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Abstract

The microbiome of the built environment (MoBE) is a relatively new area of study. While some knowledge has
been gained regarding impacts of the MoBE on the human microbiome and disease vulnerability, there is little
knowledge of the impacts of the MoBE on mental health. Depending on the specific microbial species involved,
the transfer of microorganisms from the built environment to occupant’s cutaneous or mucosal membranes has
the potential to increase or disrupt immunoregulation and/or exaggerate or suppress inflammation. Preclinical
evidence highlighting the influence of the microbiota on systemic inflammation supports the assertion that
microorganisms, including those originating from the built environment, have the potential to either increase or
decrease the risk of inflammation-induced psychiatric conditions and their symptom severity. With advanced
understanding of both the ecology of the built environment, and its influence on the human microbiome, it may
be possible to develop bioinformed strategies for management of the built environment to promote mental health.
Here we present a brief summary of microbiome research in both areas and highlight two interdependencies
including the following: (1) effects of the MoBE on the human microbiome and (2) potential opportunities for
manipulation of the MoBE in order to improve mental health. In addition, we propose future research directions
including strategies for assessment of changes in the microbiome of common areas of built environments shared
by multiple human occupants, and associated cohort-level changes in the mental health of those who spend
time in the buildings. Overall, our understanding of the fields of both the MoBE and influence of host-associated
microorganisms on mental health are advancing at a rapid pace and, if linked, could offer considerable benefit to
health and wellness.
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Background
The influence of the built environment on the mental
health of building occupants has been documented in-
cluding relationships between housing quality, occupant
density, noise, indoor air quality, and mental health [1].
One major relationship not yet elucidated is the connec-
tion between indoor microorganisms and the mental
health of human occupants. Recent advances in DNA
sequencing technologies and associated cost savings
have led to an expansion of research on microorganisms
observed indoors, collectively called the microbiome of
the built environment (MoBE). Led in part by the

contributions and organization of the Alfred P. Sloan
Foundation, building scientists and microbial ecologists
are collaborating to (1) investigate the influence of archi-
tecture on the MoBE [2, 3], (2) establish a community of
cross-disciplinary researchers [4], and (3) develop tools
required for data analysis and visualization [5, 6]. To our
knowledge, the MoBE has yet to be evaluated with re-
spect to mental health outcomes.
Preclinical evidence strongly supports the important

influence of the human microbiome (e.g., microorgan-
isms localized to the gut, skin, and other organs) on
systemic inflammation [7–11], autoimmunity [12], blood-
brain barrier function [13], neuroinflammation [14], cog-
nitive function [15, 16], and emotional behavior [16–19].
Specifically, there is an increasing appreciation regarding
the potential association between inflammation and
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mental health, ranging from wellness to neuropsychi-
atric disease [20–24]. This association is of concern as
evidence suggests that chronic inflammatory disorders
are increasing in high-income countries. One factor
contributing to this increase is thought to be failing im-
munoregulation, attributable to reduced exposure to the
microbial environment within which the mammalian
immune system co-evolved [23]. We, along with others,
have proposed that faulty immunoregulation is also driv-
ing increases in some psychiatric disorders [23, 25–27].
The full development of secondary lymphoid tissues
and a diverse lymphocyte repertoire after birth requires
signals from microbial components [28], while further
microbial signals later in life drive balanced expansion
of effector T cell populations [29] and regulatory T cells
[30, 31]. The organisms most responsible for these
effects are those with which mammals co-evolved, in-
cluding the following: (1) the commensal/symbiotic
microbiota [30, 31]; (2) certain “old infections,” includ-
ing Helicobacter species, that were present throughout
life in evolving human hunter-gatherer populations
[25, 32]; and (3) organisms from the natural environment
with which humans were inevitably in daily contact
throughout evolution [33–35]. Immunoregulation is com-
promised in modern high-income settings in part because
contact with these three categories of immunoregulatory
organisms is reduced [25].
Several society-level shifts, such as those noted below,

have and will continue to lead to an increasing disconnect
between humans, the outdoor environment, and the mi-
croorganisms with which humans co-evolved [36–38].
In the USA, individuals typically spend nearly 90 % of
their time in the built environment [39]. Comforts, such
as air conditioning, have made geographic locations

more hospitable for year-round living in the indoor en-
vironment and will likely drive increased time spent in
the built environment [40]. Residential homes built in
set parcels for subdivisions have an architecture that is
typically not conducive to natural heating and cooling.
To reduce energy costs, design and subsidized weatheri-
zation programs can further reduce outdoor exposures
by making the homes less leaky and lowering air ex-
change rates [41]. This issue may be relevant to devel-
oping, as well as developed, countries. Migration from
rural to urban environments in developing countries is
occurring at a rapid pace [42], and it could lead to a re-
duction in exposure to environmental microorganisms,
as already seen in industrialized nations.
One popular model for conceptualizing the onset of

psychiatric disorders is the stress-diathesis model [43,
44]. The model suggests that individuals have biopsycho-
social vulnerabilities for developing mental health ill-
nesses (diathesis) that can be realized through stressors.
We contend that model has parallels to a model for un-
healthy buildings (Fig. 1). That is, an unhealthy building
can have design or operational flaws (diathesis) that
under specific circumstances (stressors) create a predis-
position to poor indoor air quality for the occupants.
For example, sick building syndrome is a term used to
describe an unhealthy building in which occupants living
and working in that space are found to be suffering from
acute negative outcomes which are not linked to a spe-
cific cause. This article expands upon how the MoBE
and mental health fields can and should be integrated.
Specifically, we will investigate (1) the effects of the
MoBE on the human microbiome and (2) potential op-
portunities for manipulation of the MoBE in order to
improve mental health. In addition, we will propose

Fig. 1 Parallels between individual diathesis-stress model (a) and potential unhealthy building model (b). Note that this comparison is not all
inclusive of factors or triggers in either model
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future research directions, including strategies for as-
sessment of changes in the microbiome of common
areas of built environments shared by multiple human
occupants and associated cohort-level changes in the
mental health of those who spend time in the building.
The purpose of this review is to initiate discussions that
build new research efforts between building scientists,
microbial ecologists, and clinical research psychologists
and psychiatrists.

Review
Microbial exposures early in life can have long-lasting
impacts on the immune system including reducing in-
flammatory responses in adulthood [45]. One potential
connection between the MoBE and mental health could
be the influences of the MoBE on the human micro-
biome. For that influence to occur, it must be shown
that microorganisms in the built environment are trans-
ferred to occupants. Researchers have also determined
that reciprocal interactions occur between the host im-
mune system and host microbiome. In a murine model,
altered immune status, either induced by antagonism of
complement component 5a receptor 1 (C5aR) or as ob-
served in immunocompromised mice, was associated
with decreases in host-associated skin microbial diversity
and altered microbial community structure [46, 47]. Ac-
tivation of the complement system typically functions as
a defense mechanism against invading microorganisms,
in part because C5a “primes” phagocytic cells and
optimizes innate immune functional responses. Thus, as
expected, altering the host immune response to microor-
ganisms alters the host-associated microbial diversity
and community structure. With the expansion of the
biological field beyond traditional culturing, it is now
clear that microbial residue can persist in the environ-
ment past a viable cell life [48, 49]. Indeed, microorgan-
isms or microbial antigens, in addition to live, intact
microorganisms, are sufficient to have important impacts
on systemic immune function and inflammatory disease.
For example, heat-killed preparations of mycobacteria
have been shown to confer protection in allergy models
[50]. In other words, there are reciprocal relationships
between the host-associated microbiota and host im-
mune function, and microorganisms do not have to
be living, or even intact, in order to have important
influences on health outcomes. This may be of inter-
est to MoBE researchers who, to date, have used
DNA sequencing that does not distinguish between
live, dead but intact, or dead and structurally com-
promised microorganisms. However, methods using
compounds like propidium monoazide (PMA) have
shown promise for making these distinctions in qPCR
studies [51–53]. Additionally, Kelley and Gilbert [48]
suggested mRNA as a sequencing target to distinguish

between live and dead microorganisms because RNA
is rapidly degraded in the environment.
Current research has focused on how occupants alter

the MoBE and have documented the transmission of
microorganisms from human occupants to the air and
surfaces within buildings [2, 3, 54–59]. Human skin
microorganisms are likely a major source of indoor
human-related microorganisms and have been observed
in the MoBE in classrooms [60], households [57], and
athletic environments [55]. The human occupants de-
posit skin microorganisms at a rate of 106 airborne mi-
crobial cells per hour [61], but these microorganisms
can decay and are replaced at a rapid rate on surfaces
commonly in contact with humans [56]. Whereas the
cutaneous membrane is completely exposed to the envir-
onment [62], mucosal surfaces of the bronchopulmonary
system, gastrointestinal system, and genitourinary sys-
tem each have their own microbiota, with potential for
contributions from exposure to microorganisms from
the MoBE [63–65]. The skin, mucosal surfaces, and the
immune system are in constant communication to pro-
mote homeostasis in the human microbiome [11, 66,
67]. Research is sparse on whether these microbial com-
munities, transferred from occupants to the air and sur-
faces within a building, are conveyed to other occupants.
We think it is important to identify whether the existing
MoBE can alter the occupants’ microbiome and, subse-
quently, mental health.
Studies that document transmission of microorgan-

isms from reservoirs within the built environment to hu-
man occupants have historically focused on pathogens.
For instance, nontuberculous mycobacteria (NTM) iso-
lates recovered from water systems and showers have
been matched to clinical isolates of NTM [68, 69]. Simi-
larly, room humidifiers, whirlpools, air conditioning
systems, and other sources have been identified as the
indoor microbial reservoirs responsible for Legionella in-
fections of human occupants [70–72]. While some in-
door sources such as humidifiers provide a direct route
of microbial transfer to humans [73, 74], other transfers
can be more complex. For instance, in some cases, mi-
croorganisms such as Staphylococcus aureus originate
from a human source but appear to spend time in an in-
door reservoir before being transmitted back to other
human occupants [75]. Thus, microorganisms can be
transferred to and from occupants and environmental
reservoirs within buildings but the level of bidirectional
transmission for many microorganisms and microbial
communities remains unknown. Of course, transmission
of microorganisms from one human occupant to the
next is also possible [76, 77], and this further compli-
cates the analysis.
A practical consequence of improved understanding

