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Abstract

Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our
understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture
microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level
groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite
the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns
of contig coverage across multiple datasets significantly improves the binning process. We also discuss and
compare current genome validation methods and reveal how these methods tackle the problem of chimeric
genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be
used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the
genome-wide evolution.

Keywords: Metagenomics, Genotype, Assembly, Binning, Curation

Background
Microbial ecology aims to understand the in situ microbial
dynamics (taxonomic, functional, and evolutionary) of
geochemically diverse environments, in part to elucidate
how these environments select for particular microbial
assemblages [1]. To characterize the microorganisms in
these environments, we routinely employ metagenomic
sequencing to predict the metabolic potential of the
community of organisms without the need for prior
cultivation. However, with the judicious use of metage-
nomic assembly tools, it is also possible to reconstruct the
genomes of individual or closely related pools of micro-
organisms found in this community (Fig. 1). Through
advances in computational infrastructure and software, we
have seen a revolution in the use of metagenomic assem-
bly to create a compendium genomes representing uncul-
tured microbial lineages. Metagenomic studies of acid
mine drainage channels [2, 3], the human gut [4], cow
rumen [5], ocean environments [6], and bio-stimulated
sediments [7] have demonstrated the utility of sequence

assembly for the recovery of complete or draft genomes,
including those of closely related organisms [8]. For
example, metagenome (250 Mb) assembly was used to
recover the genomes of two Citrobacter strains sharing
~99 % nucleotide identity with plausible genotypic
variation in regulatory genes, flagella biosynthesis, and
substrate metabolism [9]. These advances are revolution-
izing the study of microbial ecology by enabling re-
searchers to link the functional mechanisms that support
specific metabolism with taxonomy and environmental
context [10, 11].
Metagenomic recovery of complete or draft bacterial

and archaeal genomes provides a route to analyze the
“taxon-specific” potential of organisms within their com-
munity and ecosystem context. This is allowing insights
into ecological adaptation, trophic interactions, and
metabolic versatility of uncultured and eco-genetically
adapted organisms (Fig. 1; [6, 12–16]). A genome can be
defined as the total gene content of a single cell, whereas
a population genome or genotype is defined as the total
gene content of a group of closely related organisms.
Genetic variability can be extensive in many bacterial
species [17], which creates barriers to the recovery
of strain-specific genotypes from complex microbial
communities. This is because genome recovery
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(reassembly) methods are often based on clustering
genetic sequences by nucleotide composition (oligo-
nucleotide frequency-based correlation) and subsequent
alignment-free visualization of metagenome contigs [6].
Therefore, within a population of extremely closely
related strains, it is difficult to segregate the gene
content of each genotype.
In this review, we discuss the existing theoretical

frameworks and methodologies for reconstructing
genomes from metagenomic data sets, how these
methods are limited by the availability of computational
resources, and provide a series of recommendations on

best strategies for metagenome assembly (analysis of
sequence coverage and assembly errors) and binning.

Assembling contigs from short read metagenomic
data
Assembling community genomics data, especially the
co-assembly of multiple samples, is a complex task. This
is in part due to computational memory constraints but
mainly as a result of biological complexity, including
genetic diversity and mobile genetic elements. Long
stretches of near-identical metagenomic sequences are
especially hard to assemble with the short reads from

Fig. 1 Workflow and overview for recovering population genomes from shotgun metagenomics data
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next generation platforms because such sequences could
be from multiple sources: repetitive DNA of a single
genome, homologous regions of closely related strains,
or conserved regions of different species that coexist
in the community. Failure to resolve these regions
often result in rearrangement errors and chimeric as-
sembly [18–20].
Recent developments in assembly algorithms [21–25]

and related methods [26, 27] have led to significant im-
provements in the accuracy and efficiency of sequence
assembly. These successes are measured by more con-
tiguous pieces (greater N50 scores), increased numbers
of predicted genes, fewer break points and rearrange-
ments, and error limits close to the expected sequencing
substitution error rate. Importantly, with memory use
being such a bottleneck for analysis, many of these new
programs have focused on reducing memory require-
ments, e.g., Minia [28], or parallel algorithms on
distributed-memory machines e.g., HiPMer [29]. While
metagenomic assembly is improving, metrics such as
N50, designed for single-genome assembly, can be mis-
leading; instead, combining N50 with other metrics such
as rigorous statistical metrics e.g., ALE [30], fragment
coverage distribution [31], total assembly size, and num-
ber of predicted non-redundant genes may provide an
improved measure assembly success [27].
In 2012, Namiki et al. outlined the most important

