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Abstract 

Background Antibiotics notoriously perturb the gut microbiota. We treated healthy volunteers either with cefotax‑
ime or ceftriaxone for 3 days, and collected in each subject 12 faecal samples up to day 90. Using untargeted and tar‑
geted phenotypic and genotypic approaches, we studied the changes in the bacterial, phage and fungal compo‑
nents of the microbiota as well as the metabolome and the β‑lactamase activity of the stools. This allowed assessing 
their degrees of perturbation and resilience.

Results While only two subjects had detectable concentrations of antibiotics in their faeces, suggesting important 
antibiotic degradation in the gut, the intravenous treatment perturbed very significantly the bacterial and phage 
microbiota, as well as the composition of the metabolome. In contrast, treatment impact was relatively low 
on the fungal microbiota. At the end of the surveillance period, we found evidence of resilience across the gut sys‑
tem since most components returned to a state like the initial one, even if the structure of the bacterial microbiota 
changed and the dynamics of the different components over time were rarely correlated. The observed richness 
of the antibiotic resistance genes repertoire was significantly reduced up to day 30, while a significant increase 
in the relative abundance of β‑lactamase encoding genes was observed up to day 10, consistent with a concomitant 
increase in the β‑lactamase activity of the microbiota. The level of β‑lactamase activity at baseline was positively asso‑
ciated with the resilience of the metabolome content of the stools.
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Conclusions In healthy adults, antibiotics perturb many components of the microbiota, which return close 
to the baseline state within 30 days. These data suggest an important role of endogenous β‑lactamase‑producing 
anaerobes in protecting the functions of the microbiota by de‑activating the antibiotics reaching the colon.
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Background
The Human gut microbiome is composed of a variety 
of archaea, bacteria, viruses, fungi and protozoa, which 
have a complex relationship with their host, from mutu-
alism or commensalism to pathogenesis [1]. Although 
the bacterial microbiota is relatively stable over time in 
healthy subjects, several factors can modify its compo-
sition, including age, lifestyle [2, 3] or the use of medi-
cation such as antibiotics, which are often absorbed or 
excreted through the digestive tract [4]. Even after par-
enteral administration, a variable fraction of the admin-
istered dose is indeed eliminated via the biliary tract. The 
resulting impact on the gut microbiota varies according 
to the fractional intestinal elimination [5].

Antibiotics are known to disrupt the structure of the 
bacterial microbiota at different levels (from phyla to 
strains), and the resilience of the latter results in a par-
tial return to the pre-treatment state [6, 7]. Antibiotics 
induce selection for resistance in commensal and path-
ogenic bacteria, contributing to the dissemination of 
resistant bacterial strains in the environment [8, 9]. Given 
the high density and diversity of bacteria in the gut, it has 
been suggested that the gut plays a key role in the devel-
opment and spread of bacterial resistance to antibiotics 
[10]. In addition to bacteria, numerous bacterial viruses 
(bacteriophages or phages), fungi and protozoa are pre-
sent in the gut [11–13]. They may be indirectly affected 
by antibiotics, as competition for resources and preda-
tion leads to a complex network of interactions.

To evaluate the consequences of gut exposure to anti-
biotics, one must understand their long-term effects on 
healthy individuals. This avoids the interference of the 
effects of pathologies with the outcome of the bacteria-
antibiotic interactions. The study of this perturbation 
requires the investigation of the multiple components 
describing the complex gut system. This includes biotic 
variables such as the population of specific bacteria of 
interest (e.g. Enterobacterales that include many patho-
gens), bacterial predators (phages) [12] and competitors 
(fungi). Other key insights are obtained by the study of 
metabolites (small molecules < 1500 Da), which are inter-
mediate or end products of cell metabolism [14]. These 
metabolites are produced by the host, by the microor-
ganisms or external sources, and can be co-metabolised. 
From the broadest to the most specific, two classic exam-
ples of host-gut microbiome co-metabolism are (i) the 

biosynthesis of primary bile acids from cholesterol by 
the host and their subsequent deconjugation, dehydrox-
ylation, dehydrogenation and epimerisation by the gut 
microbiome [15], and (ii) the conversion of cholesterol 
into several microbial metabolites, of which coprostanol 
is by far the most important [16] influencing host choles-
terol level [17]. While most of these variables have been 
shown to be important in delineating the effect of antibi-
otics on the gut [18–20], there is a lack of understanding 
of how they are associated and interact.

We recently conducted the CEREMI clinical trial [21], 
a study including 22 healthy subjects to understand and 
compare the impact of two intravenous β-lactam anti-
biotics, ceftriaxone and cefotaxime, on the intestinal 
microbiota, following standard clinical doses adminis-
tered for 3 days. Our previous analysis of 16S rRNA gene 
sequences showed that both antibiotics had a marked 
impact on the composition of the gut microbiota, but no 
significant differences were observed between the two 
antibiotics, suggesting they have the same effects. Of 
note, only two subjects had detectable faecal concentra-
tions of antibiotics, suggesting antibiotic degradation by 
β-lactamases produced by anaerobes from the gut while 
they reach the colon [22]. Here, we analysed these stool 
samples to gain insights into the perturbation of the gut 
system at multiple levels. For this, we coupled shotgun 
sequencing methods, targeted and untargeted metabo-
lomics approaches with phenotypic and genotypic tar-
geted analyses of the faecal content. We focused on the 
bacterial, phage and fungal components of the com-
munity, along with the metabolite composition and 
β-lactamase activity of the stool content. We assessed 
the perturbations induced by both antibiotics and stud-
ied the correlations between them. The same analysis 
was performed for resilience, i.e. return to baseline state. 
We then evaluated whether the baseline microbiota sta-
tus is associated with protection from perturbation and/
or resilience following antibiotic administration. This 
revealed a comprehensive view of the impact of antibiot-
ics on the gut microbiota.

Results
A multi‑organism/multi‑omic study of the effect 
of antibiotics on the gut microbiota of healthy volunteers
We administered to 22 healthy volunteers a standard 
3-day course of intravenous β-lactam antibiotics partially 
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eliminated through the intestinal route (Fig. 1). We sam-
pled the stools of subjects (i) before (ii) during and (iii) 
after (up to day 90) the antibiotic treatment. We used 
different untargeted and targeted approaches to analyse 
phenotypic and genotypic characteristics of the bacterial, 
phage and fungal components of the microbiota, as well 
as the metabolic composition and β-lactamase content of 
the stools.

The variables obtained from these analyses were classi-
fied as high dimensional variables (metagenomic analy-
ses of the bacterial, phage and fungal microbiomes, and 
metabolome) or low dimensional variables (observed 
richness of the bacterial, phage and fungal microbiomes, 
observed richness of the Antibiotic resistance genes 
(ARGs) repertoire and metabolome, relative abundance 
of the β-lactamasome, total bacterial counts, β-lactamase 
activity, fungal and Candida albicans DNA levels, choles-
terol conversion into coprostanol and biliary acid trans-
formation rates, see Fig. 1).

Variability of the gut microbiota components 
before antibiotic treatment
We first studied the between and within subjects vari-
ability of low dimensional variables’ before antibiot-
ics administration (Table  1), using a linear mixed-effect 
model treating subjects as random effects.

Most variables had a higher variability between sub-
jects than within subjects. The bacterial microbiota 

appeared to be relatively stable within a subject, while 
the observed richness of the bacterial microbiome and 
counts of Enterobacterales had a variability of approxi-
mately 20% between subjects. In line with these obser-
vations, the phage microbiota, whose composition is 
expected to be related to that of the bacterial microbiota, 
had similar variability values.

Interestingly, the β-lactamasome abundance exhib-
ited a very small between-subject variability (4%), while 
the β-lactamase activity had a relatively high variabil-
ity (approximately 49%). The ARG repertoire was stable 
within individuals.