of relationships among the MoBE, host-associated
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microbiota, and mental health could be the develop-
ment of a bioinformed design in the built environment
(see commentary by Green [78]) to prevent negative
mental health-related outcomes. This could be analo-
gous to how access to green spaces can improve mental
health outcomes [33]. Moreover, studies in rodents sug-
gest that bioimmunomodulatory probiotics (e.g., Lacto-
bacillus reuteri) have stress-protective effects and can
reduce negative outcomes of gastrointestinal infections
[16]. Preliminary results in mice suggest these probio-
tics can reduce anxiety and fear following oral or intra-
venous administration. Building materials or the built
environment could be designed to facilitate exposure of
human occupants to these types of beneficial probiotics.
Probiotics in these instances might extend beyond a few
microorganisms and instead include diversity in micro-
bial communities. Microbial diversity has been linked to
positive health outcomes, even if the causative agents
are not yet delineated [79].
Research on microbial growth on different building

materials is now being considered beyond moisture-
damaged materials [80–82], but more studies are
required to fully evaluate the range of construction
practices and building types. The development of such
a database of materials that support growth of benefi-
cial microorganisms, in addition to those that support
growth of potentially harmful microorganisms, would
be of value to the community of researchers. However,
to develop that database, knowledge of which microor-
ganisms are beneficial is required. In the context of
this review on mental health, we provide a summary in
Table 1 of microorganisms that have been linked to
positive mental health outcomes. In addition to mate-
rials, selection of microorganisms for bio-mediated
construction procedures is a relatively new field in the
last 10 years and could provide benefits for a bioin-
formed built environment.
However, as noted by Green, research to date is not

yet sufficient to define interactions between microorgan-
isms and the built environment, and the effects that ma-
nipulation of the MoBE could have on the occupants.
Indeed, only recently have we begun to realize that
indiscriminant sterilization of the built environment is
not beneficial to occupants [83–85]. The science of ei-
ther seeding the indoor environment with beneficial mi-
croorganisms or providing conditions that promote
selective microbial growth is likely a distant reality in
practice, and considerable research is required before re-
searchers can recommend such practices. Any modifica-
tions would need to consider factors such as geographic
location, seasons, building characteristics, occupant ages,
health status, and behavior, and likely many other factors
yet to be determined. Future work in this direction could
provide considerable benefit in terms of mental health

wellness. However, as noted by Logan [86], additional
adverse environmental factors in urban environments,
coined the gray space, could reduce the mental health
benefits of changing the MoBE, especially in relation
to those individuals who are socioeconomically disad-
vantaged. An example of an understudied topic is the
interaction between the MoBE and the host-associated
microbiomes among individuals living or working in
close proximity. An initial study of a family observed
homogenization of the gut microbiome across family
members, at least in comparison to non-family mem-
bers [87].
Given the importance of inpatient care on mental

health, one specific built environment of interest in the
relationship between microbiomes of the built environ-
ment is that of the hospital. Recently, a collaboration led
by the University of Chicago has systematically explored
the microbiome in a Chicago hospital from conception
through the first year of operation [83]. The results of
that work are not yet published, but other articles have
identified methods to control microbial spread in a
hospital environment including ventilation strategies
[88, 89], cleaning techniques [90–92], and use of UV
lamps [93–96]. Interestingly, since we do not have a
clear understanding of the role of the built environ-
ment microbiome on mental health, it is impossible to
state if those listed control measures and others are
beneficial or harmful to the occupant. Additional re-
search on the influence of the gut and non-gut micro-
biomes and mental health is required to provide better
designs in hospital and treatment centers.
With a better understanding of the interactions be-

tween the MoBE and the host-associated microbiota of
human occupants, research could proceed to identifica-
tion of environmental microorganisms that are either
beneficial or harmful to the mental health of individuals,
thereby mitigating potential diatheses or stressors. Hu-
man microbial communities differ across the body, but
identification of an individual by their microbial finger-
print can still be achieved through multi-kingdom meta-
genomics sequencing with an accuracy of over 80 %
[62]. Therefore, if certain MoBE markers are determined
to contribute to mental health conditions, researchers
could use sampling of the built environment to detect
potential negative mental health conditions of individ-
uals in that environment. Identification of associations
between occupants and the microbiome of their sur-
roundings or personal items, referred to as microbiome
fingerprinting, may be possible in the future. Lax et al.
[97] utilized a supervised learning algorithm to success-
fully predict if a 16S rRNA sample was from a phone or
a shoe. They sampled at three different geographically
separated conferences and were able to predict which
conference the samples were from. Another study of
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Table 1 Beneficial microorganisms in mental health studies found in the built environment

Phylum/microorganism Model Environmental sources Presence in MoBE Mental health relevant findingsa

Actinobacteria

Mycobacterium vaccae Human Environmental saprophyte
(soil, mud, water, grasses,
decaying organic matter)
[119–125]

Soil floors [123], reservoirs [125], well water [122, 126],
cooling towers [126, 127], water distribution systems [128],
household tap water [126, 129], moisture-damaged build-
ing materials [130], terraria [131], sewage [122], drainage
pools [132], wastewater treatment plants [133]

Increased cognitive function, decreased pain in patients
with advanced non-small-cell lung cancer [134]

Mouse Activation of brain serotonergic systems and
antidepressant-like behavioral effects [135]; decreased
anxiety/increased cognitive function [136]

Bifidobacterium breve Mouse Human commensal Human and animal wastewater, wastewater treatment
plants [137]

Increased cognitive function [138]; decreased anxiety-
related behaviors [139]

Bifidobacterium infantis Rat Human commensal Human and animal wastewater, wastewater treatment
plants [137]

Reversal of depressive-like behavior following maternal
separation [140]

Bifidobacterium longum Human Human commensal Human wastewater, wastewater treatment plants [137] Decreased anxiety and depressive symptoms in healthy
volunteers (administered with L. helveticus) [141, 142]

Mouse Decreased-colitis associated anxiety [143, 144]; increased
cognitive function [138]; decreased stress, anxiety- and
depression-related behaviors [139]

Bacteroidetes

Bacteroides fragilis Mouse Human commensal Human and animal wastewater, wastewater treatment
plants [145]

Developmental protection from some of the behavioral
symptoms associated with autism spectrum disorder [146]

Firmicutes

Clostridium butyricum Human Endospore-forming soil
bacterium

Anxiolytic effects [147]

Enterococcus faecium Mouse Human commensal,
wetlands [148]

Well water, human and animal wastewater, wastewater
treatment plants [148]

Increased brain antioxidant markers [149]

Lactobacillus casei Human Human commensal,
fermented foods [150]

Human and animal wastewater, wastewater treatment
plants [150], office space (Lactobacillus spp.), bathroom
surfaces (Lactobacillaceae) [151]

Improvement in anxiety symptoms in patients with chronic
fatigue syndrome [152]; improved mood [153]

Lactobacillus fermentum Rat Human commensal, raw
vegetables [154],
fermented foods [150,
155]

Sewage [155], office space (Lactobacillus spp.) [156],
bathroom surfaces (Lactobacillaceae) [151]

Decreased anxiety and inhibition of antibiotic-induced
cognitive impairment [157]

Lactobacillus helveticus Human Fermented foods [150] Office space (Lactobacillus spp.) [156], bathroom surfaces
(Lactobacillaceae) [151]

Decreased anxiety and depressive symptoms in healthy
volunteers (administered with B. longum) [141, 142]

Rat Improved cognitive function, decreased anxiety-related
behavior [158]; prevention of stress-induced cognitive
impairment and anxiety- and depressive-like responses
[159]

Mouse Decreased anxiety-related behavior [160]; improved
cognitive function, decreased anxiety-related behavior
(administered with L. rhamnosus) [15, 161]

Lactobacillus pentosus Fermented foods [150] Sewage [155], office space (Lactobacillus spp.) [156],
bathroom surfaces (Lactobacillaceae) [151]

Improved cognitive function [162]
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Table 1 Beneficial microorganisms in mental health studies found in the built environment (Continued)

Lactobacillus reuteri Human Human commensal,
fermented foods [150]

Office space (Lactobacillus spp.) [156], bathroom surfaces
(Lactobacillaceae) [151]

Increased workplace healthiness [163]

Lactobacillus rhamnosus Mouse Human commensal,
fermented foods [150]

Sewage [155], office space (Lactobacillus spp.) [156],
bathroom surfaces (Lactobacillaceae) [151]

Vagus nerve-dependent alterations in GABA receptor
mRNA expression in brain, reduced anxiety- and
depression-related behavior [17]; improved cognitive
function, decreased anxiety-related behavior (administered
with L. helveticus) [161, 164]

Probiotic cocktails

B. bifidum, B. lactis, L. acidophilus, L.
brevis, L. casei, L. salivarius, L. lactis

Human Reduced cognitive reactivity to sad mood [165]

B. animalis subsp. Lactis, Streptococcus
thermophilus, L. bulgaricus, L. Lactis
subsp. Lactis

Human Altered task-related response of brain networks involving
affective, viscerosensory, and somatosensory cortices [166]

L. acidophilus, B. lactis Human Improved scores on anxiety, depression, and stress scales
[167]

L. casei, L. acidophilus, L. rhamnosus, L.
bulgaricus, B. breve, B. longum, S.
thermophilus

Human Improved scores on anxiety, depression, and stress scales
[167]

VSL#3: S. salivarius subsp.
thermophilus, B. breve, B. infantis, B.
longum, L. acidophilus, L. planarum, L.
casei, L. delbrueckii subsp. bulgaricus

Mouse Decreased sickness behavior, decreased microglial
activation [168]