limitation of the single-genome assembly programs,
namely, the inability of these algorithms to cluster se-
quence reads with diverse origins and heterogeneous
coverage. Focusing on the “always increasing” property
of the de Bruijn graph construction method, using the k-
mer frequency patterns of the input dataset, the authors
presented a strategy to decompose the de Bruijn graph
of multiple species into subgraphs, each representing a
cluster of reads from an individual species. However,
since multiple species can have similar coverage patterns
[32], these individual subgraphs can represent popula-
tion genotype bins. A similar framework was imple-
mented in various other metagenomic assemblers [24].
In 2012, Pell and colleagues [26] demonstrated the use
of bloom filters as data structures for storing sparse sets
as de Bruijn graphs (predominant assembly method),
these filters lower the memory requirement by 40-fold.
Recently, Scholz and colleagues presented a new
method, metagenomic assembly by merging (MeGA-
Merge), to generate an improved metagenome assembly
by merging the contigs generated from multiple assem-
blies [27]. Using an overlay consensus (OLC)-based as-
sembler (for example, Minimus-2 [33]), contig bins
assembled across different platforms (e.g., Velvet [34],
SOAPdenovo2 [35], and Ray [36]), assembly parameters
(e.g., k-mer length), and sequencing technologies (e.g.,
Illumina and Pyrosequencing) were merged into a

composite assembly. Similarly, Deng et al. highlighted
the sequential use of de Brujin graphs and OLC assem-
blers to increase the percentage recovery of targeted ge-
nomes [37]. Individual metagenome assemblies were
generated from quality-trimmed metagenome reads
(complete and partitioned datasets) using de Brujin
graph-based assemblers such as SOAPdenovo2 [35] and
ABySS [38]. Finally, multiple assembly outputs generated
across complete and partitioned sequence datasets were
merged using an OLC assembler CAP3 [39]. Optimized
sequential use of different assembly platforms has dem-
onstrated the potential to improve contig and scaffold
lengths.
To determine the most effective strategy to use re-

quires knowledge of how parameters such as genetic di-
versity, k-mer length, and sequence errors influence
assembly success. To quantify these impacts, several re-
cent studies have employed simulated shotgun sequence
data [18, 40, 41]. Cahruvaka and Rangawala [41] suggest
that the evenness of abundance of members of the com-
munity had a significant influence on accuracy, whereby
the lower the evenness (greater dominance) the greater
the accuracy; also, as expected, high intra-strain level di-
versity significantly reduced accuracy. They also demon-
strated that clustering of contigs generated from
assembly across different k-mer lengths created longer
but less accurate contigs. Finally, while sequencing er-
rors did not influence the annotation of gene function,
they played a significant role in reducing the assembly
accuracy [40]. However, to determine an effective strat-
egy, one must also consider the metagenomic coverage,
which is the fraction of total community diversity cap-
tured in the dataset.
Recently, Rodriguez and Konstantinidis highlighted

methods for estimating metagenome coverage using real
microbial metagenomic data [42]. Accurate coverage es-
timates are important in comparative studies as it in-
forms the statistical tests required for interpretation of
results [43] and is directly related to assembly quality
[44]. Rarefaction analysis is the primary qualitative
method used to estimate metagenome coverage, but it is
suboptimal for metagenomic coverage analysis as it is re-
liant on deep sequence coverage of a metagenome, high-
quality assemblies, and representative reference data
sets, which limit its use for complex natural communi-
ties with low sequencing depth and for species with no
reference genome [45, 46]. Nonpareil [42] addresses
these problems by using singleton genes to calculate
average metagenome coverage. Specifically, ungapped
alignment between terminal regions of sequence reads is
used to calculate the redundancy (portion of the total
reads in the dataset that shows overlap with at least one
other read) values for a subset of a complete dataset.
Using a binomial distribution approach, individual read
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abundance (number of matches with other reads in the
dataset) was processed to compute a saturation function
of redundancy. Finally, the saturation function was sum-
marized to calculate the average coverage. Nonpareil al-
lows accurate estimation of the sequencing effort
required to achieve a fixed average coverage, which can
be used as a quality metric for the expected metagenome
assembly.

