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Abstract 

Background  The gut microbiome undergoes primary ecological succession over the course of early life 
before achieving ecosystem stability around 3 years of age. These maturational patterns have been well-characterized 
for bacteria, but limited descriptions exist for other microbiota members, such as fungi. Further, our current under‑
standing of the prevalence of different patterns of bacterial and fungal microbiome maturation and how inter-king‑
dom dynamics influence early-life microbiome establishment is limited.

Results  We examined individual shifts in bacterial and fungal alpha diversity from 3 to 12 months of age in 100 
infants from the CHILD Cohort Study. We identified divergent patterns of gut bacterial or fungal microbiome matu‑
ration in over 40% of infants, which were characterized by differences in community composition, inter-kingdom 
dynamics, and microbe-derived metabolites in urine, suggestive of alterations in the timing of ecosystem transitions. 
Known microbiome-modifying factors, such as formula feeding and delivery by C-section, were associated with atypi‑
cal bacterial, but not fungal, microbiome maturation patterns. Instead, fungal microbiome maturation was influenced 
by prenatal exposure to artificially sweetened beverages and the bacterial microbiome, emphasizing the importance 
of inter-kingdom dynamics in early-life colonization patterns.

Conclusions  These findings highlight the ecological and environmental factors underlying atypical patterns 
of microbiome maturation in infants, and the need to incorporate multi-kingdom and individual-level perspec‑
tives in microbiome research to improve our understandings of gut microbiome maturation patterns in early life 
and how they relate to host health.
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Background
In early life, the gut microbiome undergoes successional 
shifts in composition leading to the establishment of 
stable microbial communities around 3 years of age [1]. 
This begins as a primary succession event where pio-
neer microbes colonize the sterile gut upon birth, and 
subsequently, increase in taxonomic and/or functional 
diversity over time, depending on the microbial king-
dom in question [2–4]. For bacteria, these successional 
events are shaped by host-driven (intestinal pH, oxygen 
pressure, glycan expression in breastmilk and on the gut 
mucosa (FUT2 secretor status), etc.) and environmental 
factors, such as mode of birth, breastfeeding, introduc-
tion of solid foods, and antibiotic use [5–8]. Meanwhile, 
few characterizations of the role of these factors in gut 
fungal succession have been performed, but current 
research suggests the mycobiome may be more strongly 
influenced by dietary and geographical factors [3, 9]. 
Like other microbial ecosystems, the mammalian intes-
tine is a stage for inter-kingdom interactions, in which 
gut fungi play important ecological roles in shaping bac-
terial microbiomes and vice versa [10–15]. However, 
our knowledge of how bacterial and fungal interactions 
influence successional shifts in diversity during early-life 
microbiome establishment remains very limited.

Compositionally, the patterns of bacterial microbi-
ome maturation have been well-described, and include 
increases in alpha (within-individual) diversity and 
decreases in beta (between-individual) diversity, indicat-
ing reductions in the inter-individual variability of micro-
biome composition with age [16–20]. This is further 
characterized by transitions from communities abundant 
in Enterobacteriaceae and Bifidobacteriaceae in the first 
months of life, towards those comprised of Bacteroi-
daceae, Lachnospiraceae, and Ruminococcaceae over the 
first 2–3 years [16–20]. For fungi, descriptions of mycobi-
ome maturation remain limited and confounded by small 
sample sizes, with reports showing variable (increas-
ing, decreasing, or stable) changes in alpha diversity and 
increases in beta diversity in early-life [3, 9, 21–28]. This 
indicates greater inter-individual variability is observed 
in mycobiome composition with age, in contrast to the 
patterns observed for bacteria. Despite this, consisten-
cies in early and late colonizers have been reported dur-
ing primary succession. This includes early colonization 
with fungi such as Candida, Malassezia, Cladosporium, 
and Debaryomyces, followed by a shift towards commu-
nities dominated by Saccharomyces with the introduction 
of solid foods into the infant diet [3, 9, 21–28].

Deviations from typical patterns of bacterial micro-
biome maturation during the first year of life have been 
reported in association with disease states, such as 
type 1 diabetes, asthma, and celiac disease [17, 29, 30], 

highlighting the need to better understand dysbiotic mat-
urational trajectories. Early life is regarded as a critical 
window when microbial colonization exerts potent influ-
ences on human development [31, 32]. In the absence 
of eubiotic patterns of microbiome establishment, the 
developmental programming of host physiology may be 
altered, potentially having detrimental and lasting impli-
cations on host health [31, 32]. When examined through 
this lens, it is critical to both characterize and be able 
to distinguish the continuum of typical vs. atypical gut 
microbiome maturation patterns in early life. Beyond 
disease paradigms, our understanding of the variability 
in patterns of gut microbial colonization across infants 
is further limited by a focus on group-based analyses in 
microbiome research. This includes exploring microbi-
ome changes across infants based on specific factors (e.g., 
delivery mode, nutrition, antibiotic exposure) or between 
different cohorts (e.g., geographically), but typically does 
not include examining how these factors influence the 
microbiome within each individual. While this stream-
lines the handling of large microbiome datasets, it inher-
ently limits our understanding of individual differences in 
patterns of microbiome maturation. In parallel, research 
efforts have primarily focused on the bacterial microbi-
ome, despite the co-existence of several other microbial 
kingdoms contributing to the makeup of the gut micro-
biome [33]. Together, the shortage of individual-level and 
multi-kingdom perspectives in microbiome research to 
date have limited our understanding of eubiotic vs. dysbi-
otic patterns of gut microbiome maturation in early life.

In this work, we begin to address this knowledge gap 
by evaluating both bacterial and fungal gut microbiome 
maturation patterns in 100 infants from the CHILD 
Cohort Study [34] over the first year of life using indi-
vidual-level and multi-kingdom perspectives. Using a 
similar approach for mycobiome maturation, we have 
previously shown increasing vs. decreasing fungal rich-
ness over the first year of life is differentially associated 
with early childhood body mass index (BMI) z-scores in 
this sub-cohort, with this relationship being mediated by 
the influence of antibiotics exposure, maternal BMI and 
diet, and bacterial beta diversity [35]. Here, we deter-
mined that divergent patterns of bacterial and fungal gut 
microbiome maturation are more common in term-born 
infants than previously considered, occurring in over 
40% of infants in this sub-cohort, which are character-
ized by differences in ecological and metabolic properties 
that may reflect altered rates of microbiome maturation. 
These maturational trajectories were differentially associ-
ated with prenatal, environmental, genetic, and ecologi-
cal factors, highlighting the need to consider the variable 
influences these factors have on bacterial vs. fungal gut 
microbiome maturation in early life.
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Materials & methods
Study design & population
We investigated the early-life microbiome in 100 infants 
from the CHILD Cohort Study – a prospective popula-
tion-based birth cohort recruiting women with healthy 
singleton pregnancies who delivered after 35  weeks’ 
gestation (n = 3,264) [34]. Mother-infant dyads were 
recruited from 2008 to 2012 across four Canadian prov-
inces and study sites: Vancouver (British Columbia), 
Edmonton (Alberta), Toronto (Ontario), and Winnipeg 
(Manitoba) and two adjacent rural towns, Morden and 
Winkler [34]. In this study, we evaluated a sub-cohort of 
100 mother-infant dyads previously selected for a nested 
case–control study on the influence of maternal artifi-
cially sweetened beverage consumption during gestation 
on the infant bacterial gut microbiome [36]. Mother-
infant dyads were divided equally between mothers who 
reported little to no artificially sweetened beverage con-
sumption (less than one per month) or high artificially 
sweetened beverage consumption (one or more per day) 
during pregnancy. These groups were balanced for six 
potentially confounding factors known to influence the 
gut microbiome in early life: infant sex assigned at birth, 
delivery mode, breastfeeding status at 3 and 12 months, 
infant antibiotic exposure before 12  months (exposure 
prior to 3 months was an exclusion criterion), and mater-
nal BMI [36]. The study was approved by the University 
of Calgary Conjoint Health Research Ethics Board and 
ethics committees at the Hospital for Sick Children, 
and the Universities of Manitoba, Alberta, and British 
Columbia. Written informed consent was obtained from 
mothers during study enrollment and prior to data col-
lection at each subsequent visit.