L. plantarum, L. curvatus Rat Improved cognitive function [169]

L. acidophilus, B. lactis, L. fermentum Rat Improved cognitive function [170]

L. helveticus, B. longum Rat Decreased depressive-like behavior [171]
aAlthough mental health benefits of microorganisms are typcially strain dependent, we have not included strain information in order to simplify the table
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phones sampled the microbiome of both the phones and
fingerprints and observed that 82 % of the dominant
bacterial sequences was shared between a user and their
phone [98]. Using the human microbiome project data-
set, by averaging microbiomes over all 18 body sites, and
by developing a metagenomic code, Franzosa et al. [99]
determined that approximately 30 % of sequences were
matched between two sampling events 30 to 300 days
apart. The most stable microbiome was the gut, which
likely does not significantly contribute to the MoBE out-
side of restrooms. As noted by that study, research on
how the individual microbiomes differ across anatomical
sites and longitudinally over time will be crucial for fu-
ture microbiome fingerprinting efforts.
One important under-recognized contributory role to

the MoBE is that of pets. Their microbiome is known to
interact with that of their owners. Exposure to pets dur-
ing childhood has been associated with lower prevalence
of allergic disease, potentially through increased pet-
driven indoor exposure to saprophytic soil organisms
with immunomodulatory potential (see Table 1). How-
ever, pets also carry indoors microorganisms with po-
tential long-term detrimental effects on mental health.
For example, Toxoplasma gondii (T. gondii) is a highly
prevalent neurotropic parasite establishing latency in all
warm-blooded animals including humans. In immuno-
suppressed patients and during pregnancy its effects can
be devastating. In immunocompetent hosts “latent” T.
gondii infection has been associated with mental illness
[100] and suicide [101]. Even in individuals with no evi-
dence of mental illness, T. gondii seropositivity has been
associated with gender-specific trait impulsivity and ag-
gression [102]. Infection with T. gondii occurs via inges-
tion of tissue bradyzoites from inadequately cooked/
processed meat, or via transmition of oocysts through
exposure to cat litter or contaminated soil [103]. Cats,
the permanent hosts of T. gondii, are implicated in the
direct fecal transmission of the microorganism; preg-
nant women are advised to avoid exposure to domestic
cat litter. Moreover, dogs carry oocysts indoors on their
fur by seeking-out and rolling in cat feces and contami-
nated soil [104].
An extension of microbiome fingerprinting could

involve examining the influence of stress on the hu-
man microbiome and MoBE. Individuals suffering
from psychiatric disorders may have physiological
differences that affect the skin [105] and mucosal
[106, 107] microbiomes, which in turn may alter the
MoBE. For example, Biagi et al. [108] found that
9 % of the total variability seen in the gut micro-
biome was related to proinflammatory cytokines IL-6
and IL-8, with this effect being predominately driven
by Proteobacteria. As noted, a feedback loop be-
tween occupants, the built environment, and other

occupants has been shown in nosocomial infections.
That same feedback loop is likely occurring for non-
pathogens although not as well studied to date.
Nosocomial pathogens like Staphylococcus aureus,
Mycobacterium tuberculosis, and Clostridium difficile
can remain viable on dry surfaces for months [109, 110],
although as already noted, microorganisms do not have to
be viable to contribute to health outcomes.

Conclusions
Despite the massive effort in the human microbiome
project, researchers observed that variation in the
healthy human microbiome was not well correlated with
biometrics (gender, body temperature, blood pressure,
etc.) and concluded that other factors might be important
[111]. One such factor could be the MoBE that surrounds
individuals. It is likely that the MoBE alters immune sys-
tem function through influences on the host-associated
microbiota and, therefore, could have an effect on the
mental health of the occupants as presented in Fig. 1.
Study designs developed by mental health professionals,
building scientists, and microbial ecologists should begin
to critically evaluate that idea. Furthermore, given the re-
cent interest in the microbiome-gut-brain axis [112–115],
if the MoBE does alters the gut microbiota, considerable
research opportunities could follow for future studies of
the relationships among the microbiota of the built envir-
onment, the host-associated microbiota, and mental
health with the aim of intervening to decrease negative
health-related outcomes. It is possible that intentional
modification of the built environment to increase micro-
bial biodiversity, or to increase exposure to immunoregu-
latory antigens or probiotics, would result in improved
mental health conditions. Moreover, mental health and
MoBE studies logically extend to autism spectrum disor-
ders and other neurodevelopmental disorders, such as
schizophrenia, that have been investigated with a human
microbiome perspective [116–118].
There is credible evidence that these two fields, if

linked, could improve future mental health outcomes
for both the community at large (e.g., prevention), as
well as those with psychiatric disorders (intervention).
Research studies will provide the most benefit if dis-
cussions among investigators with multiple specialties
are initiated in the study design phase. With a com-
bined effort between the MoBE consortia and mental
health professionals, a greater understanding of the
relationship between the MoBE, the microbiome of
human occupants, and mental health can occur at a
more rapid pace.

Competing interests
The authors declare that they have no competing interests.

Hoisington et al. Microbiome  (2015) 3:60 Page 7 of 12



Authors’ contributions
This research was complete through the collaboration of the Military and
Veterans Microbiome Consortium on Research and Education (MVM-CORE).
AJH, LAB, KAK, TTP, and CAL all contributed equally to this manuscript
including the conception, writing, and editing. All authors approved the final
manuscript. Additional support was received from the Joint Institute for
Food Safety and Applied Nutrition/ University of Maryland through a
cooperative agreement with the Food and Drug Administration FDU.001418
(Postolache subaward PI).
The views expressed in this article are those of the authors and do not
reflect the official policy or position of the US Air Force, Department of
Defense, US Department of Veterans Affairs, US Food and Drug
Administration, or the US government.

Author details
1Department of Civil and Environmental Engineering, US Air Force Academy,
2354 Fairchild Dr. Suite 6H-161, Colorado Springs, CO 80840, USA. 2Rocky
Mountain Mental Illness Research Education and Clinical Center (MIRECC),
University of Colorado Anschutz Medical Campus, 1055 Clermont Street,
Denver, CO 80220, USA. 3Civil, Architectural and Environmental Engineering,
University of Texas Austin, 402 E. Dean Keeton Street, Austin, TX 78712-1085,
USA. 4University of Maryland School of Medicine, Baltimore MD, Rocky
Mountain MIRECC and VISN 5 MIRECC, 685 W. Baltimore Street, Baltimore,
MD 21201, USA. 5Department of Integrative Physiology and Center for
Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder,
CO 80309-0354, USA.

Received: 27 August 2015 Accepted: 29 October 2015

References
1. Evans GW. The built environment and mental health. J Urban Health.

2003;80(4):536–55. doi:10.1093/jurban/jtg063.
2. Meadow JF, Altrichter AE, Kembel SW, Kline J, Mhuireach G, Moriyama M,

et al. Indoor airborne bacterial communities are influenced by ventilation,
occupancy, and outdoor air source. Indoor Air. 2013;24(1):41–8. doi:10.1111/
ina.12047.

3. Kembel SW, Meadow JF, O’Connor TK, Mhuireach G, Northcutt D, Kline J,
et al. Architectural design drives the biogeography of indoor bacterial
communities. PLoS One. 2014;9(1):e87093. doi:10.1371/journal.pone.0087093.

4. Relman DA, Gilbert JA, Knight R. The promise of the microbiome: function
and dysfunction in humans and beyond. Science. 2014;345(6193):226.
doi:10.1126/science.345.6193.226-c.

5. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al.
Ultra-high-throughput microbial community analysis on the illumina HiSeq
and MiSeq platforms. ISME J. 2012;6(8):1621–4. doi:10.1038/ismej.2012.8.

6. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello
EK, et al. QIIME allows analysis of high-throughput community sequencing
data. Nat Methods. 2010;7(5):335–6. doi:10.1038/nmeth.f.303.

7. Forsberg A, Abrahamsson TR, Bjorksten B, Jenmalm MC. Pre- and post-natal
Lactobacillus reuteri supplementation decreases allergen responsiveness in
infancy. Clin Exp Allergy. 2013;43(4):434–42. doi:10.1111/cea.12082.

8. Forsythe P, Inman MD, Bienenstock J. Oral treatment with live lactobacillus
reuteri inhibits the allergic airway response in mice. Am J Respir Crit Care
Med. 2007;175(6):561–9. doi:10.1164/rccm.200606-821OC.

9. Karimi K, Inman MD, Bienenstock J, Forsythe P. Lactobacillus reuteri-
induced regulatory T cells protect against an allergic airway response in
mice. Am J Respir Crit Care Med. 2009;179(3):186–93. doi:10.1164/
rccm.200806-951OC.

10. Miniello VL, Brunetti L, Tesse R, Natile M, Armenio L, Francavilla R.
Lactobacillus reuteri modulates cytokines production in exhaled breath
condensate of children with atopic dermatitis. J Pediatr Gastroenterol Nutr.
2010;50(5):573–6. doi:10.1097/MPG.0b013e3181bb343f.

11. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity.
Science. 2014;346(6212):954–9. doi:10.1126/science.1260144.

12. Horai R, Zárate-Bladés Carlos R, Dillenburg-Pilla P, Chen J, Kielczewski
Jennifer L, Silver Phyllis B, et al. Microbiota-dependent activation of an
autoreactive T cell receptor provokes autoimmunity in an immunologically
privileged site. Immunity. 2015;43(2):343–53. doi:10.1016/
j.immuni.2015.07.014.

13. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al.
The gut microbiota influences blood-brain barrier permeability in mice. Sci
Transl Med. 2014;6:263. doi:10.1126/scitranslmed.3009759.

14. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell
responses to gut microbiota promote experimental autoimmune
encephalomyelitis. Proc Natl Acad Sci U S A. 2011;108:4615–22. doi:10.1073/
pnas.1000082107.