Binning: grouping assembled contigs into
taxonomic bins
Metagenomic binning has two major components: (i)
clustering and (ii) data representation. Clustering in-
volves grouping contigs, scaffolds, or genes based on
their genetic characteristics, including oligonucleotide
frequency or coverage, using a combination of different
approaches, such as hierarchical clustering and neural
networks. These clusters are then grouped with various
data representation approaches into individual taxo-
nomic bins.
Based on the differences in sampling content (one

sample or series of samples), clustering inputs (nucleo-
tide composition-based or nucleotide composition-
independent), and use of the abundance information,
current methods of recovering genome bins from meta-
genome assemblies can be divided into three types
(Table 1): (i) nucleotide composition (NC)-based, (ii) dif-
ferential abundance (DA)-based, and (iii) nucleotide
composition and abundance (NCA)-based. The major
difference between the three methods is the starting
point for the contig binning process. NC methods rely
on oligonucleotide frequency variations. DA methods
rely on the coverage of contigs across multiple samples
where the organisms’ abundance changes. NCA-based
approaches focus on creating a composite distance
matrix from a combination of NC and DA analysis. It is
worth noting that while earlier binning efforts were di-
rected to raw reads, most pipelines today assemble them
into longer contigs first. The reasons are as follows: (1)
metagenome assembly used to be prohibitive and (2) NC
and DA signals are both more pronounced and stable on
longer sequences.
The majority of the community genomics surveys pub-

lished in recent years [3, 6, 12, 13, 16, 47, 48] have used
NC, mostly oligonucleotide frequency and %G+C. Mack-
elprang et al. [13] used a hierarchical agglomerative clus-
tering method to process the tetranucleotide frequency
matrix and cluster metagenome contigs into genome
bins, while Iverson et al. used a graph-based approach
for assisting individual genome reassembly. In this latter
study, a network graph was constructed where nodes
(individual contigs and/or scaffolds) are connected by
edges representing tetranucleotide Z-statistic correlation.
Outliers were excluded from the graph using an

empirically determined distance cutoff (Pearson’s correl-
ation coefficient (PCC) >0.9). Connected nodes (scaf-
folds) of these graphs were later checked manually for
coverage and %G+C profiles. Open-source software
packages (Table 1) are available, including qgraph [8]
and igraph (https://cran.r-project.org/web/packages/
igraph/index.html), to perform such clustering and
network-based graph construction and visualization.
However, this pairwise analysis is computationally ex-
pensive for large datasets. NC techniques have mostly
been applied to communities with genotypes that pos-
sess distinct nucleotide composition pattern, such as a
low %G+C and consistent oligonucleotide frequency [6].
It is likely, though not proven, that this technique in iso-
lation will struggle with communities that exhibit high
oligonucleotide compositional variance.
In 2013, Sharon et al. demonstrated the DA approach

on time series data to reconstruct six complete and two
near complete bacterial genomes; these taxa had relative
abundances as low as 0.05 % of the total community.
The raw sequence data were assembled (de novo) using
a de Bruijn graph approach, the contigs were binned ac-
cording to the k-mer coverage, and the bins with great-
est abundance were selected for the individual assembly.
For each iteration, assembly parameters were optimized
according to the selected coverage profile. Finally, the
reads that mapped over the assembly were removed
from the original set, and the remaining data was again
binned according to the k-mer abundance to determine
coverage. Size-selected (>3 kb) scaffolds were clustered
into the bins using emergent self-organizing maps
(ESOM) with a normalized time-series abundance
profile.
A similar DA approach was used to recover the high-