Infant, early‑life & maternal factors
We considered the influence of infant, early-life, and 
maternal factors with known influences on the gut 
microbiome, while controlling for maternal diet and 
artificially sweetened beverage consumption during ges-
tation given the original selection criteria of this sub-
cohort [36]. Infant sex assigned at birth, gestational age, 
delivery mode, and prenatal, intrapartum, and early life 
(0–12 months) antibiotics exposure were recorded from 
infant and maternal medical records. Infant feeding was 
reported using a standardized questionnaire at 3, 6, and 
12  months [34]. This included breastfeeding status at 
3  months, breastfeeding duration or age at breastfeed-
ing cessation (months), and age at introduction of solid 
foods (months). Breastfeeding status at 3  months was 
classified as ‘‘exclusive’’ (human milk only), “partial” 
(human milk supplemented with formula milk or solid 
foods), or ‘‘none’’ (no human milk). Infant and mater-
nal secretor status was determined from the single 

nucleotide polymorphism (SNP) rs601338 in the FUT2 
gene and classified based on genotype: “AA” (homozy-
gous non-secretor), “AG” (heterozygous secretor), and 
“GG” (homozygous secretor). Due to a limited racial dis-
tribution in this sub-cohort (n = 81 Caucasian vs. n = 10 
Asian mothers), we were not powered to examine the 
rs1047781 SNP associated with secretor status in Asian 
populations, but only one mother had the missense gen-
otype for this locus [37]. Maternal diet was evaluated 
using a validated food frequency questionnaire in the 
second or third trimester of pregnancy, with modifica-
tions to capture typical dietary patterns throughout the 
current pregnancy [34, 38]. The Healthy Eating Index 
(HEI) was derived from the food frequency questionnaire 
based on the 2010 guidelines [39] and used as a measure 
of maternal diet quality. Artificially sweetened beverage 
consumption during pregnancy was determined based 
on consumption of diet sodas (1 serving = 355  mL or 
one can) or artificial sweetener added to tea or coffee (1 
serving = 1 packet) [36]. Maternal BMI was determined 
using measured height and self-reported pre-pregnancy 
weight. Infant BMI z-scores were derived from weight 
and length measurements at 3 and 12 months recorded 
by CHILD Cohort Study staff based on the 2011 World 
Health Organization (WHO) standards [40]. Participant 
characteristics have been summarized in Table 1.

Sample collection & processing
Infant fecal and urine samples (n = 200 each) were col-
lected from soiled diapers by CHILD Cohort Study staff 
at the 3-month home visit and 12-month clinic visit for 
each participant, using standardized methods across 
both timepoints [41]. For home visits, samples were 
transported on ice back to the laboratory and frozen 
within 8 h of collection. All samples were stored at -80 °C 
until further processing [41].

Fecal DNA extractions
Genomic DNA was extracted from fecal samples using 
the DNeasy PowerSoil Pro Kit (Qiagen, Germany) 
according to the manufacturer’s instructions. Extraction 
kit negatives were processed alongside fecal samples and 
extractions for all fecal samples (n = 200) were performed 
during the same period. DNA concentrations and quality 
were quantified using a NanoDrop Lite spectrophotom-
eter (Thermo Scientfic, USA). DNA was stored at -20 °C 
until further processing.

16S & ITS2 rRNA gene sequencing
16S and ITS2 rRNA gene sequencing of fecal DNA was 
performed by Microbiome Insights (Vancouver, Can-
ada). PCR amplification of the V4 region of the bacte-
rial 16S rRNA gene with 515F/806R primers [42] and 
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the fungal internal transcribed spacer 2 (ITS2) region 
with ITS1F/ITS4 primers [43] was performed using 
Phusion Hot Start II DNA Polymerase (Thermo Sci-
entific, USA) to generate ready-to-pool, dual-indexed 
amplicon libraries, as previously described [44]. Micro-
bial contamination was controlled for throughout the 
PCR and downstream sequencing steps using mock 
communities with defined amounts of select bacteria or 
fungi and controls lacking microbial DNA. The pooled 
and indexed amplicon libraries were denatured, diluted, 
and sequenced in a single run on an Illumina MiSeq 
(Illumina Inc., USA) in paired-end modus.

Sequence processing was performed in R v.4.2.1 [45] 
using the DADA2 v.1.26.0 pipelines for 16S and ITS2 data 
[46]. The median read count of samples after DADA2 
processing was 33,103 (27,700–37,369) for 16S and 
15,740 (9,625–29,954) for ITS2 (Table S1 and Figure S1A-
B). Taxonomic assignment based on amplicon sequence 
variants (ASVs) was performed using the following data-
bases at 99% sequence similarity: SILVA v.132 [47] for 
bacteria (16S) and UNITE v.8.0 [48] for fungi (ITS2). Pre-
processing of bacterial and fungal data was performed 
using phyloseq v.1.42.0 [49] and has been previously 
reported [35, 36]. In brief, 954 unique bacterial ASVs 
were identified. Samples were filtered to remove those 
with less than 1,000 reads, singletons, and ASVs appear-
ing less than 2 times in a minimum of 10% of the sam-
ples, leaving 540 bacterial ASVs for downstream analysis 
[36]. For fungi, 3,328 unique ASVs were identified. The 
same filtering criteria were applied with the following 
modifications: ASVs belonging to the kingdom Plantae 
were removed and a higher threshold of less than 2,000 
reads was applied based on the lower sequencing depth 
of these samples (Figure S1C-D). 604 unique fungal ASVs 
remained in the dataset for downstream analyses [35].

Untargeted urine metabolomics
Untargeted quantitative metabolomics of urine samples 
was performed at the Calgary Metabolomics Research 
Facility (Calgary, Canada), using a combination of direct 
injection mass spectrometry (MS) with a reverse-phase 
liquid chromatography (LC)-MS/MS assay, as described 
previously [36]. This assay enables the identification and 
quantification of up to 150 metabolites, including sug-
ars, amino acids, acylcarnitines, biogenic amines and 
derivatives, uremic toxins, glycerophospholipids, and 
sphingolipids [50, 51]. Isotope-labeled internal standards 
and quality control standards were used for metabolite 
quantification. Mass spectrometry was performed on a 
4000 QTRAP® LC–MS/MS mass spectrometer (SCIEX, 
USA) equipped with a 1260 Infinity II LC System (Agi-
lent Technologies, USA) using a sequential combination 
of LC and direct injection approaches.

Exclusion of data
Infants lacking samples at both timepoints were excluded 
from all downstream analyses involving bacterial (n = 2) 
and/or fungal (n = 9) alpha diversity trends, given two 
samples were required to determine trend direction-
ality. Infants with an atypical alpha diversity trend for 
both bacteria and fungi (n = 2) were excluded from inter-
kingdom co-occurrence network analyses due to sample 
size limitations. Further, samples with missing data for 
infant, maternal, early-life, or ecological covariates were 
excluded from random forest and logistic regression 
analyses. This included prenatal antibiotics (n = 2), intra-
partum antibiotics (n = 3), and introduction of solid foods 
(n = 2) for both bacteria and fungi analyses; fungal alpha 
(Shannon) and beta (PCoA1) diversity at 3 (n = 5) and 
12 (n = 5) months for the bacterial alpha diversity trend 
random forest; and bacterial alpha (Shannon) and beta 
(PCoA1) diversity at 3 (n = 1) and 12 months (n = 1) for 
the fungal alpha diversity random forest.

Statistical analysis
Bacterial and fungal alpha diversity were quantified 
at 3 and 12  months using the Shannon (diversity) and 
Chao1 (richness) indices with phyloseq v.1.42.0 [49] and 
reported as mean and standard deviation (SD). Changes 
in alpha diversity with age were assessed by Mann–
Whitney U test, after determining data was non-nor-
mally distributed using the Shapiro–Wilk test. To assess 
individual-level shifts in alpha diversity, Shannon and 
Chao1 metrics were classified into “increase”, “decrease”, 
or “unchanged” categories based on the change in these 
metrics per infant from 3 to 12 months and assessed by 
paired t-test. Bacterial and fungal beta diversity were 
evaluated using the Bray–Curtis dissimilarity index with 
variance-stabilizing transformation and differences based 
on age and alpha diversity trend were assessed by permu-
tational analysis of variance (PERMANOVA) using vegan 
v.2.6.4 [52]. Multivariate homogeneity of groups dis-
persions (beta dispersion) was also assessed by age and 
alpha diversity trend using a permutation test with vegan 
v.2.6.4 [52].

The relative abundance of the 15 most abundant bacte-
rial and fungal genera were compared by age and alpha 
diversity trend. Relative abundances were center log-ratio 
(CLR) transformed and zeros were handled by adding 
a small pseudo-count using microbiome v.1.22 [53] to 
control for compositionality prior to assessing statisti-
cal differences in abundance. Normality was determined 
using the Shapiro–Wilk test. Non-normally distributed 
CLR-transformed abundances were assessed by Mann–
Whitney U test and normally distributed abundances 
were assessed for equality of variance using the F-test, 
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then evaluated by Student’s t-test or Welch’s Two Sample 
t-test if the variance was equal or unequal, respectively. 
Differential abundance analysis by age and alpha diver-
sity trend was performed at the ASV level for bacteria 
and fungi using DESeq2 v.1.38.3 [54]. Bacterial and fungal 
count datasets underwent variance-stabilizing transfor-
mation and were filtered for taxa with at least 5,000 reads 
summed across all samples to limit the overrepresenta-
tion of rare ASVs. The typical bacterial or fungal alpha 
diversity trend was set as the reference level to identify 
ASVs that were differentially abundant in infants with an 
atypical alpha diversity trend at 3 and 12 months.