15. Gareau MG. Microbiota-gut-brain axis and cognitive function. In: Lyte M,
Cryan JF, editors. Microbial endocrinology: the microbiota-gut-brain axis
in health and disease. advances in experimental medicine and biology.
2014. p. 357–71.

16. Smith CJ, Emge JR, Berzins K, Lung L, Khamishon R, Shah P, et al. Probiotics
normalize the gut-brain-microbiota axis in immunodeficient mice. Am J
Physiol Gastrointest Liver Physiol. 2014;307(8):G793–802. doi:10.1152/
ajpgi.00238.2014.

17. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al.
Ingestion of Lactobacillus strain regulates emotional behavior and central
GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad
Sci U S A. 2011;108(38):16050–5. doi:10.1073/pnas.1102999108.

18. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior
and central neurochemical change in germ-free mice. Neurogastroenterol
Motil. 2011;23:3. doi:10.1111/j.1365-2982.2010.01620.x.

19. Heijtza RD, Wang SG, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al.
Normal gut microbiota modulates brain development and behavior.
Proc Natl Acad Sci U S A. 2011;108(7):3047–52. doi:10.1073/
pnas.1010529108.

20. Felger JC, Lotrich FE. Inflammatory cytokines in depression: nuerobiological
mechanisms and therapeutic implications. Neuroscience. 2013;246:199–229.
doi:10.1016/j.neuroscience.2013.04.060.

21. Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets
neuropsychopharmacology: translational implications of the impact of
inflammation on behavior. Neuropsychopharmacology. 2012;37(1):137–62.
doi:10.1038/npp.2011.205.

22. Miller AH, Raison CL. Are anti-inflammatory therapies viable treatments for
psychiatric disorders? Where the rubber meets the road. JAMA Psychiatry.
2015;72(6):527–8. doi:10.1001/jamapsychiatry.2015.22.

23. Raison CL, Lowry CA, Rook GAW. Inflammation, sanitation, and
consternation loss of contact with coevolved, tolerogenic microorganisms
and the pathophysiology and treatment of major depression. Arch Gen
Psychiatry. 2010;67(12):1211–24. doi:10.1001/archgenpsychiatry.2010.161.

24. Rook GAW, Raison CL, Lowry CA. Childhood microbial experience,
immunoregulation, inflammation and adult susceptibility to psychosocial
stressors and depression in rich and poor countries. Evol Med Public Health.
2013;2013(1):14–7. doi:10.1093/emph/eos005.

25. Rook GA, Raison CL, Lowry CA. Microbial ‘old friends’, immunoregulation
and socioeconomic status. Clin Exp Immunol. 2014;177(1):1–12.

26. Rook GAW, Raison CL, Lowry CA. Microbiota, immunoregulatory old friends
and psychiatric disorders. In: Lyte M, Cryan JF, editors. microbial
endocrinology: the microbiota-gut-brain axis in health and disease.
Advances in experimental medicine and biology. 2014. p. 319–56.

27. Rook GAW, Lowry CA. The hygiene hypothesis and psychiatric disorders.
Trends Immunol. 2008;29(4):150–8. doi:10.1016/j.it.2008.01.002.

28. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T,
Douglas AE, et al. Animals in a bacterial world, a new imperative for the
life sciences. Proc Natl Acad Sci U S A. 2013;110(9):3229–36. doi:10.1073/
pnas.1218525110.

29. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C,
et al. The key role of segmented filamentous bacteria in the coordinated
maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89.
doi:10.1016/j.immuni.2009.08.020.

30. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al.
Induction of colonic regulatory T cells by indigenous clostridium species.
Science. 2011;331(6015):337–41. doi:10.1126/science.1198469.

31. Round JL, Mazmanian SK. Inducible foxp(3+) regulatory T-cell development
by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci
U S A. 2010;107(27):12204–9. doi:10.1073/pnas.0909122107.

32. Wolfe ND, Dunavan CP, Diamond J. Origins of major human infectious
diseases. Nature. 2007;447(7142):279–83. doi:10.1038/nature05775.

33. Rook GA. Regulation of the immune system by biodiversity from the natural
environment: an ecosystem service essential to health. Proc Natl Acad Sci
U S A. 2013;110(46):18360–7.

Hoisington et al. Microbiome  (2015) 3:60 Page 8 of 12

http://dx.doi.org/10.1093/jurban/jtg063
http://dx.doi.org/10.1111/ina.12047
http://dx.doi.org/10.1111/ina.12047
http://dx.doi.org/10.1371/journal.pone.0087093
http://dx.doi.org/10.1126/science.345.6193.226-c
http://dx.doi.org/10.1038/ismej.2012.8
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1111/cea.12082
http://dx.doi.org/10.1164/rccm.200606-821OC
http://dx.doi.org/10.1164/rccm.200806-951OC
http://dx.doi.org/10.1164/rccm.200806-951OC
http://dx.doi.org/10.1097/MPG.0b013e3181bb343f
http://dx.doi.org/10.1126/science.1260144
http://dx.doi.org/10.1016/j.immuni.2015.07.014
http://dx.doi.org/10.1016/j.immuni.2015.07.014
http://dx.doi.org/10.1126/scitranslmed.3009759
http://dx.doi.org/10.1073/pnas.1000082107
http://dx.doi.org/10.1073/pnas.1000082107
http://dx.doi.org/10.1152/ajpgi.00238.2014
http://dx.doi.org/10.1152/ajpgi.00238.2014
http://dx.doi.org/10.1073/pnas.1102999108
http://dx.doi.org/10.1111/j.1365-2982.2010.01620.x
http://dx.doi.org/10.1073/pnas.1010529108
http://dx.doi.org/10.1073/pnas.1010529108
http://dx.doi.org/10.1016/j.neuroscience.2013.04.060
http://dx.doi.org/10.1038/npp.2011.205
http://dx.doi.org/10.1001/jamapsychiatry.2015.22
http://dx.doi.org/10.1001/archgenpsychiatry.2010.161
http://dx.doi.org/10.1093/emph/eos005
http://dx.doi.org/10.1016/j.it.2008.01.002
http://dx.doi.org/10.1073/pnas.1218525110
http://dx.doi.org/10.1073/pnas.1218525110
http://dx.doi.org/10.1016/j.immuni.2009.08.020
http://dx.doi.org/10.1126/science.1198469
http://dx.doi.org/10.1073/pnas.0909122107
http://dx.doi.org/10.1038/nature05775


34. Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson W, Braun-Fahrlander C,
et al. Exposure to environmental microorganisms and childhood asthma. N
Engl J Med. 2011;364(8):701–9. doi:10.1056/NEJMoa1007302.

35. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T,
et al. Environmental biodiversity, human microbiota, and allergy are
interrelated. Proc Natl Acad Sci U S A. 2012;109(21):8334–9. doi:10.1073/
pnas.1205624109.

36. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, et al. The
microbiome of uncontacted Amerindians. Sci Adv. 2015;1:3.

37. Martinez I, Stegen JC, Maldonado-Gomez MX, Eren AM, Siba PM, Greenhill
AR, et al. The gut microbiota of rural Papua New Guineans: composition,
diversity patterns, and ecological processes. Cell Rep. 2015;11(4):527–38.
doi:10.1016/j.celrep.2015.03.049.

38. Martin LJ, Adams RL, Bateman A, Bik HM, Hawks J, Hird SM, et al. Evolution
of the indoor biome. Trends Ecol Evol. 2015;30(4):223–32. doi:10.1016/
j.tree.2015.02.001.

39. Klepeis NTA, Behar JV. Analysis of the National Human Activity Pattern
Survey (NHAPS) respondents from a standpoint of exposure assessment. Las
Vegas: Laboratory USEPANER; 1996.

40. Weschler CJ. Changes in indoor pollutants since the 1950s. Atmos Environ.
2009;43(1):153–69. doi:10.1016/j.atmosenv.2008.09.044.

41. Cautley D, Viner J, Lord M, Pearce M. Test methods and protocols for
environmental and safety hazards associated with home energy retrofits.
Golden: US Department of Energy, Energy Efficiency & Renewable Energy,
Building Technologies Program; 2012.

42. Sanders D. Arrival city. New York: Random House; 2012.
43. Meehl PE. Schizotaxia, schizotypy, schizophrenia. Am Psychol.

1962;17(12):827.
44. Rosenthal D. Genetic theory and abnormal behavior. New York:

McGraw-Hill; 1970.
45. McDade TW, Rutherford J, Adair L, Kuzawa CW. Early origins of

inflammation: microbial exposures in infancy predict lower levels of C-
reactive protein in adulthood. Proc Biol Sci. 2010;277(1684):1129–37.
doi:10.1098/rspb.2009.1795.

46. Chehoud C, Rafail S, Tyldsley AS, Seykora JT, Lambris JD, Grice EA.
Complement modulates the cutaneous microbiome and inflammatory
milieu. Proc Natl Acad Sci. 2013;110(37):15061–6. doi:10.1073/
pnas.1307855110.

47. Garcia-Garcera M, Coscolla M, Garcia-Etxebarria K, Martin-Caballero J,
Gonzalez-Candelas F, Latorre A, et al. Staphylococcus prevails in the skin
microbiota of long-term immunodeficient mice. Environ Microbiol.
2012;14(8):2087–98. doi:10.1111/j.1462-2920.2012.02756.x.

48. Kelley ST, Gilbert JA. Studying the microbiology of the indoor environment.
Genome Biol. 2013;14:2. doi:10.1186/gb-2013-14-2-202.

49. Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D. Release and persistence of
extracellular DNA in the environment. Environ Biosafety Res. 2007;6(1–2):37–53.

50. Hunt JR, Martinelli R, Adams VC, Rook GA, Brunet LR. Intragastric
administration of Mycobacterium vaccae inhibits severe pulmonary allergic
inflammation in a mouse model. Clin Exp Allergy. 2005;35(5):685–90.

51. Nocker A, Sossa KE, Camper AK. Molecular monitoring of disinfection
efficacy using propidium monoazide in combination with quantitative PCR.
J Microbiol Methods. 2007;70(2):252–60. doi:10.1016/j.mimet.2007.04.014.

