be further strengthened 
in the near future as the number of genomes available 
in generalist databases increases over time. Certainly, 
the addition of a new interpretation dimension, such as 
de novo sequencing interpretation [29], error-tolerant 
searches, or searches for multiple post-translational 
modifications [30], to exploit the MS/MS signals that 
have not yet been assigned with the current strategy, will 
certainly benefit the results. However, the computational 
limitations of the corresponding software would need to 
be lifted in order to be applied to the very large DIA data-
sets acquired by the Orbitrap Astral instrument.

DIA data can also be interpreted with an experimen-
tal spectral library based on DDA data acquired on the 
same sample. However, several benchmark studies have 
revealed that interpretation of DIA data without a library 
gives better results than library-based strategies [31–33] 
or similar results [34]. Indeed, such a spectral library for 
metaproteomics datasets will only be partial for inter-
preting DIA results as the DDA dataset is far from com-
plete enough. Here, more specifically the parameters used 
for DDA acquisition in this study record more chimeric 
spectra than conventional parameters, thus compromis-
ing the result of the spectral library. Last, the unusual 
size of the dataset makes this strategy very demanding 
in terms of computing resources. Another alternative 
consists of generating a pseudo-spectral library directly 
from the DIA data to facilitate database construction 
[35], but pipelines have not been yet optimized for the 
Orbitrap Astral datasets. Clearly, it is of utmost impor-
tance to improve proteomic and metaproteomic soft-
ware for handling giant Astral datasets and benchmark 
all possible strategies within the metaproteomic initiative 
framework [36]. The DIA interpretation results obtained 
here, 122,087 peptide sequences on average for a 30-min 
of gradient on the MetaP reference sample, can be com-
pared favorably with results obtained very recently on 
similar biological material but with different instruments 
and parameters: 11,122 peptide sequences for a 90-min 
gradient [35], 49,224 peptide sequences for a 70-min gra-
dient [34], and 70,272 peptides for a 130-min gradient 
[37].
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The biomasses of the identified organisms estimated 
from the DDA and DIA datasets are relatively compa-
rable, while the former is estimated on the number of 
TSMs and the latter on precursor intensity. For example, 
the Balneola vulgaris bacterium added to MetaP stand-
ard to represent 1.0% of the total peptidome was esti-
mated at 1.0% and 1.1%, respectively. The Streptophyta 
(food) represented 9.9% and 8.2%, respectively. For the 
Deinococcus proteolyticus bacterium, the percentage of 
biomass is better measured with DIA results (3.4%) than 
with DDA results (5.2%). As we did not observe a signifi-
cant skew in terms of biomass between the two acquisi-
tion strategies, we concluded that the signals observed 
with both methods are far from random among the 
437,578 protein entries in the DB48 database and are reli-
able. In any case, further analysis of various instruments, 
experimental DIA parameters, and interpretation pipe-
lines could help the metaproteomics community to adopt 
DIA [2, 36]. Taking into account the intensity of protein 
standards or specific organisms added in known quanti-
ties to the sample as monitoring indicators is relevant for 
such an objective.

Based on the results reported here, DIA mode 
appears superior to DDA mode for microbiome anal-
ysis, as more peptides and proteins can be identi-
fied and quantified, as has already been established 
[37–39], providing more information on the biological 
pathways of the system. Here, we observed that even 
a bacterium added at 1% in the complex fecal matrix 
is well covered in terms of functional characterization 
with a single 30-min DIA Astral analysis. However, the 
average of 3.0 peptides per protein group obtained in 
this analysis, while higher than most current metapro-
teomics studies, indicates that the diversity of protein 
sequences and the dynamic range of abundance in 
fecal samples are huge. Random peptide sampling by 
the tandem mass spectrometer therefore still occurs, 
even with this new generation of tandem mass spec-
trometers, as previously predicted [3]. As a result, 
further analytical efforts should be made to achieve 
greater coverage of this type of sample. Indeed, micro-
biome samples can be so complex that they present 
interesting challenges in terms of chromatography, 
mass spectrometry, and informatics. In our view, these 
are invaluable samples for probing and comparing the 
performance of next-generation tandem mass spec-
trometers with MS/MS acquisition frequencies above 
200 Hz, which will most likely be developed and pro-
posed in the future.

In conclusion, we report, from a single sample, the 
identification and quantification of 44,204 protein 
groups in a 90-min DIA analysis with a controlled FDR 
search of 1%, a groundbreaking figure compared with 

all reports published to date on real-life metaprot-
eomic samples of which we are aware. This value is set 
to be much higher in the future, once specific optimi-
zations have been made at all stages of the analytical 
procedure. The ability to encompass more than 122,000 
unique peptides and 38,000 protein groups within a 
30-min DIA run, while maintaining a very good repeat-
ability across analytical runs, is also very promising. 
This specific record in terms of the number of peptides 
and proteins detected is futile in itself but allows us 
to glimpse the possibilities of metaproteomics for the 
future to tackle more complex challenges, such as con-
sequent cohorts of samples and improved functional 
depth. Ultimately, the Astral mass analyzer for highly 
complex samples brings metaproteomics closer to rou-
tine use in clinical diagnostics.
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