Random forest was performed to identify factors pre-
dictive of bacterial and fungal alpha diversity trend direc-
tion using 10-fold cross-validation, 500 trees, and 1,000 
permutations by the randomForest v.4.6.14 and caret 
v.6.0.90 packages [55, 56]. Factors known to be associated 
with microbiome maturation in early life were included 
[19, 20, 57], alongside bacterial or fungal alpha and beta 
diversity measures to evaluate for inter-kingdom influ-
ences. The mean decreasing Gini index (GI) was com-
puted to identify factors most strongly associated with 
bacterial and fungal alpha diversity trends. Next, mul-
tivariable logistic regression examining factors associ-
ated with an atypical bacterial (decreasing) or fungal 
(increasing) alpha diversity trend was performed using 
stats v.4.1.1 [58] to determine the directionality of associa-
tions between alpha diversity trends and early-life factors. 
Logistic regression models were assessed for multi-collin-
earity and optimized using performance v.0.8.0 [59]. Bac-
terial and fungal alpha and beta diversity measures were 
excluded from this analysis to prevent overfitting and 
enable focused investigations of how clinical and early-life 
factors influence changes in alpha diversity over the first 
year of life. The results are presented for each factor as 
the log-transformed odds ratio (OR) and 95% confidence 
interval (CI). The typical bacterial (increasing) and fungal 
(decreasing) alpha diversity trend was set as the reference 
level for both random forest and logistic regression analy-
ses. Any potential confounding effects based on the sub-
cohort selection criteria were controlled for by including 
maternal dietary factors (HEI and gestational artificially 
sweetened beverage consumption) in these analyses.

Urine metabolites were evaluated by age and alpha 
diversity trend using the web-based server, MetaboAna-
lyst [60]. Metabolite concentrations were normalized 
using the median, log-transformed, and pareto scaled 
(mean-centered and divided by the square root of the 
standard deviation of each metabolite). Differences in 
normalized urine metabolite concentrations between 
increasing and decreasing bacterial and fungal alpha 
diversity trends at 3 and 12  months were assessed by 
t-test using a false discovery rate (FDR) threshold of < 0.1.

Bacterial and fungal inter-kingdom co-occurrence net-
work analysis was performed at the species level using 
NetCoMi v.1.1.0 [61]. Networks were generated based 
on the combination of bacterial and fungal alpha diver-
sity trends exhibited by each infant and were allocated 
into the following groups: typical (increasing bacterial 
and decreasing fungal alpha diversity; n = 50), bacteria 
atypical (decreasing bacterial and fungal alpha diver-
sity; n = 21), fungi atypical (increasing bacterial and fun-
gal alpha diversity; n = 16), or both atypical (decreasing 
bacterial and increasing fungal alpha diversity; n = 2). 
Infants who displayed atypical alpha diversity trends for 
both bacteria and fungi were excluded from the main 
analysis due to sample size limitations, but were included 
when comparing typical vs. all atypical patterns of alpha 
diversity changes in combination. Networks were con-
structed using variance-stabilizing transformed count 
data, pseudo zero handling, and a Pearson correlation 
threshold of ± 0.4, then were assessed using a fast greedy 
clustering algorithm. Node size was determined based 
on degree centrality. Hub taxa were identified as those 
having the highest betweenness centrality. Pair-wise net-
work comparisons were made between typical (inverse), 
bacteria atypical, fungi atypical, and all atypical overall 
alpha diversity patterns combined at 3 and 12 months by 
calculating the following measures using 5,000 permuta-
tions: centrality (degree, betweenness, closeness, eigen-
vector), clustering coefficient, modularity, edge density, 
positive edge percentage, connectivity (natural, vertex, 
edge), average dissimilarity, average path length, and hub 
taxa. Co-occurrence networks at 3 and 12 months were 
also generated for bacteria and fungi in isolation using 
the same approach to examine co-occurrence dynam-
ics amongst microbiome members of the same kingdom 
between increasing and decreasing alpha diversity trends.

Results
Participant characteristics
This work was performed as a secondary analysis of a 
previously published nested case–control study exam-
ining the influence of prenatal consumption of artificial 
sweeteners on infant bacterial microbiome maturation 
patterns and body mass index (BMI) in early life. Of the 
100 infants evaluated in this study, 46% were female and 
64% were delivered vaginally. Antibiotic exposure in the 
prenatal and postnatal periods occurred in 12% and 20% 
of mother-infant dyads, respectively, while 52% were 
exposed to intrapartum antibiotics. Breastfeeding sta-
tus at 3  months was approximately equally distributed 
between none (36%), partial (30%), and exclusive (34%), 
with a mean breastfeeding duration of 7.8 ± 7.3 months. 
Introduction of solid foods into the infant diet occurred 
at 4.8 ± 1.2  months. The proportion of mothers and 
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infants who secrete ABO histo-blood group antigens 
in other bodily fluids, such as breastmilk and the intes-
tinal mucosa, was determined by FUT2 genotype [62]. 
Approximately 80% of mothers and infants were secre-
tors, with secretor status balanced by genotype (AA or 
non-secretor: 24% of infants and 22% of mothers; AG or 
heterozygous secretor: 39% of infants and 41% of moth-
ers; GG or homozygous secretor: 37% of infants and 
mothers; Table 1), consistent with the genotypic distri-
bution of FUT2 secretor status in the general popula-
tion [63].

Given the original selection criteria of this sub-cohort, 
we evaluated whether differences in early life exposures 
were observed relative to the rest of the CHILD Study 
cohort (n = 3,164). As expected, our sub-cohort included 

a higher proportion of infants whose mothers routinely 
consumed artificially sweetened beverages during preg-
nancy (50% vs. 29%, p < 0.001). This was accompanied by 
higher maternal BMI (26.7 ± 6.1 vs. 24.7 ± 5.4, p < 0.001), 
paternal BMI (28.5 ± 4.5 vs. 27.3 ± 4.7, p < 0.001), and sex-
specific infant BMI z-scores (BMIz) at 3 months (females: 
0.0 ± 0.9 vs. -0.3 ± 1.1, p = 0.049) and 1  year (females: 
0.6 ± 1.3 vs. 0.1 ± 1.1, p = 0.004; males: 0.7 ± 1.1 vs. 0.2 ± 1.1, 
p = 0.005). Delivery by Cesarean (C)-section (36% vs. 
25%; p = 0.018), lower rates of exclusive breastfeeding at 
3  months (34% vs. 61%, p < 0.001), and earlier cessation 
of breastfeeding (7.8 ± 7.3 vs. 10.5 ± 6.8 months, p = 0.031) 
were also more common in this sub-cohort. This com-
bination of BMI and early-life factors are dynamically 
related, with associations existing between high mater-
nal BMI, increased likelihood of C-section delivery, and 
reduced breastfeeding duration, which may subsequently 
influence gut microbiome maturation [64–68]. Together, 
this indicates our sub-cohort represents a population 
with a greater propensity towards microbiome-disrupting 
exposures (i.e., C-section, formula feeding) and elevated 
BMI relative to the rest of the CHILD cohort.