The fungal microbiota exhibited a high variability, espe-
cially within the subject. Overall, the specific metabolic 
functions of cholesterol conversion into coprostanol or 
biliary acid transformation had the highest variability, 
while the observed richness in chemical species was very 
stable both between and within subjects.

Differential perturbation of the gut microbiota 
by antibiotics
We then enquired about the perturbation that followed 
antibiotic administration. The gut microbiota of most 
individuals was significantly disrupted over the 30  days 
following antibiotic administration (Fig.  2 and Supple-
mentary Table S1). We found very few significant dif-
ferences between individuals treated with ceftriaxone or 
cefotaxime (Supplementary Table S2), suggesting similar 

Fig. 1 Design and sampling times of the CEREMI clinical trial. Systems depicted in red were classified as high dimensionality, and systems depicted 
in blue as low dimensionality
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effects of the two antibiotics. After correction for multi-
ple testing, no significant difference was observed (Sup-
plementary Table S2). This fits our previous analysis [21] 
and led us to analyse together the two groups of individ-
uals. The results of these analyses show that the impact 
of antibiotics differed markedly from one component to 
another (Supplementary Table S1).

Antibiotics do not affect fungi directly (Fig. 1J–M), but 
some fungal species might profit from the depletion of 
bacterial populations to proliferate. Punctual perturba-
tions in the fungal load were observed up to day 30, with 
a global increase in the fungal load after antibiotic treat-
ment (Fig.  1J). The concentration of C. albicans DNA 
was not significantly impacted at the studied timepoints 
(Fig.  1M and Supplementary Table S1) and antibiotic 
treatment had little impact on the variables describing 
the fungal microbiome structure. Notably, we found no 
effect of antibiotics on the structure nor on the observed 
richness of the fungal microbiome (Fig.  1L). Hence, the 
treatment seems to have had little impact on this com-
ponent of the gut, at least at the time points studied here.

In contrast, and as previously observed using 16S 
sequences [21], the bacterial microbiome was very 
perturbed (Fig.  1A–D). Although the bacterial counts 
showed only a slight decrease after antibiotic treatment, 
the observed richness of the bacterial microbiome was 

markedly decreased, and its structure was profoundly 
disrupted, with perturbation being still significant 
at day 90. Counts of Enterobacterales were signifi-
cantly reduced up to day 10, with a maximal reduction 
observed on day 4, just after the end of the antibiotic 
treatment (Fig. 1D). The observed richness of the phage 
microbiome also decreased following antibiotic treat-
ment, although the perturbation resolved earlier than 
for the bacterial microbiome (before day 10) (Fig.  1H, 
I). Hence, the bacterial fraction of the microbiome, and 
its viral predators, were very much affected by antibi-
otic treatment.

The lack of antibiotics in the faeces and the high per-
turbation observed in the bacterial fraction suggest 
antibiotics degradation in the gut. To analyse this, we 
searched for antibiotic-resistance genes in the bacterial 
genomes using mustard [23]. We found that among the 
19,061 antibiotic resistance determinants identified, 1823 
(9.6%) were genes encoding for β-lactamases. According 
to Ambler classification, they were distributed as follows: 
627 from class A, 463 from classes B1-B2, 463 from class 
B3, 181 from class C and 89 from class D. The observed 
richness of the ARGs repertoire was significantly reduced 
up to day 30 (Fig. 1E), while a significant increase in the 
relative abundance of β-lactamase encoding genes was 
observed up to day 10 (Fig.  1F), which was consistent 

Table 1 Variability of the studied gut microbiota and stool components before antibiotic treatment administration in the 22 healthy 
volunteers included in the CEREMI trial

n Number of subjects with available data, CV Coefficient of variation

Component n Mean Between subjects Within subjects

Standard 
deviation

CV (%) Standard 
deviation

CV (%)

Bacterial microbiota

 Bacterial counts  (log10 CFU/g) 22 11.3 0.19 1.7 0.14 1.2

 Bacterial microbiome richness (MGS/g) 22 269.7 64.69 24.0 16.01 5.9

 Enterobacterales counts  (log10 CFU/g) 22 7.5 1.37 18.3 1.00 13.3

Resistance

 Global resistome richness (copies/g) 22 820.1 159.50 19.5 69.75 8.5

 β‑lactamasome abundance  (log10) 22  − 0.8 0.03 3.8 0.02 2.5

 β‑lactamase activity  (log10 nmol/min.g) 22 1.2 0.59 49.2 0.20 16.7

Phage microbiota

 Phage microbiome richness (contigs/g) 21 1226.6 271.81 22.2 91.37 7.5

Fungal microbiota

 Fungal load  (log10) 21  − 5.2 0.72 13.9 1.27 24.4

 Fungal microbiome richness (fungal OTUs/g) 22 25.6 4.77 18.6 9.13 35.7

 C. albicans DNA concentration  (log10) 21  − 5.0 0.81 16.2 0.47 9.4

Metabolome

 Metabolome richness (chemical species/g) 22 1472.7  < 0.01 0.0 98.85 6.7

 Cholesterol conversion rate  (log10) 22  − 0.6 1.03 171.7 0.49 81.7

 Bile acids transformation capacity  (log10) 22  − 0.1 0.09 90.0 0.06 60.0
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Fig. 2 Evolution of the gut microbiota and stool components over time in the 22 healthy volunteers included in the CEREMI trial. For ‘low 
dimensionality’ systems, the log10 fold changes from baseline are presented (except for variables relative to the system’s richness which were 
not transformed), whereas for ‘high‑dimensionality’ systems we depicted the normalised distance from baseline. In each graph, the x‑axis indicates 
the time following antibiotic administration, whereas the y‑axis corresponds to the change or distance from baseline (positive and/or negative) 
with the unit in brackets. Each individual is represented by a line with a specific color. Cholesterol conv. rate, Cholesterol conversion rate; BA, Bile 
acids; rel., relative
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with an increase in the β-lactamase activity of the micro-
biota and the lack of antibiotics in faeces (Fig. 1G).

Overall, these results indicate very different levels of 
perturbation caused by antibiotics on the components 
of the gut microbiota. This resulted in a minimal per-
turbation of the metabolome observed richness, whose 
composition was however profoundly disrupted and 
was still far from the initial state at day 90. Functions 
of the microbiota, such as the conversion rate of cho-
lesterol into coprostanol and the capacity of the micro-
biota to transform primary bile acids into secondary bile 
acids, were temporarily reduced but seemed to return to 
baseline within 10  days (Supplementary Table S1). This 
suggests that despite a long-term perturbation of the 
structure of the microbiota and its biochemical composi-
tion, the functions of the microbiota are not lost and can 
be restored quickly following exposure to antibiotics. The 
same results were observed after correction for multiple 
testing (Supplementary Table S1).

Correlation between maximal perturbations 
of the different gut microbiota components
To understand the relationship between each compo-
nent’s perturbation following antibiotic exposure, we 
computed for each sample and at each sampling time a 
distance from the baseline to trace the evolution of the 
components over time. This distance was normalised by 
pre-treatment values to allow for comparisons between 
individuals and between variables. We defined the maxi-
mal perturbation as the maximal distance from baseline 
observed up to day 10. We then studied the correlations 
of these distances across variables to identify groups of 
variables that show similar patterns of perturbation. 
Among the 136 pairwise correlations, 16 (11.8%) were 
found to be statistically significant, even if their mag-
nitude was moderate (maximal absolute value of 0.71) 
(Fig. 3A, and Supplementary Table S3). A cluster of sig-
nificant positive correlations was observed between the 
maximal perturbations of the bacterial counts, bacterial 
microbiome observed richness and global ARGs reper-
toire observed richness. It was also positively correlated 
with the β-lactamasome abundance and the β-lactamase 
activity, although in these cases the values were not sig-
nificant. This confirms the association between the 
level of perturbation in the bacterial component of the 
microbiota and that of antibiotic-resistance genes in the 
bacteria.