52. Nocker A, Sossa-Fernandez P, Burr MD, Camper AK. Use of propidium
monoazide for live/dead distinction in microbial ecology. Appl Environ
Microbiol. 2007;73(16):5111–7. doi:10.1128/AEM.02987-06.

53. Exterkate RAM, Zaura E, Brandt BW, Buijs MJ, Koopman J, Crielaard W, et al.
The effect of propidium monoazide treatment on the measured bacterial
composition of clinical samples after the use of a mouthwash. Clin Oral
Investig. 2015;19(4):813–22. doi:10.1007/s00784-014-1297-z.

54. Ramos T, Dedesko S, Siegel JA, Gilbert JA, Stephens B. Spatial and temporal
variations in indoor environmental conditions, human occupancy, and
operational characteristics in a new hospital building. PLoS One. 2015;10:3.
doi:10.1371/journal.pone.0118207.

55. Wood M, Gibbons S, Lax S, Eshoo-Anton T, Owens S, Kennedy S, et al.
Athletic equipment microbiota are shaped by interactions with human skin.
Microbiome. 2015;3(1):25. doi:10.1186/s40168-015-0088-3.

56. Lax S, Nagler CR, Gilbert JA. Our interface with the built environment:
immunity and the indoor microbiota. Trends Immunol. 2015;36(3):121–3.
doi:10.1016/j.it.2015.01.001.

57. Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM,
et al. Longitudinal analysis of microbial interaction between humans and

the indoor environment. Science. 2014;345(6200):1048–52. doi:10.1126/
science.1254529.

58. Flores GE, Bates ST, Caporaso JG, Lauber CL, Leff JW, Knight R, et al.
Diversity, distribution and sources of bacteria in residential kitchens. Environ
Microbiol. 2013;15(2):588–96. doi:10.1111/1462-2920.12036.

59. Brauer SL, Vuono D, Carmichael MJ, Pepe-Ranney C, Strom A, Rabinowitz E,
et al. Microbial sequencing analyses suggest the presence of a fecal veneer
on indoor climbing wall holds. Curr Microbiol. 2014;69(5):681–9. doi:10.1007/
s00284-014-0643-3.

60. Hospodsky D, Qian J, Nazaroff WW, Yamamoto N, Bibby K, Rismani-Yazdi H,
et al. Human occupancy as a source of indoor airborne bacteria. PLoS One.
2012;7(4):e34867. doi:10.1371/journal.pone.0034867.

61. Qian J, Hospodsky D, Yamamoto N, Nazaroff WW, Peccia J. Size-resolved
emission rates of airborne bacteria and fungi in an occupied classroom.
Indoor Air. 2012;22:339–51. doi:10.1111/j.1600-0668.2012.00769.x.

62. Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Kong HH, et al.
Biogeography and individuality shape function in the human skin
metagenome. Nature. 2014;514(7520):59–64. doi:10.1038/nature13786.

63. Moore MN. Do airborne biogenic chemicals interact with the PI3K/Akt/
mTOR cell signalling pathway to benefit human health and wellbeing in
rural and coastal environments? Environ Res. 2015;140:65–75. doi:10.1016/
j.envres.2015.03.015.

64. Panzer AR, Lynch SV. Influence and effect of the human microbiome in
allergy and asthma. Curr Opin Rheumatol. 2015;27(4):373–80. doi:10.1097/
BOR.0000000000000191.

65. Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging
relationship with the gut microbiome. Cell Host Microbe. 2015;17(5):592–
602. doi:10.1016/j.chom.2015.04.00.

66. Sanford JA, Gallo RL. Functions of the skin microbiota in health and disease.
Semin Immunol. 2013;25(5):370–7. doi:10.1016/j.smim.2013.09.005.

67. SanMiguel A, Grice E. Interactions between host factors and the skin
microbiome. Cell Mol Life Sci. 2015;72(8):1499–515. doi:10.1007/s00018-014-
1812-z.

68. Halstrom S, Price P, Thomson R. Review: environmental mycobacteria as a
cause of human infection. Int J Mycobacteriol. 2015;4(2):81–91. doi:10.1016/
j.ijmyco.2015.03.002.

69. Thomson R, Tolson C, Carter R, Coulter C, Huygens F, Hargreaves M.
Isolation of nontuberculous mycobacteria (NTM) from household water and
shower aerosols in patients with pulmonary disease caused by NTM. J Clin
Microbiol. 2013;51(9):3006–11. doi:10.1128/jcm.00899-13.

70. van Heijnsbergen E, Schalk JAC, Euser SM, Brandsema PS, den Boer JW,
Husman AMD. Confirmed and potential sources of Legionella reviewed.
Environ Sci Technol. 2015;49(8):4797–815. doi:10.1021/acs.est.5b00142.

71. Tyndall RL, Lehman ES, Bowman EK, Milton DK, Barbaree JM. Home
humidifiers as a potential source of exposure to microbial pathogens,
endotoxins, and allergens. Indoor Air Int J Indoor Air Qual Clim.
1995;5(3):171–8. doi:10.1111/j.1600-0668.1995.t01-1-00003.x.

72. Krogulska B, Matuszewska R, Krogulski A, Szczotko M, Bartosik M, Maziarka D,
et al. Occurrence of Legionella in technological water and studies of the
total number of bacteria and fungi in indoor air at workplaces where water
aerosol is generated. Med Pr. 2014;65(3):325–34.

73. Hull NM, Reens AL, Robertson CE, Stanish LF, Harris JK, Stevens MJ, et al.
Molecular analysis of single room humidifier bacteriology. Water Res.
2015;69:318–27. doi:10.1016/j.watres.2014.11.024.

74. Lee JH, Ahn KH, Yu IJ. Outbreak of bioaerosols with continuous use of humidifier
in apartment room. Toxicol Res. 2012;28(2):103–6. doi:10.5487/tr.2012.28.2.103.

75. Uhlemann AC, Dordel J, Knox JR, Raven KE, Parkhill J, Holden MTG, et al.
Molecular tracing of the emergence, diversification, and transmission of S.
aureus sequence type 8 in a New York community. Proc Natl Acad Sci U S
A. 2014;111(18):6738–43. doi:10.1073/pnas.1401006111.

76. Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating
procedures and risk of transmission of acute respiratory infections to
healthcare workers: a systematic review. PLoS One. 2012;7(4):e35797.
doi:10.1371/journal.pone.0035797.

77. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The
global distribution and burden of dengue. Nature. 2013;496(7446):504–7.
doi:10.1038/nature12060.

78. Green JL. Can bioinformed design promote healthy indoor ecosystems?
Indoor Air. 2014;24(2):113–5. doi:10.1111/ina.12090.

79. Legatzki A, Rosler B, von Mutius E. Microbiome diversity and asthma and allergy
risk. Curr Allergy Asthma Rep. 2014;14:10. doi:10.1007/s11882-014-0466-0.

Hoisington et al. Microbiome  (2015) 3:60 Page 9 of 12

http://dx.doi.org/10.1056/NEJMoa1007302
http://dx.doi.org/10.1073/pnas.1205624109
http://dx.doi.org/10.1073/pnas.1205624109
http://dx.doi.org/10.1016/j.celrep.2015.03.049
http://dx.doi.org/10.1016/j.tree.2015.02.001
http://dx.doi.org/10.1016/j.tree.2015.02.001
http://dx.doi.org/10.1016/j.atmosenv.2008.09.044
http://dx.doi.org/10.1098/rspb.2009.1795
http://dx.doi.org/10.1073/pnas.1307855110
http://dx.doi.org/10.1073/pnas.1307855110
http://dx.doi.org/10.1111/j.1462-2920.2012.02756.x
http://dx.doi.org/10.1186/gb-2013-14-2-202
http://dx.doi.org/10.1016/j.mimet.2007.04.014
http://dx.doi.org/10.1128/AEM.02987-06
http://dx.doi.org/10.1007/s00784-014-1297-z
http://dx.doi.org/10.1371/journal.pone.0118207
http://dx.doi.org/10.1186/s40168-015-0088-3
http://dx.doi.org/10.1016/j.it.2015.01.001
http://dx.doi.org/10.1126/science.1254529
http://dx.doi.org/10.1126/science.1254529
http://dx.doi.org/10.1111/1462-2920.12036
http://dx.doi.org/10.1007/s00284-014-0643-3
http://dx.doi.org/10.1007/s00284-014-0643-3
http://dx.doi.org/10.1371/journal.pone.0034867
http://dx.doi.org/10.1111/j.1600-0668.2012.00769.x
http://dx.doi.org/10.1038/nature13786
http://dx.doi.org/10.1016/j.envres.2015.03.015
http://dx.doi.org/10.1016/j.envres.2015.03.015
http://dx.doi.org/10.1097/BOR.0000000000000191
http://dx.doi.org/10.1097/BOR.0000000000000191
http://dx.doi.org/10.1016/j.chom.2015.04.00
http://dx.doi.org/10.1016/j.smim.2013.09.005
http://dx.doi.org/10.1007/s00018-014-1812-z
http://dx.doi.org/10.1007/s00018-014-1812-z
http://dx.doi.org/10.1016/j.ijmyco.2015.03.002
http://dx.doi.org/10.1016/j.ijmyco.2015.03.002
http://dx.doi.org/10.1128/jcm.00899-13
http://dx.doi.org/10.1021/acs.est.5b00142
http://dx.doi.org/10.1111/j.1600-0668.1995.t01-1-00003.x
http://dx.doi.org/10.1016/j.watres.2014.11.024
http://dx.doi.org/10.5487/tr.2012.28.2.103
http://dx.doi.org/10.1073/pnas.1401006111
http://dx.doi.org/10.1371/journal.pone.0035797
http://dx.doi.org/10.1038/nature12060
http://dx.doi.org/10.1111/ina.12090
http://dx.doi.org/10.1007/s11882-014-0466-0


80. Hoang CP, Kinney KA, Corsi RL, Szaniszlo PJ. Resistance of green building
materials to fungal growth. Int Biodeter Biodegr. 2010;64(2):104–13.
doi:10.1016/j.ibiod.2009.11.001.