quality population genomes from environmental samples
processed using two different DNA extraction methods,
which resulted into the creation of two community gene
pools with different population relative abundance
profiles [49]. Size-selected scaffolds from the larger
metagenome dataset were binned using coverage infor-
mation, but then, tetranucleotide frequencies were
employed for clustering and visualization (in a permuta-
tion on the NCA approach described below). Individual
reads mapped over refined genome bins were extracted
and reassembled independently. Paired-end information
was further employed to identify multiple-copy genes,
including rRNA operons. The authors also provided Perl
scripts to facilitate the assembly visualization, including
the reference-free assembly validation statistics [50].
Nielsen et al. used a DA method called Canopy to re-

construct microbial and phage genomes, and plasmids,
using co-abundance patterns across multiple samples
[51]. Initially, an iteratively optimized Markov clustering
(MCL) algorithm and co-abundance-based correlation

Sangwan et al. Microbiome  (2016) 4:8 Page 4 of 11

https://cran.r-project.org/web/packages/igraph/index.html
https://cran.r-project.org/web/packages/igraph/index.html


distance (1-correlation coefficient) matrix was used to
cluster 2 % of the total community genetic repertoire
with the strongest correlation to the human type 2
diabetes phenotype [52]. Again, due to the pairwise
analysis, this method is computationally expensive, so
Nielsen and colleagues used a novel approach to over-
come these computational limitations. Using a global
sequence identity cutoff of 95 %, a non-redundant
community gene pool was created. Normalized co-
abundance patterns were calculated for each gene using
paired-end read mapping. Clustering was performed by

randomly picking a “seed” gene from the community
gene pool and cluster genes with similar co-abundance
profiles using strict pairwise correlation cutoff. Each
cluster then represents a “seed canopy,” and canopies
with median abundance profiles within a distance of
0.97 PCC to each other and passing the rejection
criterion explained in the original paper [51] were co-
abundance groups (CAGs). CAGs with >700 genes
were referred to as metagenome species (MGS), and
reads mapped over MGSs were extracted from each
sample and reassembled individually. This was

Table 1 Key methodological features of three main metagenome binning approaches

Method Starting point Clustering methods Negatives Positives Computational
Resources

Nucleotide
composition
(NC)

Oligonucleotide
frequency matrix
and %G+C-based
screening.

HCL, correlation-based
network
graph and emergent
self-organization
maps (ESOM).

(i) More efficent for
the genomes with
skewed nucleotide
composition patterns.

(i) Individual metagenome
assemblies or samples
where populations do
not change over time
can be used.

(i) R packages: qgraph (8),
i graph, pv-clust [82]

(ii) tetramerFreqs [83]
(https://github.com/
tetramerFreqs/Binning)

(iii) Databionic ESOM tools
[84]. (http://databionic-
esom.sourceforge.net/)

(ii) Less efficient in
differentiating between
closely related genotypes.

(iv) 2T-binning [85]
(http://hmp.ucalgary.ca/
HMP/metagenomes/data/
SCADC/454/Binning/
2TBinning/)

(iii) Depends on the
visualization and manual
inspection of bins and
therefore are not suitable
for very large assemblies
representing complex
environments.

Nucleotide
composition
and abundance
(NCA)

A composite
distance matrix
from oligonucleotide
frequency matrix and
coverage.

K-medioids clustering,
Gaussian mixture
models, and
expectation and
maximization
algorithm.

(ii), (iv) Require multiple
samples for better
performance, and therefore
are associated with cost,
time, and computational
resources.

(i), (ii) Improved contig
binning than NC method.

(i) MetaBAT [54]. (https://
bitbucket.org/berkeleylab/
metabat)

(ii) CONCOCT [86]
(https://github.com/
BinPro/CONCOCT)

(iii) MaxBin [87] (http://
downloads.jbei.org/data/
microbial_communities/
MaxBin/MaxBin.html)

(iv) GroopM [57]. (https://
github.com/minillinim/
GroopM)

(v) Databionic ESOM tools
[84] (http://databionic-
esom.sourceforge.net/)

Differential
abundance
(DA)

Differential coverage
patterns across
multiple samples
where population
changed in abundance
over time.

Profile based
correlation cut-off.

(iv) Must have multiple
samples with population
changed in abundance
over time, and therefore
are associated with cost,
computational time, and
resources.