One might have expected an association between the 
maximal perturbation in the phage fraction of the micro-
biome and other variables, especially those associated 
with the bacterial composition. Intriguingly, more pro-
nounced changes in the bacterial counts were signifi-
cantly associated with a less pronounced perturbation in 

phage observed richness, i.e. when the bacterial counts 
decreased to a greater extent, we observed a lower 
change in the number of different phage contigs. One 
possibility is that phage induction by antibiotics, which 
has been described even at sub-inhibitory concentrations 
[24, 25], has a role in bacterial mortality that stabilises the 
absolute number of phages. If so, the expected decrease 
in phage associated with the decrease in bacterial popu-
lations by the action of antibiotics would be compensated 
by increased induction rates of the prophages, which 
would amplify bacterial death rates.

As expected, the maximal perturbation of the metabo-
lome was correlated to the maximal perturbation of the 
cholesterol conversion rate into coprostanol, the bile acid 
transformation capacity, and the bacterial microbiome 
structure. Interestingly, the perturbation of the bile acid 
transformation capacity was correlated with the level of 
perturbation of the structure of all studied components, 
i.e. bacterial, phage and fungal.

Finally, we found no significant perturbation in the 
observed richness or the structure of the fungal micro-
biome. Accordingly, it was not correlated with the other 
perturbations. However, the maximal perturbation of 
the fungal load was negatively correlated with that of 
the total bacterial counts, suggesting a direct inverse 
association between perturbations at the bacterial and 
fungal scales. Hence, fungi thrive when bacterial popula-
tions are rarefied by antibiotics, which seems to leave the 
structure and observed richness of their population rela-
tively unchanged. The abundance of fungi increases and 
is associated with significant changes in the metabolic 
functions of the microbiota.

In a sensitivity analysis accounting for the false dis-
covery rate, the only correlation that remained sig-
nificant was that between the perturbation of the 
metabolome structure and the cholesterol conversion 
rate (Supplementary Table S3).

Correlation between resilience of the different gut 
microbiota components
Once perturbations subside, systems may return to a sit-
uation close to the initial one, which we refer to as resil-
ience. For the analysis of resilience, we computed for each 
variable the minimal normalised distance from baseline 
observed on the samples collected between day 15 and 
day 90. We then made correlations across all variables 
as described above for perturbations. Overall, 7 (5.1%) 
of the 136 pairwise correlations were statistically signifi-
cant, and all with a moderate magnitude (maximal abso-
lute value of 0.55) (Fig. 3B and Supplementary Table S4). 
We found a cluster of positive correlations between the 
resilience of the bacterial microbiome observed richness 
and structure, of the β-lactamasome, of the β-lactamase 
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activity, and of the bacterial counts. Even if only some 
pairwise correlations between these systems were sig-
nificant, this suggests the existence of a group of vari-
ables with similar patterns of resilience associated with 
bacterial composition and protection from the agents 
producing the perturbation (antibiotics). Although their 
functional profile has not been established, the reported 
diversity of intestinal β-lactamases from bacterial species 
belonging to various phyla supports this assumption [23]. 

The resilience of the structure of the phage microbiome 
was also correlated with that of the bacterial microbiome, 
suggesting a tight association between the mechanisms 
of recovery of both variables. This may be caused by the 
arrest of prophage induction shortly after the end of anti-
biotic treatment, which would tightly link the recoveries 
of the populations of phages and bacteria.

In a sensitivity analysis accounting for the false discov-
ery rate, no significant correlation was observed between 

Fig. 3 Correlograms of the maximal perturbations (A) and maximal resilience (B) of studied gut microbiota and stool components in the 22 healthy 
volunteers included in the CEREMI trial. The color intensity of the squares indicates the level of the Spearman correlation coefficient. Stars indicate 
a statistically significant Spearman’s correlation coefficient. Conc., concentration; Cholesterol conv. rate, Cholesterol conversion rate; BA transf. 
Capacity, Bile acids transformation capacity
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the resiliences of the various parts of the microbiome 
(Supplementary Table S4).

Relationship between baseline composition, maximal 
perturbation and resilience of the gut microbiota 
components
One would expect an increase in the frequency of anti-
biotic-resistance genes in bacteria following exposure to 
antibiotics because those encoding them are more likely 
to survive. Indeed, the content in antibiotic-resistance 
conferring genes was disrupted, with an increase of 
genes encoding for β-lactamases, even if this was also 
associated with a decrease of other ARGs (Fig. 2). These 
changes were followed by a significant increase in the 
β-lactamase activity of the microbiota.

We then set out to evaluate how the initial state of the 
microbiota, including its content in β-lactamases encod-
ing genes, might influence the antibiotic-induced per-
turbations. For this, we investigated the correlations 
between the initial composition of the gut microbiota 
(using the untransformed values of each variable at base-
line) and the maximal perturbation of the variable among 
the 22 sampled volunteers, measured by the normalised 
distances from baseline. We observed few significant 

correlations and they had moderate absolute magni-
tudes (Fig.  4A). In particular, the relative abundance of 
β-lactamase encoding genes or the β-lactamase activ-
ity was not significantly associated with a reduction in 
the level of perturbation of any of the studied systems. 
This suggests that the baseline level in β-lactamases of 
the microbiota does not limit the perturbation induced 
by antibiotics. For reasons that are unclear at this stage, 
the perturbation of the cholesterol conversion rate into 
coprostanol was higher when the observed richness of the 
global ARGs repertoire at baseline was high. This might 
be an indirect effect due to the relation between the ARG 
repertoire and the bacterial microbiome. More expect-
edly, when the observed richness of resistance genes at 
the baseline was high, the increase in the frequency of 
C. albicans was lower. This suggests that bacteria more 
resistant to antibiotics could provide fewer niches for the 
expansion of the populations of C. albicans.

However, in a sensitivity analysis accounting for 
the false discovery rate, no significant correlation was 
observed between the baseline composition of the micro-
biome and its maximal perturbation (Supplementary 
Table S5).

Fig. 4 Relationship between the baseline characteristics and the maximal perturbations (A) and maximal resilience (B) of the studied gut 
microbiota and gut components in the 22 healthy volunteers included in the CEREMI trial. Baseline characteristics of the intestinal microbiota 
are presented in the top horizontal axis, while the maximal perturbations or resilience are presented in the left vertical axis. For the correlation 
between the baseline characteristics of the intestinal microbiota and the maximal perturbations, a positive correlation is interpreted as an increase 
in the level of perturbation when the baseline characteristic increases. For the correlation between the baseline characteristics of the intestinal 
microbiota and the maximal resilience, a negative correlation is interpreted as an increase in the level of resilience when the baseline characteristic 
increases. The colour intensity of the squares indicates the level of the Spearman correlation coefficient. Stars indicate a statistically significant 
Spearman’s correlation coefficient. Conc., concentration; Cholesterol conv. rate, Cholesterol conversion rate; BA transf. capacity, Bile acids 
transformation capacity
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The same type of analysis was performed to study the 
correlation between the initial composition of the gut 
microbiota and the maximal resilience of the gut compo-
nents (Fig. 4B). We observed that the level of β-lactamase 
activity at baseline, but not that of the relative abundance 
of β-lactamase encoding genes, was positively corre-
lated with the resilience of the bacterial microbiome and 
metabolome structures. The counts of Enterobacterales 
at baseline were negatively correlated with the resil-
ience of the fungal microbiome observed richness. We 
also observed a cluster of correlations between variables 
associated with fungi: the baseline values of the fungal 
load, of the fungal microbiome observed richness and of 
the C. albicans DNA concentration and the resilience of 
the fungal load and C. albicans DNA concentration. This 
suggests that a complex and rich fungal microbiota might 
facilitate its restauration after a perturbation.