The bacterial and fungal gut microbiome exhibit divergent 
alpha diversity maturational patterns in the first year of life
Bacterial gut microbiome maturation patterns have 
been well-described, with increases in alpha diversity 
and decreases in beta diversity known to occur over the 
first years of life [16–20]. On average, we observed com-
parable overall changes in diversity metrics from 3 to 
12  months of age in this cohort. Bacterial alpha diver-
sity (Shannon) and richness (Chao1) increased from 3 
to 12 months (Shannon: mean 1.55 ± 0.66 vs. 2.20 ± 0.61, 
p < 0.001; Chao1: mean 26.95 ± 13.12 vs. 52.13 ± 18.20, 
p < 0.001; Fig. 1A) and beta diversity decreased over the 
same period, indicating reductions in compositional 
dissimilarity of the microbiome between individuals at 
12  months of age (R2 = 0.077, p < 0.001; Fig.  1B). While 
group-wise analyses have facilitated the identification 
of typical patterns of microbiome maturation in early 
life [16–20], our understanding of maturational pat-
terns deviating from these descriptions is limited. We 
sought to investigate this by examining changes in bac-
terial alpha diversity and richness at the individual level 
and observed divergent patterns of microbiome matu-
ration in the first year of life (Fig.  1C and Figure S2A, 
respectively). Although most infants (n = 74, or 75%) dis-
played the expected increase in bacterial alpha diversity 
from 3 to 12  months, 25% (n = 24) exhibited a decrease 
in alpha diversity over this period (p < 0.001; Fig.  1C). 
This divergence in microbiome maturation was also 
reflected in compositional differences (beta diversity) at 
3 and 12  months, with alpha diversity trend explaining 

Table 1  Characteristics of mother-infant dyads from the CHILD 
cohort included in this analysis (n = 100)

SD Standard deviation
a Data missing for two mother-infant dyads
b Data missing for three mother-infant dyads
c FUT2 genotype indicates whether an individual is a non-secretor (AA) or 
secretor (AG or GG) of ABO histo-blood group antigens in other bodily fluids, 
such as on the gut mucosa or in breastmilk
d Includes Winnipeg and two rural sites, Morden and Winkler

Characteristics n (%) or Mean ± SD

Infant Sex (Female) 46 (46%)

Mode of Birth (Vaginal) 64 (64%)

Prenatal Antibioticsa 12 (12%)

Intrapartum Antibioticsb 50 (52%)

Infant Antibiotic Exposure (3–12 months) 20 (20%)

Breastfeeding Status at 3 Months

  None 36 (36%)

  Partial 30 (30%)

  Exclusive 34 (34%)

Breastfeeding Duration (months) 7.8 ± 7.3

Age at Introduction of Solid Foods (months)a 4.8 ± 1.2

Infant FUT2 Genotypec

  AA 24 (24%)

  AG 39 (39%)

  GG 37 (37%)

Maternal FUT2 Genotypec

  AA 22 (22%)

  AG 41 (41%)

  GG 37 (37%)

Study Site

  Vancouver 40 (40%)

  Edmonton 22 (22%)

  Manitobad 29 (29%)

  Toronto 9 (9%)

Maternal Healthy Eating Index 72.1 ± 8.1

Maternal Artificially Sweetened Beverage Con‑
sumption During Pregnancy

50 (50%)
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1.5% and 1.9% of the variance, respectively (3  months: 
p = 0.054; 12  months: p = 0.005; Fig.  1D). Bacterial rich-
ness (Chao1) exhibited similar maturational patterns and 
compositional differences over the first year of life (Fig-
ure S2A-B).

In contrast to bacteria, descriptions of fungal gut 
microbiome maturation patterns are lacking, with incon-
sistent reports across studies regarding changes in fun-
gal alpha and beta diversity in early life [3, 9, 21–28]. In 

this cohort, group-wise evaluations revealed that, on 
average, fungal alpha diversity (Shannon) and richness 
(Chao1) decreased from 3 to 12 months of age (Shannon: 
mean 2.23 ± 0.77 vs. 1.29 ± 0.83, p < 0.001; Chao1: mean 
29.43 ± 7.65 vs. 24.18 ± 8.92, p < 0.001; Fig.  2A). Signifi-
cant differences in beta diversity were also  observed by 
age, with the composition of the mycobiome between 
individuals displaying opposite maturational patterns 
relative to bacteria, increasing in dissimilarity from 3 to 

Fig. 1  Divergent bacterial alpha diversity maturation patterns are observed in the first year of life. A Bacterial Shannon and Chao1 alpha diversity 
indices at 3 and 12 months of age, assessed by Mann–Whitney U test (3 months: n = 99, 12 months: n = 99). B Comparison of bacterial beta diversity 
using the Bray–Curtis dissimilarity index at 3 and 12 months, assessed by PERMANOVA (3 months: n = 99, 12 months: n = 99). Ellipses represent 95% 
CI. C Changes in bacterial alpha diversity (Shannon index) per individual from 3 to 12 months, assessed by paired t-test (increase: n = 74, decrease: 
n = 24; see Figure S2A for bacterial richness). D Comparison of bacterial beta diversity using the Bray–Curtis dissimilarity index by alpha diversity 
trend at 3 and 12 months, assessed by PERMANOVA (increase: n = 74, decrease: n = 24; see Figure S2B for bacterial richness trend). Ellipses represent 
95% CI
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12  months (R2 = 0.048, p < 0.001; Fig.  2B). However, like 
bacteria, divergent alpha diversity and richness matura-
tional trends were observed when assessed at the indi-
vidual level (Fig. 2C and Figure S3A), with 80% (n = 73) of 
infants displaying a decrease and 20% (n = 18) increasing 
in fungal alpha diversity from 3 to 12 months (p < 0.001; 
Fig.  2C). Compositional differences at 3 and 12  months 
were also observed by fungal alpha diversity trend, 
explaining 1.6% and 2.3% of the variance, respectively 
(3 months: p = 0.015; 12 months: p = 0.005; Fig. 2D). The 
compositional differences observed by alpha diversity 
trend were further exemplified by significant differences 
in the distance to centroid, also known as beta dispersion, 
at 3  months (p = 0.010), but not at 12  months (Fig.  2E). 
No differences in beta dispersion were observed for 

bacterial alpha diversity trend. Divergent maturational 
patterns were also observed for fungal richness (Figure 
S3A-B), and previous work by our group has associated 
these changes with early-life BMI z-scores in this cohort 
[35].

Considering a substantial proportion of infants (20–
25%) deviated from the predominant or “typical” pat-
tern of change in bacterial and fungal alpha diversity 
observed in this sub-cohort, we sought to determine if 
“atypical” patterns of bacterial and fungal alpha diversity 
occurred in the same individual. However, we found that 
the infants that had an “atypical” (decreasing) bacterial 
alpha diversity trend generally had a “typical” (decreas-
ing) fungal alpha diversity trend and vice versa, with only 
2 infants displaying “atypical” trends for both bacteria 

Fig. 2  Divergent fungal alpha diversity maturation patterns are observed in the first year of life. A Fungal Shannon and Chao1 alpha diversity 
indices at 3 and 12 months of age, assessed by Mann–Whitney U test (3 months: n = 95, 12 months: n = 95). B Comparison of fungal beta diversity 
using the Bray–Curtis dissimilarity index at 3 and 12 months, assessed by PERMANOVA (3 months: n = 95, 12 months: n = 95). Ellipses represent 95% 
CI. C Changes in fungal alpha diversity (Shannon index) per individual from 3 to 12 months, assessed by paired t-test (decrease: n = 73, increase: 
n = 18; see Figure S3A for fungal richness). D Comparison of fungal beta diversity using the Bray–Curtis dissimilarity index by alpha diversity trend 
at 3 and 12 months, assessed by PERMANOVA (decrease: n = 73, increase: n = 18; see Figure S3B for fungal richness). Ellipses represent 95% CI. E 
Fungal beta dispersion by alpha diversity trend at 3 and 12 months, assessed by permutation test (decrease: n = 73, increase: n = 18)
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and fungi. Overall, only 50 infants (56%) with data at 
both timepoints displayed “typical” trends for both bacte-
rial and fungal alpha diversity. This highlights the impor-
tance of individual-level trajectory analyses in generating 
more nuanced understandings of bacterial and fungal 
microbiome maturation patterns in early life, particularly 
given the divergent alpha diversity trends observed were 
masked when performing group-wise analyses by age. 
For the remainder of this paper, alpha diversity trends 
will also be referred to as typical or atypical based on 
the predominant direction of change infants displayed in 
this sub-cohort: an increasing trend is typical for bacte-
ria, whereas a decreasing trend is typical for fungi. While 
these definitions of “typical” and “atypical” are well-sup-
ported for bacterial alpha diversity in early life [16–20], 
our use of this terminology for fungi is specific to this 
sub-cohort and we cannot definitively say what is consid-
ered “typical” for fungal alpha diversity maturational pat-
terns based on the current literature [3, 9, 21–28].

Differences in taxonomic community structure are 
exhibited in infants with atypical bacterial or fungal alpha 
diversity trends
Given over 40% of infants displayed atypical alpha diver-
sity trends (for bacteria and/or fungi) and that commu-
nity composition (beta diversity) differed by these trends, 
we next explored whether specific taxa were differen-
tially associated with bacterial and fungal alpha diver-
sity trends in the first year of life. First, we compared the 
relative abundances of the 15 most abundant bacterial 
and fungal genera by age, which represented 88.3 ± 14.6% 
and 85.3 ± 16.5% of the total community for bacteria at 3 
and 12  months, respectively. The bacterial microbiome 
exhibited a more heterogenous taxonomic structure at 
3  months, with Bacteroides, Escherichia, and Bifidobac-
terium being the most abundant genera, then shifted 
towards Bacteroides dominance at 12  months (Fig.  3A). 
In line with previous reports of broad compositional 
shifts occurring over the first year of life [16–20], we 
found significant differences in the relative abundances 
of all of the top 15 genera, except Akkermansia, Haemo-
philus, Parabacteroides, Ruminococcus, and unclassified 
Rikenellaceae, between 3 and 12 months (Table S2).