81. Grant C, Hunter CA, Flannigan B, Bravery AF. The moisture requirements of
moulds isolated from domestic dwellings. Int Biodeterior. 1989;25(4):259–84.
doi:10.1016/0265-3036(89)90002-x.

82. Verdier T, Coutand M, Bertron A, Roques C. A review of indoor microbial
growth across building materials and sampling and analysis methods. Build
Environ. 2014;80:136–49. doi:10.1016/j.buildenv.2014.05.030.

83. Arnold C. Rethinking sterile: the hospital microbiome. Environ Health
Perspect. 2014;122(7):A182–7. doi:10.1289/ehp.122-A182.

84. Lax S, Gilbert JA. Hospital-associated microbiota and implications for nosocomial
infections. Trends Mol Med. 2015;21(7):427–32. doi:10.1016/j.molmed.2015.03.005.

85. Kembel SW, Jones E, Kline J, Northcutt D, Stenson J, Womack AM, et al.
Architectural design influences the diversity and structure of the built
environment microbiome. ISME J. 2012;1–11. doi:10.1038/ismej.2011.211.

86. Logan AC. Dysbiotic drift: mental health, environmental grey space, and
microbiota. J Physiol Anthropol. 2015;34(1):015–0061.

87. Schloss P, Iverson K, Petrosino J, Schloss S. The dynamics of a family’s gut
microbiota reveal variations on a theme. Microbiome. 2014;2(1):25.
doi:10.1186/2049-2618-2-25.

88. Napoli C, Marcotrigiano V, Montagna MT. Air sampling procedures to
evaluate microbial contamination: a comparison between active and
passive methods in operating theatres. BMC Public Health. 2012;12:594.
doi:10.1186/1471-2458-12-594.

89. Chuaybamroong P, Choomseer P, Sribenjalux P. Comparison between
hospital single air unit and central air unit for ventilation performances and
airborne microbes. Aerosol Air Qual Res. 2008;8(1):28–36.

90. French GL, Otter JA, Shannon KP, Adams NMT, Watling D, Parks MJ. Tackling
contamination of the hospital environment by methicillin-resistant
Staphylococcus aureus (MRSA): a comparison between conventional
terminal cleaning and hydrogen peroxide vapour decontamination. J Hosp
Infect. 2004;57(1):31–7. doi:10.1016/j.jhin.2004.03.006.

91. Rutala WA, Weber DJ. Uses of inorganic hypochlorite (bleach) in health-care
facilities. Clin Microbiol Rev. 1997;10(4):597–610.

92. Vandini A, Temmerman R, Frabetti A, Caselli E, Antonioli P, Balboni PG, et al.
Hard surface biocontrol in hospitals using microbial-based cleaning
products. PLoS One. 2014;9:9. doi:10.1371/journal.pone.0108598.

93. Chang CW, Li SY, Huang SH, Huang CK, Chen YY, Chen CC. Effects of
ultraviolet germicidal irradiation and swirling motion on airborne
Staphylococcus aureus, Pseudomonas aeruginosa and Legionella
pneumophila under various relative humidities. Indoor Air. 2013;23(1):74–84.
doi:10.1111/j.1600-0668.2012.00793.x.

94. Mphaphlele M, Dharmadhikari AS, Jensen PA, Rudnick SN, van Reenen TH,
Pagano MA, et al. Institutional tuberculosis transmission controlled trial of
upper room ultraviolet air disinfection: a basis for new dosing guidelines. Am J
Respir Crit Care Med. 2015;192(4):477–84. doi:10.1164/rccm.201501-0060OC.

95. Hones K, Stangl F, Sift M, Hessling M. Visible optical radiation generates
bactericidal effect applicable for inactivation of health care associated
germs demonstrated by inactivation of E. coli and B. subtilis using 405 nm
and 460 nm light emitting diodes. Novel Biophotonics Techn Appl III.
2015;9540. doi:10.1117/12.2183903.

96. Miller SL. Upper room germicidal ultraviolet systems for air disinfection are
ready for wide implementation. Am J Respir Crit Care Med. 2015;192(4):407–9.
doi:10.1164/rccm.201505-0927ED.

97. Lax S, Hampton-Marcell J, Gibbons S, Colares G, Smith D, Eisen J, et al.
Forensic analysis of the microbiome of phones and shoes. Microbiome.
2015;3(1):21. doi:10.1186/s40168-015-0082-9.

98. Meadow JF, Altrichter AE, Green JL. Mobile phones carry the personal
microbiome of their owners. PeerJ. 2014;24:2. doi:10.7717/peerj.447.

99. Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan
BJM, et al. Identifying personal microbiomes using metagenomic
codes. Proc Natl Acad Sci. 2015;112(22):E2930–8. doi:10.1073/
pnas.1423854112.

100. Fond G, Kuin A, Koeter MW, Lutter R, van Gool T, Yolken R, et al. Beyond the
association. Toxoplasma gondii in schizophrenia, bipolar disorder, and
addiction: systematic review and meta-analysis. Acta Psychiatr Scand.
2015;132(3):161-79. doi:10.1111/acps.12423.

101. Pedersen MG, Mortensen PB, Norgaard-Pedersen B, Postolache TT.
Toxoplasma gondii infection and self-directed violence in mothers. Arch
Gen Psychiatry. 2012;69(11):1123-30. PubMed PMID: 22752117.

102. Cook TB, Brenner LA, Cloninger CR, Langenberg P, Igbide A, Giegling I,
et al. "Latent" infection with Toxoplasma gondii: association with trait
aggression and impulsivity in healthy adults. J Psychiatr Res. 2015;60:87-94.
doi:10.1016/j.jpsychires.2014.09.019. Epub 2014 Sep 28. PubMed PMID:
25306262.

103. Jones JL, Kruszon-Moran D, Rivera HN, Price C, Wilkins PP. Toxoplasma
gondii seroprevalence in the United States 2009–2010 and comparison with
the past two decades. Am J Trop Med Hyg. 2014;90(6):1135-9. doi:10.4269/
ajtmh.14-0013.

104. Frenkel JK, Lindsay DS, Parker BB, Dobesh M. Dogs as possible mechanical
carriers of Toxoplasma, and their fur as a source of infection of young
children. Int J Infect Dis. 2003;7(4):292–3.

105. Holmes CJ, Plichta JK, Gamelli RL, Radek KA. Dynamic role of host stress
responses in modulating the cutaneous microbiome: implications for
wound healing and infection. Adv Wound Care. 2015;4(1):24–37.
doi:10.1089/wound.2014.0546.

106. Schmidt C. Mental health: thinking from the gut. Nature.
2015;518(7540):S12–5. doi:10.1038/518S13a.

107. Clarke G, O’Mahony S, Dinan T, Cryan J. Priming for health: gut microbiota
acquired in early life regulates physiology, brain and behaviour. Acta
Paediatr. 2014;103(8):812–9. doi:10.1111/apa.12674.

108. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing,
and beyond: gut microbiota and inflammatory status in seniors and
centenarians. PLoS One. 2010;5(5):e10667. doi:10.1371/journal.pone.0010667.

109. Kampf G, Kramer A. Epidemiologic background of hand hygiene and
evaluation of the most important agents for scrubs and rubs. Clin Microbiol
Rev. 2004;17(4):863–93. doi:10.1128/cmr.17.4.863-893.2004.

110. Kramer M, Obermajer N, Bogovic Matijasic B, Rogelj I, Kmetec V.
Quantification of live and dead probiotic bacteria in lyophilised product by
real-time PCR and by flow cytometry. Appl Microbiol Biotechnol.
2009;84(6):1137–47. doi:10.1007/s00253-009-2068-7.

111. Consortium THMP. Structure, function and diversity of the healthy human
microbiome. Nature. 2012;486(7402):207–14. doi:10.1038/nature11234.

112. Foster JA, McVey Neufeld K-A. Gut–brain axis: how the microbiome
influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12.
doi:10.1016/j.tins.2013.01.005.

113. Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC.
Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with
suspected immune dysregulation. Clin Ther. 2015;37(5):984–95. doi:10.1016/
j.clinthera.2015.04.002.

114. Luna RA, Foster JA. Gut brain axis: diet microbiota interactions and
implications for modulation of anxiety and depression. Curr Opin
Biotechnol. 2015;32:35–41. doi:10.1016/j.copbio.2014.10.007.

115. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut
microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.
doi:10.1038/nrn3346.

116. Bilbo SD, Nevison CD, Parker W. A model for the induction of autism in the
ecosystem of the human body: the anatomy of a modern pandemic?
Microb Ecol Health Dis. 2015;26:26253. doi:10.3402/mehd.v26.26253.

117. Toh MC, Allen-Vercoe E. The human gut microbiota with reference to
autism spectrum disorder: considering the whole as more than a sum of its
parts. Microb Ecol Health Dis. 2015;26:26309. doi:10.3402/mehd.v26.26309.

118. Krajmalnik-Brown R, Lozupone C, Kang DW, Adams JB. Gut bacteria in
children with autism spectrum disorders: challenges and promise of
studying how a complex community influences a complex disease. Microb
Ecol Health Dis. 2015;26:26914. doi:10.3402/mehd.v26.26914.

119. Collins CH, Grange JM, Yates MD. Mycobacteria in water. J Appl Bacteriol.
1984;57(2):193–211. doi:10.1111/j.1365-2672.1984.tb01384.x.

120. Stanford J, Paul R. A preliminary report on some studies of environmental
mycobacteria from Uganda. Ann Soc Belg Med Trop. 1973;53:389–93.

121. Primm TP, Lucero CA, Falkinham JO. Health impacts of environmental
mycobacteria. Clin Microbiol Rev. 2004;17(1):98–106. doi:10.1128/
cmr.17.1.98-106.2004.