Of note, in a sensitivity analysis accounting for the false 
discovery rate, no significant correlation was observed 
between the baseline composition of the microbiome and 
its resilience (Supplementary Table S6).

A focus on the rare subjects with antibiotics in the faeces
Ceftriaxone and cefotaxime are excreted in part through 
the intestinal route, which explains the perturbations 
found in this study, but only 2 of the 22 included subjects 
had detectable levels of antibiotics in faeces [21]. This is 
probably related to the ability of β-lactamases produced 
by bacteria from the gut to hydrolyse β-lactam antibiotics 
in the faecal content [26, 27].

The two subjects who had detectable beta-lactam 
residues in the faeces, subject #16 (from the ceftriaxone 
treatment group) had detectable concentrations between 
days 2 and 7 ranging between 5.0  µg/g and 93.7  µg/g 
while subject #3 (from the cefotaxime treatment group) 
had detectable concentrations of cefotaxime in faeces 
at day 4 (1.6  µg/g). Of note, both showed no detect-
able β-lactamase activity at baseline (Supplementary 
Table S7). These subjects also had among the lowest bac-
terial observed richness before antibiotic treatment, with 
a particularly low observed richness in resistance-confer-
ring genes. Intriguingly, their β-lactamasome was among 
the most abundant among the study participants, sug-
gesting that these abundant antibiotic-resistance genes 
were either not expressed or non-functional.

These two subjects exhibited different levels of pertur-
bation following antibiotic treatment: despite the absence 
of β-lactamase activity at baseline, subject #3 was among 
those with the least altered gut microbiota, while subject 
#16 was among those with the most disrupted (Supple-
mentary Figure  S1). The analysis of these two subjects 

suggests that outcomes of antibiotic therapies can be 
quite variable and sometimes unexpected.

Discussion
Here, we evaluated the impact of a short course of com-
monly used antibiotics in the hospital on the gut micro-
biota from healthy volunteers who had not been exposed 
to antibiotics for an extended period. We assessed this 
impact from several perspectives, analysing over 90 days 
the population dynamics of microorganisms, the antibi-
otic-resistance determinants, and some key metabolic 
functions, either using high throughput untargeted 
approaches or targeted tools. In the present report, we 
focused on global analysis, and an in-depth analysis of 
individual components will be presented elsewhere.

We observed that the dynamics of disturbance over 
time, followed by those of resilience, are correlated for 
only a small part of the studied components. This indi-
cates that, although gut microbiota can be considered as 
a network of interactions, some features are behaving in a 
similar way whereas others are not.

As expected, we observed that bacterial and phage 
population structures were quickly disrupted, as were 
the bacterial counts. Return to baseline composition after 
antibiotic exposure has been found to range from a few 
weeks to months, according to the type of exposure and 
the methodology used to qualify the microbiota compo-
sition [7, 21, 28]. The effect of antibiotics on the bacterial 
populations of the gut microbiota has long been known 
[29, 30], yet the interest in the Human gut phage popula-
tion is more recent, and the existence of a characteristic 
healthy gut phage population has recently been suggested 
[31]. A few studies investigated the disruption of the 
phage population following antibiotic administration [32, 
33]. Here, we confirmed this disruption and the progres-
sive return to a baseline state. Yet, contrary to a recent 
study where patients were treated against Helicobacter 
pylori and recovery of the phage community was slower 
than that of the bacteria [34], here this return occurred 
before that of the bacterial microbiome. The reasons for 
this difference are unclear, but could be due to differences 
in length and type of therapy, our sampling of many more 
time points, or the differences between healthy and other 
individuals. The faster stabilisation of the population of 
phages suggests than re-colonisation of the gut by bacte-
ria may be affected by existing phage composition.

The changes in the frequency of antibiotic-resist-
ance genes are particularly interesting to understand 
the impact of antibiotics in the promotion of resist-
ant bacteria and/or the protection of the microbiota. 
We observed variations in the repertoire of antibiotic-
resistance genes, and in particular at day 4 a decrease 
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of the observed global ARGs repertoire richness simul-
taneous with an increase of the relative abundance of 
β-lactamase encoding genes and the β-lactamase activ-
ity. This is coherent with previous findings following 
the administration of a cocktail of 3 broad-spectrum 
antibiotics (meropenem, gentamicin, and vancomy-
cin) [7]. Likely, these variations are due to the loss of 
bacteria that encode ARGs other than β-lactamase and 
the persistence of bacteria that do encode β-lactamase. 
Intriguingly, the changes in the abundance of β-lactam 
resistance genes or β-lactamase activity were not asso-
ciated with the changes observed in the bacterial com-
ponent of the microbiota. It was however associated 
with an increased resilience of the metabolomic content 
of the microbiota, suggesting that the functional resil-
ience of the microbiota following antibiotic-induced 
perturbation might be enhanced by β-lactamases pro-
duced by bacteria in the gut. A recent study of healthy 
volunteers receiving widely prescribed antibiotics (cip-
rofloxacin, clindamycin, minocycline and amoxicil-
lin) showed minimal microbiome perturbance under 
the β-lactam amoxicillin [35], in agreement with our 
hypothesis.

Although the abundance of fungi increased after anti-
biotic exposure, the structure of the fungal microbi-
ome was not strongly affected and we could not detect 
any changes in C. albicans DNA levels after antibiot-
ics administration at the studied timepoints. A more 
detailed analysis of the mycobiota conducted by our 
group on the 22 subjects suggested that C. albicans lev-
els increased immediately after antibiotic administration 
in some subjects, this increase being subject-depend-
ant and relying largely on the variations in β-lactamase 
activity observed after the antibiotic treatment [36]. The 
perturbation of the fungal load and C. albicans DNA 
levels after antibiotics was previously reported in mice, 
where the fungal burden was increased after bacterial 
elimination by antibiotics [37]. Furthermore, antibiot-
ics are required to allow C. albicans gut colonisation in 
mice [38]. These results suggest that C. albicans growth 
could be efficiently prevented by specific bacteria resid-
ing in the human gut [39]. The decrease of specific bacte-
rial populations induced by antibiotics would then open 
the way for the overgrowth of C. albicans. In agreement 
with this hypothesis, we observed that the perturbation 
of C. albicans DNA level was negatively correlated with 
the bacterial microbiome observed richness at baseline. 
Hence, the lack of diversity in the bacterial fraction and 
antibiotics favors the expansion of C. albicans.

Alterations of the faecal metabolome structure fol-
lowed the trends observed for bile acid and sterol profiles. 
Disruption of both faecal bile acid and cholesterol metab-
olisms by antibiotics was previously reported [40, 41]. In 

particular, this led to an enrichment of faecal cholesterol 
and primary conjugated bile acids and the loss of copros-
tanol and secondary bile acids [42]. Of interest, this study 
found a particularly weak correlation between the largest 
perturbations observed in ‘BA conversion capacity’ and 
‘cholesterol conversion rate’. This intriguing observation 
raises the possibility that these fundamental processes 
controlled by bile salt hydrolase and cholesterol reduc-
tase are actually controlled by bacterial strains acting 
independently. This longitudinal dataset also confirmed 
the established association between bile salt hydrolase 
and bacterial microbiome structure, illustrated by a clear 
correlation between perturbations in ‘bile acid conver-
sion capacity’ and changes in the structure of bacterial 
populations. This dataset also reveals complex interre-
lationships between these complex ecological dynamics 
of bacterial, fungal, and phage structures and their bile 
acid hydrolysis capacity, which represents a new area of 
investigation.

These observations should be tempered by the fact that, 
after correction for multiple tests, most of the associa-
tions observed were not significant. This could be linked 
to a lack of power, as the CEREMI trial was not designed 
for such precise analysis at the metagenomic level.