Next, we assessed the taxonomic structure by age and 
bacterial alpha diversity trend and observed smaller 
structural differences at both 3 and 12 months between 
infants with increasing and decreasing trends (Fig.  3B, 
Figure S4 and Table S2). At 3  months, the atypical or 
decreasing bacterial trend was associated with a signifi-
cantly lower relative abundance of Escherichia (p = 0.013) 
relative to the typical or increasing trend; whereas, at 
12 months, the atypical trend was associated with enrich-
ment of Bacteroides (p = 0.016; Fig.  3B, Figure S4 and 

Table S2). To further probe what taxa were able to dis-
tinguish the typical alpha diversity trend from the atypi-
cal trend, we performed differential abundance analysis 
at the ASV level using DESeq2 [54]. At 3 months of age, 
infants that displayed an atypical bacterial alpha diver-
sity trend had lower abundance of Bacteroides caccae 
(p < 0.001) and higher abundance of Bacteroides ovatus 
(p < 0.001; Fig. 3C). At 12 months, the atypical trend was 
associated with an elevated abundance of Akkermansia 
muciniphila (p < 0.001), Bacteroides uniformis (p < 0.001), 
Prevotella copri (p < 0.001), and unclassified Rikenel-
laceae (p < 0.001), alongside a lower abundance of unclas-
sified Bacteroides (p < 0.001; Fig.  3C) relative to infants 
with a typical or increasing alpha diversity trend. Evi-
dence of both the genus- and ASV-based taxonomic dif-
ferences identified were also apparent when the relative 
abundance of the top 15 bacterial genera was assessed at 
the individual-level (Figure S4).

For fungi, the 15 most abundant genera represented 
86.9 ± 10.5% and 93.3 ± 11.3% of the total community at 
3 and 12  months, respectively. The mycobiome exhib-
ited shared dominance of Candida, Malassezia, and 
Mycosphaerella at 3  months, then shifted towards Sac-
charomyces dominated communities at 12  months, with 
significant changes in the relative abundance of most of 
the top 15 genera exhibited over this time, except Alter-
naria, Candida, Ganoderma, Resinicium, and Rigidoporus 
(Fig. 3D and Table S3). Fungi exhibited more pronounced 
shifts in taxonomic structure when assessed by alpha 
diversity trend compared to bacteria, with the atypical or 
increasing trend being significantly enriched with Candida 
at 3 months relative to the typical trend (p < 0.001), along-
side having lower abundances of Malassezia (p = 0.039), 
Cladosporium (p = 0.038), unclassified Sclerotiniaceae 
(p = 0.014), Naganishia (p = 0.006) and Meyerozyma 
(p < 0.001; Fig. 3E, Figure S5 and Table S3). At 12 months, 
the degree of Candida dominance was reduced, albeit 
remained more abundant than in infants with a typical 
fungal  alpha diversity trend (p = 0.001; Fig.  3E, Figure S5 
and Table S3). Rigidoporus was also significantly enriched 
in infants with  an increasing fungal alpha diversity trend 
at 12  months (p = 0.033), while Saccharomyces (p = 0.005) 
and Alternaria (p = 0.001) were depleted (Fig.  3E, Figure 
S5 and Table S3). At the ASV level, infants with an increas-
ing or atypical fungal alpha diversity trend had an enrich-
ment of Candida parapsilosis (p < 0.001) at 3 months and 
Cyberlindnera jadinii (p < 0.001), Meyerozyma guilliermon-
dii (p < 0.001), and specific Saccharomyces cerevisiae ASVs 
(p < 0.001) at 12  months relative to those with a decreas-
ing trend (Fig.  3F). Again, these findings were supported 
by individual-level assessment of the relative abundance of 
the top 15 genera by alpha diversity trend and age (Figure 
S5). Altogether, this analysis revealed that dynamic shifts in 
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bacterial and fungal community structure underlie patterns 
of alpha diversity change in early life.

Atypical alpha diversity trends are associated with altered 
inter‑kingdom co‑occurrence dynamics
Next, we employed co-occurrence network analyses 
at the species level to examine inter-kingdom dynam-
ics between bacteria and fungi. These methods facilitate 
the prediction of potential hub species and rank their 
positional importance within the ecosystem [69]. Met-
rics applied in ecological network analysis are also used 
to characterize and compare the organization and func-
tioning of ecosystems, facilitating the inference of multi-
trophic interactions amongst species [70]. Infants were 
evaluated based on the combination of alpha diversity 

trends they exhibited for both bacteria and fungi. Over-
all, 89 infants had adequate data for both timepoints 
and kingdoms. Of these, 50 (56%) infants displayed a 
typical or inverse overall trend between bacterial and 
fungal alpha diversity with bacterial alpha diversity 
increasing and fungal alpha diversity decreasing from 3 
to 12 months, 21 (24%) had an atypical decrease in bacte-
rial alpha diversity, 16 (18%) had an atypical increase in 
fungal alpha diversity, and 2 (2%) displayed an atypical 
trend for both bacteria and fungi. Infants with an atypical 
trend for both bacterial and fungal alpha diversity (n = 2) 
were omitted from subsequent analyses due to sample 
size limitations.

Inter-kingdom network analyses revealed distinct dif-
ferences in the structure of co-occurrence networks 

Fig. 3  Differences in taxonomic structure are observed in infants with atypical bacterial and fungal alpha diversity trends in the first year of life. 
A Relative abundance of the 15 most abundant bacterial genera at 3 and 12 months (3 months: n = 99, 12 months: n = 99). B Relative abundance 
of the 15 most abundant bacterial genera by bacterial alpha diversity trend at 3 and 12 months (increase: n = 74, decrease: n = 24; see Figure 
S2C for bacterial richness trend). C Differentially abundant bacterial ASVs in the decreasing (atypical) bacterial alpha diversity trend relative 
to the increasing (typical) trend at 3 and 12 months (increase: n = 74, decrease: n = 24). D Relative abundance of the 15 most abundant fungal 
genera at 3 and 12 months (3 months: n = 95, 12 months: n = 95). E Relative abundance of the 15 most abundant fungal genera by fungal alpha 
diversity trend at 3 and 12 months (decrease: n = 73, increase: n = 18; see Figure S3C for fungal richness trend). F Differentially abundant fungal 
ASVs in the increasing (atypical) fungal alpha diversity trend relative to the decreasing (typical) trend at 3 and 12 months (decrease: n = 73, increase: 
n = 18)
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between typical (inverse) and atypical (bacteria or fungi) 
overall alpha diversity trends at both 3 and 12  months 
(Fig. 4 and Table S4). This was reflected in significant dif-
ferences between various network measures of centrality 
and the emergence of distinct hub taxa in each network 
(Fig. 4 and Table S4), highlighting the unique inter-king-
dom co-occurrence dynamics exhibited across all three 
patterns of microbiome maturation at both timepoints. 
In the co-occurrence network for the typical (inverse) 
bacterial and fungal alpha diversity trends at 3  months, 
members of the core infant gut microbiome, Roseburia 
spp., unclassified Lachnospiraceae, Bacteroides dorei, and 
Akkermansia muciniphila were identified as hub taxa 
(Fig. 4A), forming a functional cluster consistent with the 
metabolic cross-feeding dynamics involved in butyrate 
metabolism in these ecosystems [71–74]. In contrast, 
atypical networks displayed a higher density of co-occur-
rence relationships, with a mix of core and opportunistic 
microbes emerging as hub taxa (Fig.  4). These hub taxa 
were dispersed across more functional clusters compared 
to the networks obtained from the typical alpha diversity 
trends, but some core members were maintained as hubs 
in the fungi atypical network at 3 months (e.g., A. mucin-
iphila), which likely reflects the expected increase in 
bacterial alpha diversity observed in these communities 
(Fig.  4). This is further supported by the higher natural 
connectivity (robustness) of the fungi atypical network 
compared to the bacterial atypical network (p = 0.017), 
being more comparable to the typical network (Table 
S4), suggesting that an atypical decrease in bacterial 
alpha diversity may have different and stronger effects 
on community dynamics than an increase in fungal alpha 
diversity.