(ii), (iii) Strain level
resolution can be
achieved.

(i) Multi-metagenome [49]
(https://github.com/
MadsAlbertsen/multi-
metagenome)

(ii) MGS Canopy algorithm
[51] (https://github.com/
fplaza/mgs-canopy-
algorithm).

(iii) Databionic ESOM tools
[84] (http://databionic-
esom.sourceforge.net/)
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referred to as MGS augmented assembly and resulted
in the reconstruction of 741 genotypes including
238 microbial genomes meeting the high-quality gen-
ome standards of the Human Microbiome Project
(HMP) [53].
In early 2014, a supervised binning NCA method

called metagenome binning with abundance and tetra-
nucleotide frequency (MetaBAT; [54]) was used to re-
construct 173 highly specific genome bins from a human
microbiome metagenome collection. For each pair of
contigs, MetaBAT calculates two probabilities of pairwise
distances using tetranucleotide frequency and abundance
patterns across samples. It then integrates all pairwise
probabilities into a composite distance matrix. Using in-
formation from whole genome sequencing projects in
IMG database, the authors suggest that sequencing
bias can cause significant coverage variation among
contigs assembled across one sequencing library. To
overcome this coverage bias, a normal distribution-
based approximation method was used to calculate the
abundance matrix for each pair of contigs across one
sample. Then, a geometric mean of all distances for all
the samples was used to calculate the final abundance
matrix. Finally, a modified k-medoid algorithm itera-
tively clusters the composite matrix into individual
genome bins.
Due to the theoretical superiority of NCA methods,

more tools (a binning algorithm without a cool acronym
(ABAWACA) (https://github.com/CK7/abawaca), clus-
tering contigs on coverage and composition (CON-
COCT) [55], MaxBin [56], and GroopM [57]) have
emerged in this category to provide automated genome
binning. While all these tools bear family resemblance
(e.g., some form of iterative clustering; the use of marker
genes for bin delineation) to the MetaBAT algorithm
described above as a representative, there are major
modeling and algorithmic differences that are poorly
understood. To date, our understanding of the impact of
these differences comes from a small number of com-
parative evaluations by the method developers, and we
have seen these tools give significantly different results
on the same data set both in these experiments and in
our own experience. Thus, we posit that the field of
metagenome binning is in a similar place to where
genome assembly or whole genome alignment was a few
years ago before the occurrence of comprehensive
benchmarks and competitive assessment studies such as
Assemblathon [58], Alignathon [59], and GAGE [60]. An
example of such comparative studies in binning (and
metagenomic analysis in general) is the critical assess-
ment of metagenome interpretation initiative (CAMI;
http://www.cami-challenge.org) that is currently under
way. Until we see outcomes of more external studies
where unpublished, diverse, simulated, and real data sets

are used for evaluating binning accuracy, it is unlikely
that we will be able to conclusively recommend one tool
over the others.
In the meantime, we have tabulated the key differences

in the prominent NCA approaches (Table 2). It is im-
portant that we improve our understanding of how these
design decisions affect binning accuracy. We highlight
here the interesting algorithmic choices according to our
intuition on how they manage to exploit more informa-
tion than other approaches. (1) Sequence composition
model: Most tools use tetranucleotide frequencies, but
the dimension reduction in CONCOCT and GroopM al-
lows them to be potentially more flexible with longer k-
mers. MaxBin and MetaBAT do not use straight Euclid-
ean distance but estimate probabilistic composition dis-
tributions from complete reference genomes. Of the
two, MetaBAT’s model is more sophisticated as it ac-
counts for different contig sizes. (2) Differential abun-
dance model: Each tool computes coverage distance
differently, and it is unclear which treatments are better.
However, GroopM has shown in convincing
visualization how uneven the coverage space is. There-
fore, it may be advisable to transform coverage vectors
for increased differentiating resolution in the crowded
areas. (3) Clustering algorithm: Even though these ap-
proaches have different names for their clustering algo-
rithms, most are variations of expectation-maximization
algorithm, so they are more similar in nature than they
seem. However, most tools have idiosyncratic ways of
deriving the number of clusters without user interven-
tion. ABAWACA is different from the rest in that it
does not start with entire assembled contigs as the start-
ing point. Rather, it breaks contigs into 5-kb fragments
and self calibrates based on how these known groupings
are recovered. (4) Stopping criteria: Most tools iterate
until convergence or maximum rounds. GroopM has
more custom substages than others. (5) Post-processing
and other notable heuristics: Most tools check for gen-
ome completeness and chimeric assembly; some offer
optional bin refinement. MetaBAT adjusts the weight of
differential abundance progressively when more samples
are available. CONCOCT combines compositional and
coverage information into one vector that is used in
Gaussian mixture models.
The apparent orthogonal design considerations in the