However, our data suggest collectively that metabo-
lomic signatures following antibiotic treatment are 
primarily related to the dynamics of disruption of gut-
resident structures (microbiome, phage, and fungi) over 
time rather than the dynamics of their recovery, con-
sistent with their cellular or viral origins. Moreover, the 
baseline characteristics of metabolomic features may 
determine the maximal disruption of the ARGs reper-
toire observed richness and β-lactamasome abundance 
revealing potential inter-domain connection.

Conclusions
Antibiotics affect multiple aspects of the gut microbiota 
and stool composition of healthy individuals. This leads 
to a change in the metabolites present in the gut, and 
noticeably of cholesterol and bile acids. However, the per-
turbation of the system does not irreversibly change it. 
Instead, we observed resilience at 30 days, and a positive 
relationship between the baseline levels of β-lactamase 
activity in the gut and the structure of the metabolome.

These data indicate that a normal microbiota is able 
to absorb the antibiotic stress, probably thanks to the 
β-lactamasome of anaerobes [23]. This underlines their 
importance in protecting the functions of the microbiota 
against the deleterious effects of antibiotics and paves 
the way for the use of either cephalosporinases released 
in the colon by Bacteroides sp [27] or powerful antibiotic 
adsorbent acting in the late ileum as activated charcoal 
[28] to combat antibiotic-induced microbial dysbiosis.
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Methods and materials
Study population and sample collection
We analysed the samples collected during the CEREMI 
trial (ClinicalTrials.gov identifier NCT02659033), a pro-
spective, randomised open-label clinical trial conducted 
at the Clinical Investigation Center of the Bichat-Claude 
Bernard Hospital (Paris, France) from March 2016 to 
August 2017. The trial was sponsored by Assistance 
Publique-Hȏpitaux de Paris and approved by French 
Health Authorities and by the Independent Ethics Com-
mittee Ȋle-de-France-1. All procedures were conducted 
in compliance with good clinical practice and the Dec-
laration of Helsinki. Full details of the trial have been 
reported elsewhere [21].

Briefly, healthy volunteers of both genders aged 
between 18 and 65 years old without exposure to antibi-
otics in the preceding 3 months nor a history of hospitali-
sation in the last 6  months were prospectively included 
after obtention of their informed consent. A total of 22 
healthy volunteers were randomly assigned (1:1 ratio) 
to receive for 3 days either 1 g of ceftriaxone once a day 
(n = 11) or 1  g of cefotaxime three times a day (n = 11). 
Antibiotic treatment was administered as 30-min intra-
venous infusions. For each volunteer, 12 faecal samples 
were collected (Fig. 1): before the beginning of treatment 
at days − 15, − 7 and − 1; every day during treatment at 
days 1, 2 and 3, and after the end of treatment at days 4, 7, 
10, 15, 30 and 90.

Bacterial counts
Sample collected at days 15, − 1, 4, 10 and 30 were ana-
lysed to determine the total bacterial counts (Fig. 1). Ali-
quots containing 200 mg of faeces were diluted 200,000 
times in a physiological solution (8.5 g/L NaCl). Samples 
were filtered for debris removal from faecal solutions 
using a sterile syringe filter (pore size 5 μm; Sartorius Ste-
dim Biotech GmbH, Göttingen, Germany). Then, 1 mL of 
the microbial cell suspension obtained was stained with 
1 μL SYBR Green I (1:100 dilution in dimethylsulfoxide; 
shaded 15  min incubation at 37  °C; 10,000 concentrate, 
Thermo Fisher Scientific, Waltham, MA, USA). The 
flow cytometry analysis of the microbial cells present in 
the suspension was performed using a C6 Fortessa flow 
cytometer (BD Biosciences, Franklin Lakes, NJ, USA). 
Fluorescence events were monitored using the FITC fil-
ter 505LP 530/30 nm and perCP filter 635LP 695/40 nm 
optical detectors. Forward and sideways-scattered light 
was also collected. The BD Accuri CFlow software was 
used to the gate and separate the microbial fluorescence 
events on the FL1–FL3 density plot from the faecal sam-
ple background. A threshold value of 200 was applied to 
FSC/SSC light. The gated fluorescence events were evalu-
ated on the forward–sideways density plot, to exclude 

remaining background events and to obtain an accurate 
microbial cell count.

Metagenomic analysis of the bacterial microbiome
All samples were analysed through shotgun sequencing 
for bacterial microbiome analysis.

DNA extraction of stool samples and shotgun sequencing
DNA extraction from aliquots of all faecal samples was 
performed following IHMS SOP P7 V2 (Fig. 1) [43]. DNA 
was quantitated using Qubit Fluorometric Quantitation 
(ThermoFisher Scientific, Waltham, MA, USA) and qual-
ified using DNA size profiling on a Fragment Analyzer 
(Agilent Technologies, Santa Clara, CA, USA). Three 
µg of high molecular weight DNA (> 10  kbp) was used 
to build the library. Shearing of DNA into fragments of 
approximately 150 bp was performed using an ultrasoni-
cator (Covaris, Woburn, MA, USA) and DNA fragment 
library construction was performed using the Ion Plus 
Fragment Library and Ion Xpress Barcode Adapters Kits 
(ThermoFisher Scientific, Waltham, MA, USA). Purified 
and amplified DNA fragment libraries were sequenced 
using the Ion Proton Sequencer (ThermoFisher Scien-
tific, Waltham, MA, USA), generating 22.2 ± 1.8 million 
reads of 150 bp (on average) per sample.

Microbial gene count table
To create the gene count table, the METEOR software 
was used [44]: first, reads were filtered for low quality by 
AlienTrimmer [45]. Reads that aligned with the human 
genome (identity > 95%) were also discarded. The remain-
ing reads were trimmed to 80 bases and aligned to the 
Integrated Gut Catalogue 2 (IGC2) [46] with a mapping 
rate of 81.5 ± 6%, comprising 10.4 million genes, using 
Bowtie2 [47]. The unique mapped reads (reads mapped 
to a unique gene in the catalogue) were attributed to 
their corresponding genes. The shared reads (reads that 
mapped with the same alignment score to multiple genes 
in the catalogue) were attributed according to the ratio of 
their unique mapping counts of the captured genes. The 
resulting count table was further processed using the R 
package MetaOMineR v1.31 [48]. To decrease technical 
bias due to different sequencing depths and avoid any 
artifacts of sample size on low-abundance genes, read 
counts were ‘rarefied’ using 20  M high-quality reads (a 
threshold chosen to include all samples) using a random 
sampling procedure without replacement. The downsized 
matrix was finally normalised dividing gene read counts 
per gene length × 100, as a proxy of gene coverage. Since 
gut microbiota has been found to be enriched in spe-
cies from the oral cavity upon antibiotic treatment [49], 
and in order to improve the metagenomes annotation, 
the same process was repeated on an oral microbiota 
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catalogue of 8.4 million genes [50]. Counts matrix were 
then merged to get a single matrix.

Metagenomic Species (MGS) profiles
The IGC2 and the oral catalogues were organised into 
1990 and 853 Metagenomic Species (MGS, cluster of co-
abundant genes), respectively, using MSPminer [50–52]. 
After removing duplicated MGS (i.e. MGS present in 
both catalogues), we were left with 2741 MGS. The rela-
tive abundance of an MGS was computed as the mean 
abundance of its 100 ‘marker’ genes (that is, the genes 
that correlate the most altogether). If less than 10% of 
‘marker’ genes were seen in a sample, the abundance 
of the MGS was set to 0. MGS abundance profiles were 
finally normalised to estimate the proportion of each spe-
cies in the microbiota (sum of all species abundance = 1).

Bacterial microbiome observed richness of each sam-
ple was evaluated as the number of unique species (MGS) 
identified. Bacterial microbiome structure is evaluated 
according to species abundance.