When comparing network measures of centrality at 
3  months, the atypical bacterial alpha diversity trend 
network exhibited differences in betweenness central-
ity (network members that ‘bridge’ between nodes; 
p = 0.013) and Eigenvector centrality (level of influence 
of a node within a network; p = 0.003) relative to the 
typical inverse network (Table S4). Similarly, networks 
from infants exhibiting an atypical fungal trend dif-
fered in terms of degree (total number of edges or links 
between nodes; p = 0.003), closeness centrality (short-
est path between nodes; 0.013), betweenness central-
ity (p = 0.041), and Eigenvector centrality (p = 0.013) 
compared to the typical trend, with comparable differ-
ences also emerging between bacteria and fungi atypi-
cal networks (Table S4). Centrality metrics denote how 
important a node is for the connectivity and interactions 
within the network. That is, a node of high centrality is 
required for paths leading to other nodes, and conse-
quently, have a greater likelihood of being involved in the 
network’s predicted food chains [75]. Through this lens, 

this analysis suggests that typical microbiome maturation 
during infancy favours hubs of higher positional impor-
tance within the networks.

At 12  months, the network from infants with typical 
alpha diversity trends maintained functional clusters of 
core bacterial microbiome members (i.e., A. muciniph-
ila and Eubacterium dolichum) identified as hub taxa. 
In contrast, both atypical trends continued to display 
more densely connected networks and contained a com-
bination of hub taxa that were present at 3 months (i.e., 
Clostridium, Ganoderma) or are core microbiome mem-
bers (i.e., Blautia, Ruminococcus; Fig. 4). Candida parap-
silosis also emerged as a hub in the fungi atypical network 
at 12  months (Fig.  4B), consistent with the significantly 
higher relative abundance of Candida in infants with an 
atypical fungal alpha diversity trend at 3 and 12 months 
relative to those with a typical trend (Fig. 3E, F and Table 
S3). Network metrics at 12  months showed very simi-
lar results to those at 3  months (Table S4). The typical 
network exhibited differences in degree (p = 0.002) and 
betweenness centrality (p = 0.027) relative to the net-
work from infants with an atypical bacterial alpha diver-
sity trend, as well as differences in degree (p = 0.027) and 
Eigenvector centrality (p = 0.008) when compared to the 
network for those with an atypical fungal alpha diversity 
trend (Table S4). Meanwhile, the two atypical networks 
exhibited differences across degree (p < 0.001), between-
ness (p = 0.003), closeness (p = 0.003), and Eigenvector 
centrality (p = 0.013; Table S4). This further supports the 
idea that the typical alpha diversity trend network favours 
highly centralized nodes within trophic webs. In parallel, 
these consistent differences in network structure and hub 
taxa between typical and atypical alpha diversity trends 
at 3 and 12 months may indicate either earlier or delayed 
community transitions in infants with atypical bacterial 
or fungal alpha diversity trends.

To determine whether the observed co-occurrence 
dynamics were exclusively a function of inter-kingdom 
influences, we generated networks for each kingdom in 
isolation (Figures S6-7). In both cases, the structure of 
the typical vs. atypical bacterial or fungal networks mir-
rored those of the inter-kingdom networks, with fewer 
taxa passing the correlation threshold in the typical 
networks (Figures S6-7 and Tables S5-6). To evaluate if 
the differences in the network structures were a func-
tion of unequal sample sizes between the three groups, 
we compared the inter-kingdom networks between a 
typical inverse relationship for bacterial and fungal alpha 
diversity (n = 50) and all the atypical patterns combined 
(decreasing bacterial alpha diversity, increasing fungal 
alpha diversity, or both; n = 39). While this provided a 
level of control for the number of species passing the cor-
relation threshold (i.e., the number of species that pass 
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Fig. 4  Structural differences in inter-kingdom co-occurrence networks exist between infants with typical (inverse) and bacteria or fungi atypical 
overall alpha diversity trends in the first year of life. Inter-kingdom correlation networks of bacterial and fungal species based on overall alpha 
diversity trends at A 3 and B 12 months. Infants were classified into overall alpha diversity relationships based on the combination of alpha 
diversity trends they exhibited for bacteria and fungi. A typical inverse trend was characterized by increasing bacterial and decreasing fungal alpha 
diversity (n = 50); a bacteria atypical trend was characterized by decreasing bacterial and fungal alpha diversity (n = 21); and a fungi atypical trend 
was characterized by increasing bacterial and fungal alpha diversity (n = 16). Networks were generated using the fast greedy clustering algorithm 
with a minimum Pearson correlation coefficient threshold of ± 0.4. Positive correlations are displayed in green and negative correlations in red. 
Bacterial species are represented by circles and fungal species by triangles. Node size was determined based on degree centrality. Hub taxa are 
those with the highest betweenness centrality and are labelled with their shape perimeter bolded. Shape colour represents clusters of species more 
likely to co-occur with one another than with species from outside of these modules. Pair-wise comparisons of network measures were calculated 
using 5,000 permutations (see Table S4)
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the Pearson threshold is proportional to the number of 
samples evaluated), making it more comparable between 
the typical and atypical networks, many of the observed 
differences in network properties and hub taxa persisted 
(Figure S8 and Table S7). Together, this suggests atypical 
shifts in alpha diversity in the first year of life are asso-
ciated with altered microbial co-occurrence dynamics 
when compared to infants with a typical inverse overall 
trend between bacterial and fungal alpha diversity and 
that these changes may reflect differences in the rate of 
gut microbiome maturation.

Bacterial and fungal alpha diversity trends are associated 
with multi‑kingdom dynamics, FUT2 secretor status, 
and other known microbiome‑modifying factors in early 
life
We next sought to understand whether early-life, infant, 
maternal, nutritional, and ecological factors were linked 
to the divergent microbiome maturation patterns we 
observed in the first year of life. First, we employed ran-
dom forests to determine the factors that were predictive 
of whether an infant displayed an increasing or decreas-
ing alpha diversity trend. For the bacterial alpha diversity 
trend, breastfeeding duration (GI = 5.06), fungal alpha 
and beta diversity at 3 (alpha: GI = 3.55; beta: GI = 3.92) 
and 12  months (alpha: GI = 2.95; beta: GI = 2.77), and 
maternal healthy eating index (GI = 3.73) had the great-
est discriminatory power, followed by breastfeeding sta-
tus at 3 months (GI = 1.78), age at introduction of solid 
foods (GI = 1.76), and maternal (GI = 1.46) and infant 
(GI = 1.04) FUT2 secretor genotypes (Fig.  5A). The 
directionality of these relationships was then explored 
using logistic regression, while considering the con-
founding effects of infant, early-life, and maternal fac-
tors. Infants who were breastfed at 3  months, either 
partially (OR = 0.16, CI: 0.03–0.75, p = 0.029) or exclu-
sively (OR = 0.05, CI: 0.00–0.29, p = 0.003), were less 
likely to have an atypical or decreasing bacterial alpha 
diversity trend (Fig.  5B and Table S8). Maternal FUT2 
secretor genotype displayed a similar inverse relation-
ship for the homozygous (GG) allele (OR = 0.04, CI: 
0.00–0.43, p = 0.010), whereas the homozygous (GG) 
allele in infants was positively associated with an atypi-
cal bacterial alpha diversity trend (OR = 23.02, CI: 
2.96–280.06, p = 0.006; Fig.  5B and Table S8). Delivery 
via C-section also emerged as positively associated with 
a decreasing bacterial alpha diversity trend (OR = 11.57, 
CI: 1.76–112.13, p = 0.019), alongside prenatal antibiot-
ics exposure (OR = 15.80, CI: 1.96–194.97, p = 0.017; 
Fig. 5B and Table S8).

The fungal alpha diversity trend was similarly predicted 
by multi-kingdom dynamics, including bacterial alpha 
and beta diversity at 3 (alpha: GI = 3.66; beta: GI = 3.10) 

and 12 months (alpha: GI = 3.18; beta: GI = 2.99) of age, 
maternal healthy eating index (GI = 3.23), and breast-
feeding duration (GI = 2.45; Fig. 5C). Maternal consump-
tion of artificially sweetened beverages during gestation 
(GI = 1.47), age at introduction of solid foods (GI = 1.32), 
infant FUT2 secretor genotype (GI = 1.06), and breast-
feeding status at 3  months (GI = 0.97) also emerged as 
strong predictors (Fig.  5C). Logistic regression revealed 
maternal consumption of artificially sweetened beverages 
during gestation was positively associated with an atypi-
cal or increasing fungal alpha diversity trend (OR = 8.32, 
CI: 1.98–48.59, p = 0.008; Fig.  5D and Table S9), but no 
other significant associations were observed. Together, 
our analyses suggest that the role of known microbiome-
modifying factors, such as breastfeeding duration and 
birth mode, in the developmental patterns of the bac-
terial microbiome may not be as influential on fungal 
microbiome maturation. This work further revealed that 
multi-kingdom diversity metrics are associated with bac-
terial and fungal alpha diversity trends, and maternal and 
infant FUT2 secretor genotypes are associated with bac-
terial alpha diversity, prompting for further explorations 
of the effects of ecological interactions between bacte-
ria and fungi, as well as secretor status, on microbiome 
establishment.