122. Jin BW, Saito H, Yoshii Z. Environmental mycobacteria in Korea. Microbiol
Immunol. 1984;28(6):667–77. doi:10.1111/j.1348-0421.1984.tb00721.x.

123. Pontiroli A, Khera TT, Oakley BB, Mason S, Dowd SE, Travis ER, et al.
Prospecting environmental mycobacteria: combined molecular approaches
reveal unprecedented diversity. PLoS One. 2013;8(7):e68648. doi:10.1371/
journal.pone.0068648.

124. Gcebe N, Rutten V, Gey van Pittius NC, Michel A. Prevalence and
distribution of non-tuberculous mycobacteria (NTM) in cattle, African

Hoisington et al. Microbiome  (2015) 3:60 Page 10 of 12

http://dx.doi.org/10.1016/j.ibiod.2009.11.001
http://dx.doi.org/10.1016/0265-3036(89)90002-x
http://dx.doi.org/10.1016/j.buildenv.2014.05.030
http://dx.doi.org/10.1289/ehp.122-A182
http://dx.doi.org/10.1016/j.molmed.2015.03.005
http://dx.doi.org/10.1038/ismej.2011.211
http://dx.doi.org/10.1186/2049-2618-2-25
http://dx.doi.org/10.1186/1471-2458-12-594
http://dx.doi.org/10.1016/j.jhin.2004.03.006
http://dx.doi.org/10.1371/journal.pone.0108598
http://dx.doi.org/10.1111/j.1600-0668.2012.00793.x
http://dx.doi.org/10.1164/rccm.201501-0060OC
http://dx.doi.org/10.1117/12.2183903
http://dx.doi.org/10.1164/rccm.201505-0927ED
http://dx.doi.org/10.1186/s40168-015-0082-9
http://dx.doi.org/10.7717/peerj.447
http://dx.doi.org/10.1073/pnas.1423854112
http://dx.doi.org/10.1073/pnas.1423854112
http://dx.doi.org/10.1111/acps.12423
http://dx.doi.org/10.1016/j.jpsychires.2014.09.019
http://dx.doi.org/10.4269/ajtmh.14-0013
http://dx.doi.org/10.4269/ajtmh.14-0013
http://dx.doi.org/10.1089/wound.2014.0546
http://dx.doi.org/10.1038/518S13a
http://dx.doi.org/10.1111/apa.12674
http://dx.doi.org/10.1371/journal.pone.0010667
http://dx.doi.org/10.1128/cmr.17.4.863-893.2004
http://dx.doi.org/10.1007/s00253-009-2068-7
http://dx.doi.org/10.1038/nature11234
http://dx.doi.org/10.1016/j.tins.2013.01.005
http://dx.doi.org/10.1016/j.clinthera.2015.04.002
http://dx.doi.org/10.1016/j.clinthera.2015.04.002
http://dx.doi.org/10.1016/j.copbio.2014.10.007
http://dx.doi.org/10.1038/nrn3346
http://dx.doi.org/10.3402/mehd.v26.26253
http://dx.doi.org/10.3402/mehd.v26.26309
http://dx.doi.org/10.3402/mehd.v26.26914
http://dx.doi.org/10.1111/j.1365-2672.1984.tb01384.x
http://dx.doi.org/10.1128/cmr.17.1.98-106.2004
http://dx.doi.org/10.1128/cmr.17.1.98-106.2004
http://dx.doi.org/10.1111/j.1348-0421.1984.tb00721.x
http://dx.doi.org/10.1371/journal.pone.0068648
http://dx.doi.org/10.1371/journal.pone.0068648


buffaloes (Syncerus caffer) and their environments in South Africa.
Transbound Emerg Dis. 2013;60:74–84. doi:10.1111/tbed.12133.

125. Kamala T, Paramasivan CN, Herbert D, Venkatesan P, Prabhakar R.
Isolation and identification of environmental mycobacteria in the
mycobacterium bovis BCG trial area of south India. Appl Environ Microbiol.
1994;60(6):2180–3.

126. Kamala T, Paramasivan CN, Herbert D, Venkatesan P, Prabhakar R. Evaluation
of procedures for isolation of nontuberculous mycobacteria from soil and
water. Appl Environ Microbiol. 1994;60(3):1021–4.

127. Adrados B, Julián E, Codony F, Torrents E, Luquin M, Morató J. Prevalence
and concentration of non-tuberculous mycobacteria in cooling towers by
means of quantitative PCR: a prospective study. Curr Microbiol.
2011;62(1):313–9. doi:10.1007/s00284-010-9706-2.

128. Pryor M, Springthorpe S, Riffard S, Brooks T, Huo Y, Davis G, et al. Investigation
of opportunistic pathogens in municipal drinking water under different supply
and treatment regimes. Water Sci Technol. 2004;50(1):83–90.

129. van Ingen J, Blaak H, de Beer J, de Roda Husman AM, van Soolingen D.
Rapidly growing nontuberculous mycobacteria cultured from home tap and
shower water. Appl Environ Microbiol. 2010;76(17):6017–9. doi:10.1128/
aem.00843-10.

130. Torvinen E, Meklin T, Torkko P, Suomalainen S, Reiman M, Katila M-L, et al.
Mycobacteria and fungi in moisture-damaged building materials. Appl
Environ Microbiol. 2006;72(10):6822–4. doi:10.1128/aem.00588-06.

131. Sussland Z, Prochazkva V. Atypical mycobacteria isolated from terrarium
from zoological garden in Prague. Veterinarstvi (in Czech). 1975;25:320–2.

132. Lavania M, Katoch K, Parashar D, Sharma P, Das R, Chauhan D, et al. 2
predominance of Mycobacterium fortuitum-chelonae complex in
Ghatampur field area, endemic for leprosy. Indian J Lepr. 2008;80(4):323.

133. Hernández AS, Torres MG, Molina JA, Amat GC. Biodegradation potential
and molecular detection of the cathecol 1, 2-dioxygenase gene of
actinobacteria isolated from wastewater treatment plants in Spain. Microbes
in applied research: current advances and challenges. Singapore: World
Scientific Publishing Co; 2015.

134. O’Brien MER, Anderson H, Kaukel E, O’Byrne K, Pawlicki M, von Pawel J, et al.
SRL172 (killed Mycobacterium vaccae) in addition to standard
chemotherapy improves quality of life without affecting survival, in patients
with advanced non-small-cell lung cancer: phase III results. Ann Oncol.
2004;15(6):906–14. doi:10.1093/annonc/mdh220.

135. Lowry CA, Hollis JH, de Vries A, Pan B, Brunet LR, Hunt JRF, et al.
Identification of an immune-responsive mesolimbocortical serotonergic
system: potential role in regulation of emotional behavior. Neuroscience.
2007;146(2):756–72. doi:10.1016/j.neuroscience.2007.01.067.

136. Matthews DM, Jenks SM. Ingestion of Mycobacterium vaccae decreases
anxiety-related behavior and improves learning in mice. Behav Processes.
2013;96:27–35. doi:10.1016/j.beproc.2013.02.007.

137. Bonjoch X, Ballesté E, Blanch AR. Multiplex PCR with 16S rRNA gene-
targeted primers of Bifidobacterium spp. To identify sources of fecal
pollution. Appl Environ Microbiol. 2004;70(5):3171–5. doi:10.1128/
aem.70.5.3171-3175.2004.

138. Savignac HM, Tramullas M, Kiely B, Dinan TG, Cryan JF. Bifidobacteria
modulate cognitive processes in an anxious mouse strain. Behav Brain Res.
2015;287:59–72. doi:10.1016/j.bbr.2015.02.044.

139. Savignac HM, Kiely B, Dinan TG, Cryan JF. Bifidobacteria exert strain-specific
effects on stress-related behavior and physiology in BALB/c mice.
Neurogastroenterol Motil. 2014;26(11):1615–27. doi:10.1111/nmo.12427.

140. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects
of the probiotic Bifidobacterium infantis in the maternal separation
model of depression. Neuroscience. 2010;170(4):1179–88. doi:10.1016/
j.neuroscience.2010.08.005.

141. Messaoudi M, Violle N, Bisson J-F, Desor D, Javelot H, Rougeot C. Beneficial
psychological effects of a probiotic formulation (Lactobacillus helveticus
R0052 and Bifidobacterium longum R0175) in healthy human volunteers.
Gut Microbes. 2011;2(4):256–61. doi:10.4161/gmic.2.4.16108.

142. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, et al.
Assessment of psychotropic-like properties of a probiotic formulation
(Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats
and human subjects. Br J Nutr. 2011;105(05):755–64.

143. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The anxiolytic
effect of Bifidobacterium longum NCC3001 involves vagal pathways for
gut–brain communication. Neurogastroenterol Motil. 2011;23(12):1132–9.
doi:10.1111/j.1365-2982.2011.01796.x.

144. Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, et al. Chronic
gastrointestinal inflammation induces anxiety-like behavior and alters
central nervous system biochemistry in mice. Gastroenterology.
2010;139(6):2102–2112.e1. doi:10.1053/j.gastro.2010.06.063.

145. Hong P-Y, Wu J-H, Liu W-T. Relative abundance of Bacteroides spp. in stools
and wastewaters as determined by hierarchical oligonucleotide primer
extension. Appl Environ Microbiol. 2008;74(9):2882–93. doi:10.1128/
aem.02568-07.

146. Hsiao Elaine Y, McBride Sara W, Hsien S, Sharon G, Hyde Embriette R,
McCue T, et al. Microbiota modulate behavioral and physiological
abnormalities associated with neurodevelopmental disorders. Cell.
2013;155(7):1451–63. doi:10.1016/j.cell.2013.11.024.

147. Yang H, Zhao X, Tang S, Huang H, Zhao X, Ning Z, et al. Probiotics reduce
psychological stress in patients before laryngeal cancer surgery. Asia Pac J
Clin Oncol. 2014; doi:10.1111/ajco.12120.