Determination of the Enterobacterales counts
During the CEREMI trial, faecal samples from all volun-
teers (Fig. 1) were stored at 4 °C after emission and trans-
mitted to the bacteriology laboratory after blinding. One 
hundred milligrams of faeces were suspended in 1 mL of 
the brain–heart infusion broth containing 30% glycerol 
and stored at – 80 °C. Enterobacterales were counted by 
plating serial dilutions of broth on Drigalski agar (bioMé-
rieux, Marcy-l’Etoile, France).

Determination of the ARGs repertoire and β‑lactamasome
The IGC2 and the oral catalogues were annotated for 
the Antibiotic Resistant Determinants (ARD) using a 
two-step approach. First, potential ARD homologs were 
selected among catalogue genes using BLASTP against 
Mustard antibiotic resistance determinant database 
(http:// www. mgps. eu/ Musta rd) [23]. Genes with ≥ 50% 
identity for ≥ 90% alignment coverage were selected and 
tested using pairwise comparative modelling (PCM), 
a 3-dimensional modelling-based approach [23]. This 
allowed the identification of a non-redundant list of 
19,061 ARD from 21 families of which 5 beta-lactamase 
families: 627 blaA genes, 463 blaB1, 463 blaB3, 181 blaC 
and 89 blaD.

The observed richness of the ARGs repertoire, refer-
ring to genes mapping to one of the identified antibiotic-
resistant determinants, was evaluated as the number of 
copies of genes mapping to one of the identified ARD. 
The relative abundance of the β-lactamasome was com-
puted as the proportion of copies of genes mapping to 

any beta-lactamase family among all copies of genes 
mapping to one of the identified ARD.

Determination of the β‑lactamase activity
Β-lactamase activity of the faecal content was analysed 
in all samples (Fig.  1). For extraction of faeces, samples 
(stored at − 65 °C) were thawed on ice for 30 min, where 
after 140–380 mg of faeces material was transferred to a 
2-ml Eppendorf tube by means of a spatula. Ice-cold HZn 
buffer (50  mM (2-hydroxyethyl)-1-piperazineethanesul-
fonic acid (HEPES) buffer, pH 7.5, supplemented with 
50  μM  ZnSO4) was then added to obtain samples con-
taining 0.2  g faeces/mL. Samples were briefly mixed by 
means of vortexing and incubated horizontally for 1  h 
under mild agitation. Sample were clarified by two cen-
trifugation steps of 15  min and 30  min (4  °C), respec-
tively, in which the supernatant was transferred to a new 
2-ml Eppendorf or finally 1.5-ml screw-cap tube.

Assays for determination of β-lactamase activity were 
performed in HZn buffer using 3–20 µL of freshly clari-
fied faeces sample kept at 4  °C. Reactions were carried 
out in a final volume of 200  µL with 100  µM nitrocefin 
(Cayman Chemical Company, Ann Arbor, MI, USA). 
In the first assay, 10 µL of the sample was tested for the 
hydrolysis activity of nitrocefin. This assay was, subse-
quently, repeated with an adjusted sample volume if nec-
essary. Assays were performed in 96-well microplates 
(SpectraPlate-96, PerkinElmer, Waltham, MA, USA) 
using an automated liquid handling Janus Integrator sys-
tem (PerkinElmer, Waltham, MA, USA) and nitrocefin 
hydrolysis was monitored spectrophotometrically at a 
wavelength of 482 nm (EnVision microplate reader, Perki-
nElmer, Waltham, MA, USA). All assays always included 
a buffer control to assess substrate stability.

Metagenomic analysis of the phage microbiome
The phage microbiome was analysed in samples collected 
at days 15, − 1, 4, 10 and 30 (Fig. 1). Phage isolation was 
performed using a polyethylene glycol (PEG) concentra-
tion step, as previously recommended [53]. One gram of 
faecal samples was weighed and homogenised in 40 mL 
of phosphate-buffered saline (PBS) (Sigma-Aldrich, 
Saint-Louis, MO, USA). The sample was then agitated 
with a mechanic laboratory agitator for 1 h at 4 °C, cen-
trifuged at 17,000 × g for 5 min and the supernatant was 
filtered at 2 µm and 0.45 µm. Phages were then concen-
trated using PEG. One molar solid NaCl and 10% (v/v) 
PEG 8000 (Sigma-Aldrich, Saint-Louis, MO, USA) were 
dissolved into the filtered culture fluid and incubated 
overnight at 4  °C as recommended for a constant and 
stable precipitation. The solutions with the phages were 
pelleted by centrifugation at 5250 × g for 1 h at 4 °C and 
re-suspended in 500  µL of SM buffer (NaCl 100  mM, 

http://www.mgps.eu/Mustard


Page 13 of 19d’Humières et al. Microbiome           (2024) 12:50  

MgSO4.7H2O 8  mM, Tris–Cl 50  mM). Samples were 
treated with 10  U/ml of DNAse (Sigma-Aldrich, Saint-
Louis, MO, USA) for 30 min at 37 °C followed by 10 min 
at 65  °C to stop the reaction. DNA was then extracted 
using the commercial kit “Phage DNA extraction” (Nor-
gen Biotek Corp., Thorold, ON, Canada). DNA was puri-
fied on a sephadex column (Sigma-Aldrich, Saint-Louis, 
MO, USA), measured with Qubit dsDNA HS Assay kit 
(ThermoFisher Scientific, Waltham, MA, USA), and 
sequenced with the Illumina HiSeq2500 PE_250 bases 
method using the Kit Nextera XT with an input of 1 ng 
DNA. The sequence reads of the six samples of the same 
volunteers were pooled. They were trimmed to remove 
the Illumina adapters and remove low-quality reads using 
Atropos (v1.1.18) [54] with parameters: atropos trim -m 
100 –q 20,20 –trim-n. The resulting reads were assem-
bled using SPAdes 3.15.2 [55] with the metaviralSPAdes 
mode. At this step, we obtained 22 pools of contigs (1 
pool per volunteer). Gene prediction was made using 
Prodigal (v2.6.3) [56] with –p meta option. We excluded 
genes lacking start and stop codons. In order to focus our 
analysis on contigs sufficiently large to study genetic con-
texts, we excluded contigs with less than 3 open reading 
frames (ORFs).

In order to create a non-redundant catalogue of con-
tigs, the 22 pools of contigs were concatenated and clus-
tered with cd-hit-est (v4.8.1) [57]. The sequence identity 
threshold was 0.95, the alignment must cover 90% of the 
shorter sequence and a sequence was clustered into the 
most similar cluster that meets the threshold. We used 
viralVerify 1.1 [55] to classify the non-redundant contigs 
as viral or non-viral, and only viral contig were selected 
for further analysis. Then, we mapped each sample read 
on the “viral non-redundant contigs catalog” using bow-
tie2 (v2.4.2 –local –very-fast-local options) [47] and 
exploited SAM files with samtools (v1.3.1 with the fol-
lowing commands: views, sort, index, idxstat) [58]. As a 
result, we obtained a matrix (matrix count) representing 
the number of reads of a sample (columns) mapping each 
contig reference catalog (rows) in the dataset. All the 
matrix counts were rarefied at 3 003 762 reads with the 
“rarefy” function of the vegan package in R [59].

The phage microbiome observed richness was com-
puted as the number of phage contigs identified in each 
sample.

Determination of fungal load and Candida albicans DNA 
concentration
The fungal loads and Candida albicans DNA concentra-
tion were analysed in all available samples. For each fae-
cal sample, 250  mg were processed using the repeated 
bead beating plus column protocol described elsewhere 
[60] (Fig.  1). A FastPrep-24™ device (MP Biomedicals, 

Santa Ana, CA, USA) was used instead of a Mini-Bead-
beaterTM. Faecal DNA levels were quantified with the 
Qubit dsDNA Broad Range Kit (Invitrogen, Waltham, 
MA, USA), and only samples with a concentration above 
50 ng/μL were considered in the analysis.