Atypical bacterial and fungal alpha diversity trends are 
associated with metabolomic shifts in urine at three 
months of age
To investigate whether the differences observed in 
taxonomic community structure between alpha diver-
sity patterns were associated with functional changes, 
we performed untargeted urine metabolomics at 3 
and 12  months of age. Metabolite evaluation in urine 
has the advantage of revealing markers of physiologi-
cal or pathological host–microbe interactions, as 
microbiome-derived products can be excreted renally 
[76]. We identified differences in the concentration 
of specific urine metabolites between the typical and 
atypical alpha diversity trends for both bacteria and 
fungi at 3, but not 12, months of age (Fig.  6). Infants 
with an atypical or decreasing bacterial alpha diver-
sity trend exhibited significant enrichment of trimeth-
ylamine N-oxide (TMAO; p = 0.005; Fig.  6A), indole 
acetic acid (IAA; p = 0.003; Fig. 6B), creatine (p = 0.002; 
Fig.  6C), and 2-furoylglycine (p < 0.001; Fig.  6D) rela-
tive to those with a typical or increasing bacterial 
alpha diversity trend. For fungi, an atypical or increas-
ing alpha diversity trend was associated with higher 
concentrations of lactic acid (p < 0.001; Fig. 6E). Given 
most metabolites (n = 102) remained unchanged when 
assessed by either the bacterial or fungal alpha diver-
sity trend, this suggests that compositional changes in 
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the gut microbiome likely did not translate to systemic 
host functional shifts, but investigations of the serum 
and stool metabolomes could help confirm this. How-
ever, the increases observed in the concentration of 
metabolites with known microbial origins (e.g., TMAO, 
IAA, lactic acid) [77–79] implies these changes in gut 
microbial composition may still have functional conse-
quences on the host.

Discussion
A signature feature of primary ecological succession in 
bacterial communities is an increase in alpha diversity, 
propelled mainly by non-stochastic, niche-driven effects 
[80]. These predictable patterns of primary succession 
have also been observed in the bacterial gut microbi-
ome of infants over the first year of life, based on group-
wise comparisons of diversity metrics across early-life 

Fig. 5  Multi-kingdom dynamics, maternal and infant nutrition, delivery mode, and antibiotic exposure are associated with atypical bacterial 
and fungal alpha diversity trends. A Predictors of bacterial alpha diversity trend identified by random forest using 10-fold cross-validation, 500 
trees, and 1,000 permutations (increase: n = 63, decrease: n = 22). The increasing alpha diversity trend was set as the reference level. B Multivariable 
logistic regression identifying associations between early life, infant, and maternal factors and a decreasing (atypical) bacterial alpha diversity 
trend (increase: n = 70, decrease: n = 23). The increasing alpha diversity trend was set as the reference level. C Predictors of fungal alpha diversity 
trend identified by random forest using 10-fold cross-validation, 500 trees, and 1,000 permutations (decrease: n = 68, increase: n = 17). The 
decreasing alpha diversity trend was set as the reference level. D Multivariable logistic regression identifying associations between early life, infant, 
and maternal factors and an increasing (atypical) fungal alpha diversity trend (decrease: n = 71, increase: n = 17). The decreasing alpha diversity 
trend was set as the reference level. AS, artificially sweetened; GI, Gini index; AG and GG FUT2 secretor genotypes are secretors, reference level AA 
genotype are non-secretors; ~ p < 0.1; *p < 0.05; **p < 0.01
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timepoints [16–20]. By evaluating ecological shifts at the 
individual level, we identified divergent trajectories of 
gut microbiome maturation across 100 Canadian infants 
based on changes in bacterial and fungal alpha diversity 
per individual from 3 to 12  months of age, which were 
masked when performing group-based analyses. These 
trajectories occurred in over 40% of infants and were 
characterized by distinct differences in community com-
position, inter-kingdom co-occurrence dynamics, and 
the abundance of select microbially-derived urine metab-
olites, suggestive of variable rates of microbiome matura-
tion. Factors known to be involved in directing early life 
bacterial microbiome maturation, such as breastfeed-
ing and delivery mode [19, 20, 57], were associated with 

these patterns for bacteria, but not fungi. Together, this 
work highlights the important knowledge gaps created 
when microbiome research focuses exclusively on group-
based, single-kingdom, and/or cross-sectional analyses.

Successional patterns of infant gut microbiome matu-
ration have been well-described for the bacterial micro-
biome [16–20], while only a handful of reports on 
fungal microbiome maturation patterns exist and most 
are limited by small sample sizes [3, 9, 21–28]. In this 
sub-cohort, the overall changes in the taxonomic struc-
ture of the bacterial and fungal gut microbiome from 3 
to 12 months largely followed what has been previously 
reported [3, 9, 16–28], but differences emerged in infants 
with atypical bacterial or fungal alpha diversity trends, 

Fig. 6  Atypical bacterial and fungal alpha diversity trends are associated with functional differences reflected in urine metabolites at 3 months. 
Normalized concentrations of A trimethylamine N-oxide (TMAO), B indole acetic acid (IAA), C creatine, and D 2-furoylglycine by bacterial alpha 
diversity trend (increase: n = 74, decrease: n = 24) and E lactic acid by fungal alpha diversity trend (decrease: n = 73, increase: n = 18) at 3 months 
observed in urine, assessed by t-test. Metabolite concentrations were normalized using the median, log-transformed, and pareto-scaled 
(mean-centered and divided by the square root of the standard deviation of each metabolite) and a false discovery rate (FDR) cutoff of 0.1 
was applied. No significant differences in urine metabolite concentrations were observed at 12 months
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suggesting alterations in the arrival times of specific 
microbes, availability of appropriate niches, or initia-
tion of ecosystem transitions. For example, Ruminococ-
cus gnavus has been identified as marker of microbiome 
immaturity [20, 81], but emerged as a hub in both atypi-
cal networks at 12 months. Similarly, Candida is typically 
dominant very early in fungal microbiome maturation 
[3, 21, 22, 27], but infants with an atypical fungal alpha 
diversity trend maintained a high abundance of Candida 
and failed to transition to Saccharomyces-predominant 
communities over the first year of life, with Candida par-
apsilosis being identified as a hub taxon in the atypical 
co-occurrence network at 12 months. Transition towards 
communities enriched with Saccharomyces has been pre-
viously linked to the introduction of solid foods [3, 9]; 
however, this factor was not significantly associated with 
an atypical fungal alpha diversity trend in our study, sug-
gesting more complex ecosystem dynamics may underly 
this incomplete compositional transition.

Our investigations of inter-kingdom dynamics revealed 
stark differences in the structure of co-occurrence net-
works between infants with typical and atypical matura-
tional patterns at both 3 and 12 months of age, regardless 
of whether the atypical trends were driven by changes in 
bacteria or fungi. Networks for the typical (inverse) bac-
terial and fungal alpha diversity trend displayed defined 
functional clusters with few taxa passing the correla-
tion threshold, which increased in complexity from 3 
to 12  months. In contrast, both atypical trends exhib-
ited densely connected networks that were structurally 
comparable between timepoints. These differences may 
indicate reduced microbiome maturity and lack of suc-
cessional progression in infants with an atypical bacterial 
or fungal alpha diversity trend, given densely connected 
ecosystems are more vulnerable to disturbances [82]. 
In contrast, more competitive microbial community 
dynamics with fewer taxa passing the correlation thresh-
old, such as the ones observed for the typical alpha diver-
sity trends, are associated with increased community 
stability and maturity [82]. This is further emphasized by 
the increase in modularity in the typical networks from 
3 to 12  months, evidenced by the distinct functional 
clusters separated by negative co-occurrence relation-
ships, suggestive of the formation of sub-communities 
driven by ecological processes such as habitat filtering 
or niche occupation [83]. Meanwhile, the differences in 
centrality measures across each network highlights the 
distinct community dynamics and hubs, or most cen-
tral taxa, underlying the varied patterns of microbiome 
maturation. Ultimately, the observed inter-kingdom co-
occurrence dynamics suggest atypical shifts in bacte-
rial or fungal alpha diversity in the first year of life may 
limit the ability of the microbiome to form resilient, 

stable communities, potentially due to overly cooperative 
dynamics that prevent or delay subsequent successional 
steps from occurring. This is supported by experimental 
evidence from eco-evolutionary models, showing that 
evolution limits cooperation among microbial commu-
nity members, as this increases dependency on species 
that may not be present and renders less productive com-
munities [84].