NCA tools lead us to think that the performance of
these tools may depend heavily on the data and that one
may achieve better results by combining multiple
methods. Indeed, this is the lesson we learned in genome
assembly: because there is no clear winner that suits all
situations, ensemble approaches such as iMetAMOS
[61], MeGAMerge [27], and GAM-NGS [62] were
developed to try multiple assemblers on the same data
or improve individual results by merging them. Given
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the a wide range of ecological diversity, sample numbers,
and sequencing characteristics in metagenome data sets,
we suspect that ensemble approaches will work best for
genome binning as well.
There is also room for binning methods to improve in

several directions. First, phylogeny information is still
underexplored in automated NCA methods. Tetranu-
cleotide frequency has been broadly adopted for its
simplicity, but information theory-based studies show
that relative k-mer abundance profiles may be better
phylogeny signatures [63] and longer k-mers have higher
information content [64]. Another source of valuable
phylogeny signal comes from homology relationships

between genes from assembled contigs and reference
genomes. Traditional supervised approaches derive
contig-level taxonomic placement from the consensus of
individual predicted genes based on reciprocal BLAST
hits. This method can be extrapolated to uncultured, un-
known genomes without a close reference sequence [65,
66]. Despite the presence of horizontal gene transfer and
uneven mutation rates along different protein lineages,
there is a distinguishing power in the distribution of best
hits across a range of diverse reference genomes. While
this kind of information is leveraged by most research
groups in post-binning inspection and refinement, in-
corporating it into automated optimization may greatly

Table 2 Key methodological features of NCA-based metagenome binning tools

Binning
software

Sequence composition
model

Differential
abundance model

Clustering algorithm Stopping criteria Post-processing and other
notable heuristics

ABAWACA Combined mono-, di-, and
tri- nucleotide frequencies

Hierarchical clustering with
iterative splitting; long
scaffolds are broken into 5-kb
fragments at the beginning;
splitting based on a single
metric that results in the best
separation in each round

No separation can be
made given quality
score based on the
extent to which the
broken scaffolds are
grouped correctly

Genome assessment based
on marker genes and
consensus taxonomic
placement with reciprocal
best BLAST hits; manual
inspection using ggKBase;
scaffold extension

Canopya Inter-assembly
tetranucleotide frequency
z-profiles created on
5-kb windows only in
post-binning chimera
detection

Abundance
distance defined in
terms of Pearson
correlation and
Spearman’s rank
correlation
coefficients

Canopy clustering
(seed-and-recruit)

Stabilization of canopy
profiles

Sample-specific augmented
assemblies on two samples
with most mapped reads
and one with most gene
containing de novo contigs

CONCOCT K-mer frequencies
(tetranucleotide by default);
uniform Dirichlet
distribution prior on the
relative frequencies;
dimension reduction using
principal component
analysis to keep 90 % of
joined composition and
coverage variance

Combined
log-transformed
profile of normalized
coverage and
composition
vectors

Gaussian mixture models;
regularized expectation-
maximization; cluster number
determined by automatic
relevance determination

Parameter
convergence and
maximum iteration
number

Empirical variational
Bayesian approach;
variational approximation
used to perform integral in
optimizing mixing
coefficients

GroopM Tetranucleotide frequencies;
dimension reduction using
principal component
analysis to keep 80 % of
compositional variance

Transformed
coverage space to
reduce unevenness
of variability
distribution

Iterative clustering in two
custom steps: two-way clus-
tering and Hough partition-
ing; bin refinement using
self-organizing map