A TaqMan qPCR protocol, using a double dye MGB 5′ 
6-FAM-labelled probe (Eurogentec, Seraing, Belgium), 
with the following conditions: 2 min at 50 °C, 10 min at 
95 °C, 15 s at 95 °C and 1 min at 65 °C, the last two steps 
repeated for 45 cycles, was used to measure fungal DNA 
levels [61]. Samples were processed in two sets of dupli-
cates, in two independent rounds. The fungal load was 
estimated for each sample as the ratio of the fungal DNA 
levels to the faecal DNA levels [62].

A TaqMan qPCR protocol in the following conditions: 
2 min at 50 °C, 10 min at 95 °C, 15 s at 95 °C and 1 min 
at 62  °C, the last two steps repeated for 45  cycles, was 
used to quantify C. albicans DNA levels. 7.5  μL of the 
extracted faecal DNA, at a 1:10 dilution, were used as a 
template, using probes and primers described by Guiver 
et al. 2001, at 0.1 μM and 0.2 μM, respectively [63]. Sam-
ples were processed in two sets of duplicates, in two 
independent rounds.

The presence of qPCR inhibitors in the samples was 
verified in all samples, diluted at 1:10, using the Univer-
sal Exogenous qPCR Positive Control for TaqMan® Assay 
(Eurogentec, Seraing, Belgium), with a Cy®5-QXL®670 
Probe system (Eurogentec, Seraing, Belgium). Manufac-
turer’s recommendations were followed, using the target 
Ct > 30 option.

Targeted‑metagenomic analysis of the fungal microbiome
All samples were processed to study the fungal micro-
biota (Fig.  1). The Internal Transcriber Spacers (ITS) 1 
region was targeted for the preparation of the amplicon 
libraries. The amplicons were produced by PCR using 
the ITS1F and ITS2 primers in the following conditions 
[64, 65]: 95 °C for 3 min, 25 cycles of 95 °C for 30 s, 55 °C 
for 30 s and 72 °C for 30 s, 72  °C for 5 min and cooling 
at 4  °C, and their size were verified with a Bioanalyzer 
DNA 1000 chip (Agilent Technologies, Santa Clara, CA, 
USA). The purification of the amplicon was performed 
with AMPure XP (Beckman Coulter, Brea, CA, USA) as 
described in the 16S Metagenomic Sequencing Library 
Preparation guide [66]. The adapters were attached with 
the Nextera XT Index Kit (Illumina, San Diego, CA, 
USA) and index PCRs were done in the following condi-
tions: 95  °C for 3  min, 8  cycles of 95  °C for 30  s, 55  °C 
for 30 s and 72 °C for 30 s, 72  °C for 5 min and cooling 
at 4 °C. AMPure XP (Beckman Coulter, Brea, CA, USA) 
was used to purify the PCR products and a Bioanalyzer 
DNA 1000 chip allowed their verification and their quan-
tification. Samples concentrations were normalised at 
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4  nM and 5  µL of each diluted sample was pooled into 
a library and a PhiX sequencing control was prepared 
according to the manufacturer’s guidelines. Libraries 
were sequenced on Illumina MiSeq platform (Illumina, 
San Diego, CA, USA) with the MiSeq Reagent Kit V3 in 
300 bp paired-end.

The sequencing allowed the recovery of 8,819,635 
amplicons from the ITS1 region. The SHAMAN pipeline 
was used to remove the singletons and chimera ampli-
cons, resulting in a total of 56,634 amplicons [67]. The 
remaining amplicons were clustered in 4648 OTUs using 
a cut-off value of 97% identity. Five hundred fifty-one 
OTUs could be associated with fungal sequences using 
the Unite database and on these OTUs, 340 were present 
in at least two faecal samples and were kept for further 
analysis. A first round of annotation was performed on 
SHAMAN against the UNITE database (rev. 8.0) and 
then a second round was performed against a more 
recent release of UNITE (rev. 8.2). The OTUs that could 
not be annotated after these two rounds submitted to a 
classic BLASTN and only hits matched with a similarity 
above 97% to reference genomes were conserved. The 
abundances and weighted non-null normalised counts 
tables were generated with SHAMAN [67].

The observed richness of the fungal microbiome was 
computed as the number of unique fungal OTUs identi-
fied in each sample.

Non‑targeted analysis of the metabolome
The metabolome was analysed in all collected samples 
(Fig. 1). Experimental methods and parameters for the 
non-targeted approach were carried out by liquid chro-
matography and high-resolution mass spectrometry 
(LC-HRMS) as detailed in [68, 69]. Briefly, eight vol-
umes of frozen acetonitrile (− 20  °C) containing inter-
nal standards (labelled IS mix of amino acids at 10 µg/
mL) were added to 100 µL serum samples and vortexed. 
The resulting samples were then sonicated for 10  min 
and centrifuged for 2 min at 10,000 × g at 4  °C. Super-
natants were incubated at 4  °C for 1  h for a slow pro-
tein precipitation process. Samples were centrifuged 
for 20 min at 20,000 g at 4 °C. Supernatants were trans-
ferred to another series of tubes and then dried and 
stored at –  80  °C before LC-HRMS analyses. Pellets 
were diluted 3-fold and reconstituted with H2O/ACN 
(20/80).

Non-targeted approach experiments were performed 
using a HILIC phase chromatographic column, ZIC-
pHILIC 5  µm, 2.1 × 150  mm at 15  °C (Merck, Darm-
stadt, Germany), and on a UPLC Waters Acquity 
(Waters, Milford, MA, USA) coupled to Q-Exactive 
mass spectrometer (Thermo Fisher Scientific, Waltham, 

MA, USA). Processing steps were carried out using the 
R software [70]. Peak detection, correction, alignment 
and integration were processed using XCMS R package 
with CentWave algorithm [71, 72] and workflow4me-
tabolomics platforms [73]. The resulted datasets were 
log10 normalised, filtered and cleaned based on qual-
ity control (QC) samples [74]. The features were then 
putatively annotated based on their mass over charge 
ratio (m/z) as well as retention time using a local data-
base as described previously [75] and then validated 
based on MS/MS experiments. The remaining features 
were either characterised using public repositories [76, 
77] or discarded when feature status is still unknown 
to remove noise and artifact signals. The relative abun-
dance of all annotated chemical features was then 
summed and computed as a total signal, named ‘total 
useful signal’, for each sample. The observed richness 
of the metabolome was computed as the number of 
unique chemical species identified in each sample.

Analysis of the cholesterol conversion rate into coprostanol
The microbiota-dependent catabolism of the cholesterol 
in faeces was analysed in all collected samples (Fig.  1). 
Sterols and stanols were extracted from faeces as fol-
lows. Faeces were weighted (~ 50  mg) and resuspended 
in 1% formic acid to a final concentration of 167 µg/µL. 
The mixture was homogenised using a Precellys Evo-
lution instrument (Bertin Instruments, Montigny-le-
Bretonneux, France) using the ‘soft program’. Volume 
equivalent to 1  mg of dried faeces was supplemented 
with deuterated internal standards (cholesterol d7 and 
coprostanol d5) and sterols and stanols extracted with 
1.2  mL of methanol/chloroform (2:1 v/v) and 320  µL 
deionised water. Phase separation was triggered with 
400  µL chloroform and 400  µL water. The mixture was 
centrifuged for 10  min at 3600 × g and the lower phase 
was collected and dried. Sterols and stanols were deriva-
tised for compatibility with GC–MS analysis using 60 µL 
of BSTFA (with 1% TMCS). The solution was heated at 
80  °C for 1 h, dried and resuspended in 0.1% BSTFA in 
cyclohexane before injection in the GC–MS. Samples 
were injected at 250 °C in split mode and sterols/stanols 
were separated on a 50 m × 0.25 mm, 0.25 µm DB-5MS 
column. Sterols and stanols were ionised using electronic 
impact (EI) and analysed in SIM mode using m/z 136 
for squalen, m/z 393 for lanosterol, m/z 366 for desmos-
terol, m/z 443 for lathosterol, m/z 329 for cholesterol, 
m/z 382 for campesterol, m/z 394 for stigmasterol, m/z 
381 for β-sitosterol, m/z 370 for coprostanol and m/z 398 
for ethylcoprostanol as quantitative ions. The ability of 
the gut microbiota to convert cholesterol into its major 
reduced form (i.e. coprostanol) was calculated as the 
ratio of the faecal coprostanol concentration to the sum 
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of the faecal coprostanol and cholesterol concentrations, 
hence the use of the generic term “cholesterol conversion 
rate” throughout the manuscript.