148. Castillo-Rojas G, Mazari-Hiríart M, Ponce de León S, Amieva-Fernández RI,
Agis-Juárez RA, Huebner J, et al. Comparison of enterococcus faecium and
enterococcus faecalis strains isolated from water and clinical samples:
antimicrobial susceptibility and genetic relationships. PLoS One.
2013;8(4):e59491. doi:10.1371/journal.pone.0059491.

149. Divyashri G, Krishna G, Muralidhara M, Prapulla SG. Probiotic attributes,
antioxidant, anti-inflammatory and neuromodulatory effects of probiotic
Enterococcus faecium CFR 3003: in vitro and in vivo evidences. J Med
Microbiol. 2015;7(10):000184. doi:10.1099/jmm.0.000184.

150. Bernardeau M, Guguen M, Vernoux JP. Beneficial lactobacilli in food and
feed: long-term use, biodiversity and proposals for specific and realistic
safety assessments. FEMS Microbiol Rev. 2006;30(4):487–513. doi:10.1111/
j.1574-6976.2006.00020.x.

151. Flores GE, Bates ST, Knights D, Lauber CL, Stombaugh J, Knight R, et al.
Microbial biogeography of public restroom surfaces. PLoS One.
2011;6(11):e28132. doi:10.1371/journal.pone.0028132.

152. Rao A, Bested A, Beaulne T, Katzman M, Iorio C, Berardi J, et al. A
randomized, double-blind, placebo-controlled pilot study of a probiotic
in emotional symptoms of chronic fatigue syndrome. Gut Pathogens.
2009;1(1):1–6. doi:10.1186/1757-4749-1-6.

153. Benton D, Williams C, Brown A. Impact of consuming a milk drink
containing a probiotic on mood and cognition. Eur J Clin Nutr.
2006;61(3):355–61.

154. Vitali B, Minervini G, Rizzello CG, Spisni E, Maccaferri S, Brigidi P, et al. Novel
probiotic candidates for humans isolated from raw fruits and vegetables.
Food Microbiol. 2012;31(1):116–25. doi:10.1016/j.fm.2011.12.027.

155. Schillinger U, Holzapfel W. The genus Lactobacillus. In: The genera of lactic
acid bacteria. New York: Springer; 1995. p. 19–54.

156. Hewitt KM, Gerba CP, Maxwell SL, Kelley ST. Office space bacterial
abundance and diversity in three metropolitan areas. PLoS One.
2012;7(5):e37849. doi:10.1371/journal.pone.0037849.

157. Wang T, Hu X, Liang S, Li W, Wu X, Wang L, et al. Lactobacillus fermentum NS9
restores the antibiotic induced physiological and psychological abnormalities
in rats. Benefic Microbes. 2015;6(5):707–17. doi:10.3920/BM2014.0177.

158. Luo J, Wang T, Liang S, Hu X, Li W, Jin F. Ingestion of Lactobacillus strain
reduces anxiety and improves cognitive function in the hyperammonemia
rat. Sci China Life Sci. 2014;57(3):327–35. doi:10.1007/s11427-014-4615-4.

159. Liang S, Wang T, Hu X, Luo J, Li W, Wu X, et al. Administration of
Lactobacillus helveticus NS8 improves behavioral, cognitive, and
biochemical aberrations caused by chronic restraint stress. Neuroscience.
2015;310:561–77. doi:10.1016/j.neuroscience.2015.09.033.

160. Ohland CL, Kish L, Bell H, Thiesen A, Hotte N, Pankiv E, et al. Effects
of Lactobacillus helveticus on murine behavior are dependent on diet
and genotype and correlate with alterations in the gut microbiome.
Psychoneuroendocrinology. 2013;38(9):1738–47. doi:10.1016/
j.psyneuen.2013.02.008.

161. Smith CJ, Emge JR, Berzins K, Lung L, Khamishon R, Shah P, et al. Probiotics
normalize the gut-brain-microbiota axis in immunodeficient mice. Am J
Physiol Gastrointest Liver Physiol. 2014;307(8):4. doi:10.1152/ajpgi.00238.2014.

162. Woo J-Y, Gu W, Kim K-A, Jang S-E, Han MJ, Kim D-H. Lactobacillus pentosus
var. plantarum C29 ameliorates memory impairment and inflammaging in a
d-galactose-induced accelerated aging mouse model. Anaerobe.
2014;27:22–6. doi:10.1016/j.anaerobe.2014.03.003.

163. Tubelius P, Stan V, Zachrisson A. Increasing work-place healthiness with the
probiotic lactobacillus reuteri: a randomised, double-blind placebo-
controlled study. Environ Health. 2005;4(1):25.

Hoisington et al. Microbiome  (2015) 3:60 Page 11 of 12

http://dx.doi.org/10.1111/tbed.12133
http://dx.doi.org/10.1007/s00284-010-9706-2
http://dx.doi.org/10.1128/aem.00843-10
http://dx.doi.org/10.1128/aem.00843-10
http://dx.doi.org/10.1128/aem.00588-06
http://dx.doi.org/10.1093/annonc/mdh220
http://dx.doi.org/10.1016/j.neuroscience.2007.01.067
http://dx.doi.org/10.1016/j.beproc.2013.02.007
http://dx.doi.org/10.1128/aem.70.5.3171-3175.2004
http://dx.doi.org/10.1128/aem.70.5.3171-3175.2004
http://dx.doi.org/10.1016/j.bbr.2015.02.044
http://dx.doi.org/10.1111/nmo.12427
http://dx.doi.org/10.1016/j.neuroscience.2010.08.005
http://dx.doi.org/10.1016/j.neuroscience.2010.08.005
http://dx.doi.org/10.4161/gmic.2.4.16108
http://dx.doi.org/10.1111/j.1365-2982.2011.01796.x
http://dx.doi.org/10.1053/j.gastro.2010.06.063
http://dx.doi.org/10.1128/aem.02568-07
http://dx.doi.org/10.1128/aem.02568-07
http://dx.doi.org/10.1016/j.cell.2013.11.024
http://dx.doi.org/10.1111/ajco.12120
http://dx.doi.org/10.1371/journal.pone.0059491
http://dx.doi.org/10.1099/jmm.0.000184
http://dx.doi.org/10.1111/j.1574-6976.2006.00020.x
http://dx.doi.org/10.1111/j.1574-6976.2006.00020.x
http://dx.doi.org/10.1371/journal.pone.0028132
http://dx.doi.org/10.1186/1757-4749-1-6
http://dx.doi.org/10.1016/j.fm.2011.12.027
http://dx.doi.org/10.1371/journal.pone.0037849
http://dx.doi.org/10.3920/BM2014.0177
http://dx.doi.org/10.1007/s11427-014-4615-4
http://dx.doi.org/10.1016/j.neuroscience.2015.09.033
http://dx.doi.org/10.1016/j.psyneuen.2013.02.008
http://dx.doi.org/10.1016/j.psyneuen.2013.02.008
http://dx.doi.org/10.1152/ajpgi.00238.2014
http://dx.doi.org/10.1016/j.anaerobe.2014.03.003


164. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, et al.
Bacterial infection causes stress-induced memory dysfunction in mice. Gut.
2010;60(3):307–17. doi:10.1136/gut.2009.202515.

165. Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS. A randomized
controlled trial to test the effect of multispecies probiotics on cognitive
reactivity to sad mood. Brain Behav Immun. 2015;48:258–64. doi:10.1016/
j.bbi.2015.04.003.

166. Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption
of fermented milk product with probiotic modulates brain activity.
Gastroenterology. 2013;144(7):1394–401.e4. doi:10.1053/j.gastro.2013.02.043.

167. Mohammadi AA, Jazayeri S, Khosravi-Darani K, Solati Z, Mohammadpour N,
Asemi Z et al. The effects of probiotics on mental health and
hypothalamic–pituitary–adrenal axis: a randomized, double-blind, placebo-
controlled trial in petrochemical workers. Nutr Neurosci. doi:10.1179/
1476830515Y.0000000023.

168. D’Mello C, Ronaghan N, Zaheer R, Dicay M, Le T, MacNaughton WK, et al.
Probiotics improve inflammation-associated sickness behavior by altering
communication between the peripheral immune system and the brain. J
Neurosci. 2015;35(30):10821–30.

169. Jeong J, Kim K, Ahn Y, Sim J, Woo J, Huh C, et al. Probiotic mixture KF
attenuates age-dependent memory deficit and lipidemia in Fischer 344 rats.
J Microbiol Biotechnol. 2015;25(9):1532–6. doi:10.4014/jmb.1505.05002.

170. Davari S, Talaei SA, Alaei H, Salami M. Probiotics treatment improves
diabetes-induced impairment of synaptic activity and cognitive function:
behavioral and electrophysiological proofs for microbiome–gut–brain axis.
Neuroscience. 2013;240:287–96. doi:10.1016/j.neuroscience.2013.02.055.

171. Gilbert K, Arseneault-Bréard J, Flores Monaco F, Beaudoin A, Bah TM,
Tompkins TA, et al. Attenuation of post-myocardial infarction depression in
rats by n-3 fatty acids or probiotics starting after the onset of reperfusion. Br
J Nutr. 2013;109(01):50–6. doi:10.1017/S0007114512003807.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Hoisington et al. Microbiome  (2015) 3:60 Page 12 of 12

http://dx.doi.org/10.1136/gut.2009.202515
http://dx.doi.org/10.1016/j.bbi.2015.04.003
http://dx.doi.org/10.1016/j.bbi.2015.04.003
http://dx.doi.org/10.1053/j.gastro.2013.02.043
http://dx.doi.org/10.1179/1476830515Y.0000000023
http://dx.doi.org/10.1179/1476830515Y.0000000023
http://dx.doi.org/10.4014/jmb.1505.05002
http://dx.doi.org/10.1016/j.neuroscience.2013.02.055
http://dx.doi.org/10.1017/S0007114512003807

	Abstract
	Background
	Review
	Conclusions
	Competing interests
	Authors’ contributions
	Author details
	References