1:1 correspondence
between bins and sub
regions on the SOM
surface

GC variance model for
chimera detection

MaxBin Tetranucleotide frequencies;
Euclidean distance;
empirically estimated
Gaussian distributions of
intra- and inter-genome
distances

Poisson distribution Expectation-maximization;
cluster number estimated
from single-copy genes; initial
parameters inferred from the
shortest marker gene

Parameter
convergence and
maximum iteration
number

Recursive checking of all
bins for median number of
marker genes

MetaBAT Tetranucleotide frequencies;
Euclidean distance;
empirical posterior
probability derived from
different contig sizes using
logistic regression

Abundance
distance defined as
the non-shared area
of two normal
distributions

Modified K-medoid clustering
without the need to set the
number of clusters

Medoid convergence Progressive weighting of the
relative importance of DA vs
TNF based on the number
of samples; optional
assembly, based on CheckM
assessment, of mapped
reads from a single most
represented sample to
reduce contamination

aWe have also included the DA method Canopy because it uses sequence composition in post-binning refinement
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improve binning accuracy. Second, binning results are
sensitive to parameters and most automated methods
have limited preset parameters. This is one of the rea-
sons achieving high-quality bins often requires manual
tweaking aided by visualization. Automated parameter
search needs to be part of ensemble binning methods,
and computer vision-inspired algorithms such as Hough
partitioning (used in GroopM) can also help further
automate the curation process. Finally, most of the re-
search in genome binning thus far has been concen-
trated on accuracy rather than computational efficiency.
As a result, many binning tools are too slow or too
memory intensive to handle large metagenomic data
sets. Recent studies have changed the expectation for
the number of bins from tens to hundreds [14, 65, 67].
As sequencing gets deeper, scalable tools such as Meta-
BAT and Canopy that are several orders of magnitude
faster than other tools [54] will be appreciated.

Curation and validation of reconstructed
population genomes
Currently proposed methods for the validation of reas-
sembled genomes rely on the same theoretical frame-
work used for detecting misassembled regions and
percentage completeness across individual genome as-
semblies. These include paired-end read mapping-based
identification of misassembled regions (i.e., structural
variations including deletions and insertions), alignment-
based comparison with complete genomes of closely re-
lated reference organisms, and marker gene copy num-
ber variation analysis [13]. However, using paired-end
mapping on sequencing libraries with the multimodal
insert size distribution can increase the error rate, so
that the number of false positive or negative events
significantly increases. Meanwhile, alignment against ref-
erence genomes is fundamentally limited by the avail-
ability of already-sequenced genomes that are closely
related to the organism of interest.
Two additional methods have been proposed to deal

with the problem of chimeric genome bins (sequences
from multiple species) observed in the metagenome as-
semblies [51]. First is identifying contigs with skewed
coverage patterns; using peak detection methods, cover-
age subsets with more than one peak are selected and
removed. Second is analyzing the nucleotide compos-
ition consistency in contigs with tetranucleotide usage
patterns; a median tetranucleotide frequency z-profile
can be calculated for each contig, and using an empiric-
ally determined cutoff for the Pearson’s correlation coef-
ficient distance to this median profile, it is possible to
cluster contigs into high-quality population genome
bins.
Individual genotype fragmentation into two different

bins can occur due to population level repeats, genome

coverage, or sequencing %G+C bias [24]. To assess frag-
mentation, it essential to accurately quantify the genome
bin completeness. The presence of single-copy genes,
which mostly encode central metabolism processes (rep-
lication, translation, and transcription) or conserved core
genes, are the primary target for assessing completeness.
A set of 31 single-copy genes has been proposed for bac-
teria [68]. This was extended to the domain Archaea,
and using reciprocal BLAST-based homology searches
on 112,064 proteins from 50 representative archaeal
genomes, 104 universally present, single-copy genes
were identified [69]. Finally, a list of 101 hidden Markov
models (HMM) from the Pfam [70] and TIGRFAM [71]
databases has been produced that shows similarity to
only one gene when compared against complete bacter-
ial genomes (95 %; [72, 73]).
Recently, Parks et al. presented CheckM, a new