Analysis of the biliary acid transformation
The metabolism of the biliary acids in faeces was ana-
lysed in all collected samples (Fig. 1). All chemicals and 
solvents were of the highest purity available. Cholic 
acid (CA), deoxycholic acid (DCA), chenodeoxycholic 
acid (CDCA), ursodeoxycholic acid (UDCA), litho-
cholic acid (LCA), hyocholic acid HCA, hyodeoxicholic 
acid (HDCA), glyco and tauro derivatives were obtained 
from Sigma-Aldrich (Saint Quentin Fallavier, France). 
3α-sulfate derivatives were a generous gift of J. Goto 
(Niigita University of Pharmacy and Applied Life Sci-
ence, Niigata, Japan) and 7α-cholic acid (CA-7S) was 
from Cayman Chemical (Ann Arbor, MI, USA). 23-NOR-
5β-cholanoic acid-3α,12α diol, all muricholic acids, glyco, 
tauro derivatives and iso, keto bile acids were purchased 
from Steraloids Inc (Newport, RI, USA). Acetic acid, 
ammonium carbonate, ammonium acetate and methanol 
were of HPLC grade and purchased from Sigma-Aldrich 
(Saint Quentin Fallavier, France).

Bile acid molecular species concentrations were meas-
ured by HPLC coupled to tandem mass spectrometry 
(HPLC–MS/MS) as previously described with slight 
modification [78]. Two microlitres of an internal stand-
ard solution (23-nor-5β-cholanoic acid-3α, 12α-diol at 
1  mg/ml) was added to 10–50  mg of faeces lyophilised 
samples using a Lyovapor L200 (Buchi, Villebon-sur-
Yvette, France). For 15–20 mg lyophilised faeces samples, 
2 ml of NaOH (0.1 M) was added and incubated for 1 h 
at 60  °C before adding 4  ml of water. The solution was 
homogenised by two 10  s runs in an Ultra-Turrax dis-
perser (IMLAB, Lille, France). The preanalysis cleanup 
procedure was achieved by centrifugation (12,000 × g 
for 20  min) followed by solid-phase extraction using 
reversed-phase silica cartridges (HLB Oasis, Waters, Mil-
ford, MA, USA), and we used a 5500Q-trap (AB Sciex, 
Framingham, MA, USA) as mass spectrometer.

The hydrophobicity index reflects BA hydrophobicity, 
taking into account the concentration and the retention 
time of different BAs on a C18 column with a methanol 
gradient; lithocholic acid has the highest retention time, 
tauroursodeoxycholic acid-3S has the lowest.

The ability of the gut microbiota to metabolise the bil-
iary acids was computed as the ratio of the secondary bil-
iary acids (LCA and DCA) to the total concentration of 
the faecal content in biliary acids.

Data analysis
Data were classified between high dimensional variables 
relative to the structure of the bacterial, phage and fungal 

microbiomes, and metabolome, and low dimensional 
variables (observed richness of the bacterial, phage and 
fungal microbiomes, observed richness of the ARGs 
repertoire and metabolome, relative abundance of the 
β-lactamasome, total bacterial counts, β-lactamase activ-
ity, fungal load and Candida albicans DNA levels, cho-
lesterol conversion rate into coprostanol, and biliary acid 
transformation).

Baseline was defined at day 0, and the baseline sam-
ple was defined as the sample obtained at day − 1. If this 
sample at day − 1 was not available, the sample obtained 
at day − 7 was considered as the baseline, or the one 
obtained at day − 15 if this latter was also missing.

For high dimensional variables, we computed for each 
subject the Spearman’s correlation coefficient (s) of the 
structure of the studied system between baseline and 
each sampling day. These correlation coefficients were 
used to evaluate the change from baseline of the struc-
ture of the system. Among low dimensional variables, all 
variables, except those relative to the observed richness 
of the systems, were log10 transformed before analysis, 
and we computed the change from baseline at each sam-
pling time as the difference of the values at each time.

In order to study the variability between subjects and 
within subjects for each variable before the administra-
tion of antibiotics, we analysed the low dimensional vari-
ables using a linear mixed effect model (lmer function of 
R package lme4), treating subjects as random effects. We 
respectively estimated the between within-subjects varia-
bilities as the coefficient of variation of the random effect 
and of the residual error estimated in the model.

In order to study the perturbation of systems, we com-
puted a raw distance from the baseline, that increases 
with the extent of the perturbation of each system, 
regardless of the direction of the perturbation. It was 
calculated at each sampling time as 1-s2 for high-dimen-
sional variables (with s being the Spearman’s correla-
tion coefficient as described above) and as the absolute 
change from baseline for low dimensional variables.

Raw distances from the baseline were normalised to 
address the effect of intra-individual variations of the 
systems before the start of antibiotic treatment. Normali-
sation was made for each subject by dividing distances 
from baseline by the individual average of the distances 
from baseline computed before the beginning of antibi-
otic treatment (at days − 7 and − 15). In the case of miss-
ing samples at days − 7 and − 15, the normalisation was 
used as the median of the average raw distances com-
puted for all other subjects.

We studied the effect of antibiotics on the gut con-
tent using both fixed endpoints (days 4, 7, 10, 30 and 90) 
and areas under the curve between baseline and days 10 
(AUC D0-D10) and 30 (AUC D0-D30). Metrics used were the 
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changes from baseline for low dimensional variables and 
the normalised distances for high dimensional variables. 
AUCs were computed using the trapezoidal rule, using 
the actual date and time of stool emission. AUCs were 
standardised using the observed delay between baseline 
and the actual time of collection of the day 10 (for AUC 
D0-D10) or day 30 (for AUC D0-D30) sample. We used the 
non-parametric Wilcoxon test to compare these metrics 
at fixed sampling times, the AUC D0-D10, and the AUC D0-

D30 to 0 for low dimensional variables, and to 1, 10 or 30 
for high dimensional variables and their AUC D0-D10 AUC 
D0-D30, respectively. We also compared the effect of the 
two antibiotics on the microbiota using the non-para-
metric Wilcoxon test.

Next, we defined for each subject and system the maxi-
mal perturbation as the maximal normalised distance 
from baseline observed between the baseline and day 10, 
and maximal resilience as the minimal normalised dis-
tance from baseline observed on days 15, 30 or 90. Pair-
wise relations between the level of maximal perturbation 
for each system were investigated using Spearman’s cor-
relation coefficients and comparing them to 0. A similar 
analysis was performed to study the relationship between 
the maximal resilience of systems.

Finally, the relationship between the composition of the 
microbiome at baseline (studied using the low dimen-
sional variables) and the maximal perturbation and resil-
ience of studied systems was assessed using Spearman’s 
correlation coefficient and its test to 0.

All statistical tests were bilateral, with a type-I error 
fixed to 0.05. As the present work constitutes an explora-
tory analysis, P values were not corrected for multiple 
testing. In order to assess the robustness of the analy-
sis, Benjamini and Hochberg correction of p-values was 
performed as a sensitivity analysis to correct for the false 
discovery rate. The correction was made globally for each 
analysis.
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