Functionally, select metabolites with known micro-
bial origins were found to be elevated at 3  months in 
infants with an atypical bacterial or fungal alpha diver-
sity trend, suggesting these divergent maturational pat-
terns may have important functional implications. 
First, the higher creatine levels observed in those with 
an atypical bacterial trend support our hypothesis that 
these infants may be experiencing delayed microbiome 
maturation, as reductions in creatine have been associ-
ated with microbial colonization and microbiome matu-
rity in both animal models and humans, explained by 
microbial involvement in creatine elimination [85–88]. 
Meanwhile, the enrichment of metabolic by-products of 
various microbial metabolic pathways, including TMAO 
(protein catabolism) and IAA (tryptophan catabolism) in 
the atypical bacterial trend and lactic acid (sugar anab-
olism) in the atypical fungal trend, suggest these altera-
tions may have broad functional effects on the host. For 
example, enrichment of IAA in infants with an atypical 
bacterial alpha diversity trend may reflect greater trypto-
phan metabolism by the IAA-producer, Bacteroides ova-
tus [89], whose relative abundance is significantly higher 
in the atypical bacterial trend at 3  months. This could 
translate to broad physiological influences on the host, as 
IAA is involved in immune homeostasis, gut-brain com-
munication, regulating epithelial integrity, and host gene 
expression [77, 89–91]. In contrast, the accumulation of 
lactic acid in the atypical fungal alpha diversity trend may 
indicate the absence of lactate-consuming, butyrate-pro-
ducing strains in the microbiome of these infants, such as 
Roseburia, which could have downstream impacts on gut 
epithelium integrity due to the role of butyrate in colono-
cyte health [92–95]. Although these metabolic changes 
are not maintained longitudinally, being observed at 
3 months only, it is possible that they may still be influ-
ential given the rapid developmental processes and pro-
nounced influence of host-microbiome crosstalk during 
this early-life critical window [31, 32].

Current understandings of the factors influencing gut 
microbiome maturation patterns in early life are based 
on the bacterial microbiome. Our study found that the 
factors related to the bacterial alpha diversity trend are 
largely consistent with the literature, including the effects 
of breastfeeding, antibiotics, and mode of birth [19, 20, 
57]. Yet, we also identified a role of both maternal and 
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infant FUT2 secretor genotype in microbiome matu-
rational trajectories, with the directionality of the asso-
ciation changing depending on whether the mother or 
infant was a homozygous (GG) secretor. This intriguing 
finding may reflect differential influences of maternal vs. 
infant secretor status on microbial metabolism and gut 
physiology, as the secretion of ABO histo-blood group 
antigens in breast milk and on the gut mucosa act as car-
bohydrate substrates for microbes, and thus, may favour 
certain microbes occupying specific geospatial niches [8, 
96]. For example, secretor mothers produce fucosylated 
human milk oligosaccharides (HMOs) in breastmilk that 
select for the expansion of HMO-utilizing bifidobacte-
ria, and subsequently, encourage cooperative microbial 
cross-feeding dynamics in these communities [8, 96, 97]. 
This has been associated with increased alpha diversity in 
breastfed infants [8, 96, 97], consistent with our results. 
In contrast, infant secretors express these carbohydrate 
groups on the mucus lining of the gut, which may influ-
ence microbial community composition by favoring 
mucosa-associated microbes or mucin degraders, such 
as Akkermansia muciniphila [98]. This could explain 
the expansion of Akkermansia muciniphila observed 
at 12  months in infants with an atypical bacterial alpha 
diversity trend, as this trend was positively associated 
with infant FUT2 secretor status. Given the variability in 
associations previously reported between secretor status 
and microbiome composition [97, 99, 100], this relation-
ship is likely complex, but our finding highlights the need 
to consider the influence of both maternal and infant 
genetic factors on microbiome maturation patterns in 
early life.

Unlike the divergent bacterial microbiome matu-
rational trajectories, fungal alpha diversity trend was 
largely not associated with known bacterial microbi-
ome-modifying factors, apart from exposure to artificial 
sweeteners [36], suggesting fungal colonization may be 
directed by factors beyond commonly studied pre- and 
post-natal exposures. Instead, we found alpha and beta 
diversity metrics of the opposing kingdom to be robust 
predictors of alpha diversity trend directionality. This 
highlights the importance of multi-kingdom micro-
bial interactions during infant microbiome assembly, as 
within-ecosystem dynamics beyond bacteria may have 
differential and stronger influences on microbial colo-
nization patterns than external factors. For example, 
a recent ecological analysis by Rao et  al. revealed that 
Candida albicans dictated early microbial assembly by 
inhibiting Escherichia and Klebsiella colonization, while 
its own expansion was prevented by Staphylococcus [10]. 
Considering the substantial relative abundance of Can-
dida in infants with an atypical fungal alpha diversity 
trend at both 3 and 12 months, it is possible that similar 

inter-kingdom ecosystem dynamics may underly these 
different maturational patterns. Together, these findings 
call for the inclusion of additional microbiome members 
in studies on early-life gut microbiome maturation and 
highlight the limitations of generalizing our understand-
ings of factors influencing bacterial colonization patterns 
to other kingdoms.

The main strength of our study is the incorporation 
of multi-kingdom data and individual-level longitudinal 
analyses to add improved resolution to our understand-
ing of bacterial and fungal gut microbiome maturation 
patterns in early life. By evaluating bacterial and fun-
gal members of the gut microbiome together, we were 
able to identify the important influence of inter-king-
dom factors on microbiome maturation and generate 
clearer understandings of the differences in microbial 
co-occurrence dynamics between typical and atypi-
cal maturation patterns. However, while the network 
analyses used to generate these findings are informa-
tive and hypothesis-generating, it is important to note 
that they inherently come with limitations, particularly 
when based on compositional vs. absolute data, and the 
biological interactions inferred should be reproduced in 
other cohorts and corroborated experimentally to con-
firm their relevance. Further, although our study is con-
strained by sample size, this limitation simultaneously 
highlights the prevalence of diverging microbiome mat-
uration patterns in early life, calling for greater research 
attention.

Future work should focus on the incorporation of 
repeated microbiome measures and additional func-
tional analyses (e.g., fecal metabolomics, immune mark-
ers) to determine if the atypical alpha diversity trends 
observed vary within or extend beyond the first year of 
life and clarify the functional effects of atypical trajecto-
ries of microbiome maturation on the host. This could 
be further strengthened through the incorporation of 
metagenomic analyses to help overcome the limitations 
of amplicon-based sequencing, particularly by provid-
ing broader functional measures, improved bacterial 
taxonomic assignment, and enabling the interrogation of 
other microbiome members (e.g., bacteriophage, viruses, 
Archaea) and how they contribute to gut microbial eco-
system dynamics. In parallel, longitudinal data on health 
outcomes in childhood and adolescence would provide 
important insights into the developmental implications of 
these divergent maturational patterns, which are unclear 
in this work due to our early-life focus. Despite these 
limitations, our research clearly highlights the pitfalls of 
reductionist (e.g., bacteria only) and exclusively group-
based analytical approaches in gut microbiome research, 
which have a greater propensity to mask more complex 
ecosystem dynamics and yield incomplete narratives.
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Overall, our findings suggest atypical patterns of bacte-
rial and fungal gut microbiome succession are more com-
mon than previously considered, and that these patterns 
may be indicative of delayed or variable rates of microbi-
ome maturation. Analyses in large, longitudinal cohorts 
containing data on health outcomes and repeated micro-
biome measures will be imperative to determine whether 
the atypical microbiome maturation patterns observed 
have long-term consequences. Our work also determined 
that while the mycobiome plays an important role in bac-
terial microbiome establishment during early life, the 
factors influencing fungal microbiome maturation differ 
from those commonly reported for the bacterial micro-
biome and remain underexplored. It may be the case that 
the mycobiome is more strongly influenced by stochastic 
factors, within-ecosystem dynamics, or other social and 
environmental factors (e.g., cultural differences in diet, 
geography, seasonality). Future work should seek to bet-
ter delineate the differential influences of early-life expo-
sures on the bacterial vs. fungal microbiome, as well as 
how inter-kingdom dynamics contribute to gut coloniza-
tion patterns. Ultimately, understanding the ecological 
and host-derived processes behind microbial primary 
succession may be useful within restoration and conser-
vation frameworks aimed at improving the health trajec-
tories of children at risk of or already displaying early-life 
microbiome alterations.
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