method for estimating the completeness and contamin-
ation across population genomes [74]. Using marker
genes that are specific to a genome-based lineage within
a reference tree, CheckM provides better estimates of
genome completeness and contamination compared to
the universal single-copy marker genes. Similarly, Busco
uses lineage-specific orthologs to estimate the complete-
ness of the draft or complete genome [75]. However,
using orthologous groups with single-copy orthologs in
>90 % species (n = 40), Busco provides robust estima-
tions across lineages with rare gene duplications and
evolutionary loss of conserved genes, as is frequently the
case of population genomes [65]. Overall, the probability
of a universally single-copy ortholog being present in a
single-copy genome is higher than a conserved marker
gene, and thus, we advocate the use of CheckM.

Using reconstructed population genomes to
advance microbial ecology
Reconstructed population genomes can reveal how en-
vironmental factors shape niche-specific adaptations be-
tween individual taxa. In addition, they can also reveal
the effect of in situ functional constraints on the evolu-
tion of microbial consortia. Comparative genomics of
reconstructed genomes and their reference genomes em-
ploys analytical methods that are well understood and
have been extensively reviewed [76]. However, another
framework for analysis relies on variation in codon bias
to determine the genome-wide influence of in situ func-
tional constraints on individual taxa. Since percentage
codon bias variation analysis is a phylogenetically inde-
pendent method that directly reflects the strength of se-
lection and the translation efficiency of expressed genes
[77, 78], it circumvents the need for reference genomes
and can reveal the influence of in situ functional con-
straints over natural selection patterns. It is important to
note that for complete genome sequences, codon use
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patterns are influenced by nucleotide composition
(mutational biases) and horizontal gene transfer.
However, because each gene in a reassembled genome
represents the population with an even nucleotide com-
position, one can assume that these clonal isolate-based
limitations will not skew codon usage.
Recently, a near complete genome sequence (con-

tigs = 200; 1.9 Mb) of a Staphylococcus genotype,
Staphylococcus SK5, was reconstructed from a sample
sequenced from the floor of a public restroom [48].
Whole genome-based average nucleotide identity
(ANI) analysis revealed that SK5 shared strain level
nucleotide identity (~99 %) with its ecotype from
human-skin, Staphylococcus lugdunensis N920143
[79]. This suggested that this organism was dispersed
from a human source and had potentially been se-
lected for on the restroom floor. Furthermore, using
pairwise codon bias variation analysis [50] across
orthologous regions of both these ecotypes (N920143
and SK5), both genomes were observed to be under
different environmental selection, suggesting that
functional constraints dominated [48]. Similar evi-
dence for considerable dispersal and environmental
selection was observed in a sediment metagenome,
from which a complete genome sequence (2.3 Mb) of
a previously uncultured taxon, Candidatus Sulfuricur-
vum sp. RIFRC-1 [12], was recovered. Whole
genome-based ANI analysis revealed that RIFRC-1
shares 75 % genome-wide identity with an ecotype
from the oil fields of Japan, Sulfuricurvum kujiense
[56]. Interestingly, comparing the codon bias variation
across the orthologous segments of these ecotypes, it
was clear that both populations were under similar
and strong functional constraints. Using these ap-
proaches, it is possible to infer the mode of environ-
mental selection for given taxa in specific ecosystems
and hypothesize about potential effect of in situ func-
tional constraints on the mutation pressure, natural
selection, and genetic drift [77, 78, 80, 81].

Conclusions
Recovery of novel genomes from metagenomic datasets
provides components to better parameterize systems
biology efforts, by increasing the availability of informa-
tion on taxonomically resolved, novel metabolic poten-
tial. Also, using metagenome contigs binned at species
level, phylogenetically independent analysis can be used
to accurately estimate the strength of selection and
translation efficiency of expressed genes assembled
across ecotypes. The computational challenges that limit
metagenomic-derived genome reconstructions are slowly
being rolled back, and with the decreasing cost of high
throughput sequencing, it will soon be possible to per-
form integrated analysis of inter- and/or intraspecies

community dynamics with transcriptomic, proteomic,
and metabolomic data from the same samples. Perhaps
the most important implication of this integrative multi-
omic analysis will be the potential to build predictive
models that can further identify specific metabolic ex-
changes between species.
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