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Abstract

Background: The changes that occur in the microbiome of aging individuals are unclear, especially in light of the
imperfect correlation of frailty with age. Studies in older human subjects have reported subtle effects, but these
results may be confounded by other variables that often change with age such as diet and place of residence. To
test these associations in a more controlled model system, we examined the relationship between age, frailty, and
the gut microbiome of female C57BL/6 J mice.

Results: The frailty index, which is based on the evaluation of 31 clinical signs of deterioration in mice, showed a
near-perfect correlation with age. We observed a statistically significant relationship between age and the taxonomic
composition of the corresponding microbiome. Consistent with previous human studies, the Rikenellaceae family,
which includes the Alistipes genus, was the most significantly overrepresented taxon within middle-aged and
older mice.
The functional profile of the mouse gut microbiome also varied with host age and frailty. Bacterial-encoded
functions that were underrepresented in older mice included cobalamin (B12) and biotin (B7) biosynthesis,
and bacterial SOS genes associated with DNA repair. Conversely, creatine degradation, associated with muscle wasting,
was overrepresented within the gut microbiomes of the older mice, as were bacterial-encoded β-glucuronidases, which
can influence drug-induced epithelial cell toxicity. Older mice also showed an overabundance of monosaccharide
utilization genes relative to di-, oligo-, and polysaccharide utilization genes, which may have a substantial impact on
gut homeostasis.

Conclusion: We have identified taxonomic and functional patterns that correlate with age and frailty in the mouse
microbiome. Differences in functions related to host nutrition and drug pharmacology vary in an age-dependent
manner, suggesting that the availability and timing of essential functions may differ significantly with age and frailty.
Future work with larger cohorts of mice will aim to separate the effects of age and frailty, and other factors.
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Background
The human microbiome influences and is influenced by
several aspects of the host’s health and development [1].
Perturbations to human-associated bacterial communities
are associated with many disorders such as colon cancer,
autoimmune diseases, inflammatory bowel disease, and
Clostridium difficile infection [2-8]. The influence of the
gut microbiota on human health is driven by interactions
between microbes and the host: for example, different
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groups of bacteria can synthesize energy sources such as
butyrate and other short-chain fatty acids [9,10], stimulate
the immune system [11,12], and provide protection from
pathogens through competitive exclusion and the produc-
tion of protective compounds such as bacteriocins [13,14].
The age of the host appears to be linked with the com-

position of the associated microbiome [15,16]. Although
many studies have focused on associations between the
microbiome and early life stages [15,17,18], relatively few
studies have looked into the effect of the microbiome on
aging and frailty in later life [19-23]. It is known that the
microbiome changes drastically between infant and adult
stages of life, with a shift from dominance by Bifidobacter-
ium to genera within Bacteroidetes and Clostridia [15,19]
that reflects a change from primarily lactate metabolism
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and plant polysaccharide breakdown to short-chain fatty
acid (SCFA) production and vitamin (such as cobalamin/
B12) and carbohydrate metabolism. Previous studies have
observed changes to the bacterial communities between
young/middle-aged adults and older subjects [15,20-22].
Centenarians were found to have a decrease in Clostridia
and an increase in Proteobacteria and Bacilli in their
gut microbiomes [20]. Such shifts reduce the abun-
dance of SCFA producers and increase the number of fac-
ultative anaerobes and opportunistic pathogens (primarily
Proteobacteria) within the gut microbiome of the older
population [23]. Such shifts would likely lead to increased
inflammation, which along with aging-associated changes
is a major contributor to the overall frailty of an individual
[24]. Studies focusing on the frailty of the host as a factor
in microbiome composition found that members of the
Oscillibacter and Alistipes genera were in high abundance
in the most frail individuals [22] whereas the abundance
of Eubacteriaceae, Faecalibacterium, and Lactobacillus
was reduced [21]. Although these shifts in constituent
microbes are likely associated with changes in micro-
bial metabolism and interactions with the host, the conse-
quences of such shifts are not yet understood. Beyond
these studies, little is known to date about the link between
the microbiome, aging and frailty in terms of perturbations
to the microbial communities. Since different microbial
taxa often carry out different molecular functions and take
on different ecological roles in the gut, we may expect to
see commensurate changes in the metabolic potential of
the microbes and the manner in which they interact with
the host.
Given the potential for the gut microbiome to change

as an individual ages, and its possible role in the health
of older individuals, our aim is to investigate linkages
between aging, frailty, and the microbiome. There are
many probable confounding factors in human studies,
including change in diet, medications, and housing status
(e.g., home residence versus long-term care facilities),
making it difficult to identify direct effects of aging and
frailty. Although not free of confounding factors them-
selves, mouse studies allow for better-controlled obser-
vations and experiments and have been shown to serve
as good models of the human microbiome [25,26]. A
frailty model has recently been demonstrated to provide
similar information about aging mice [27] as traditional
frailty assessments do for older human patients [28]. A
previous study of the gut microbiome in older mice re-
lated dietary intervention to shifts in bacterial composition
[29] but did not investigate changes in relation to age
itself. Using metagenomic sequencing of fecal samples,
we find shifts both in microbial composition and spe-
cific molecular functions that correlate with the age
and frailty of the host. Our results corroborate previ-
ous findings of microbiome shifts in aging adults and
identify changes in taxonomy and function with rele-
vance to aging and frailty.

Results and discussion
Murine age groupings and frailty index scores
A total of 21 stool samples for metagenomic analysis
were collected from ten different mice with varying ages
and murine frailty index (FI) scores (Additional file 1).
Age correlated with frailty (Spearman correlation = 0.86,
p = 1.064 × 10−5), and fell into three natural groupings
which we refer to as ‘young’ (age in days: mean 174 ± s.d.
15; FI: 0.024 ± 0.016; samples = 9; mice = 5), ‘middle’ (age
in days: 589 ± 18; FI: 0.097 ± 0.030; samples = 6; mice = 2),
and ‘old’ (age in days: 857 ± 16; FI: 0.302 ± 0.088, sam-
ples = 6; mice = 3) (Figure 1, Additional file 2). The strong
correlation between FI and age reinforces that both are
suitable measurements to compare with changes in the
gut microbiome. Fares and Howlett showed that a 50%
mortality rate occurs around 24 months in mice, which
corresponds roughly to age 85 in humans [30]. Our study
did not reveal a strong indication that either FI or age was
a better predictor of microbiome shifts due to the sample
size of the study and the lack of observed variation in FI
with respect to age in this particular subset of mice.

Taxonomic differences between young, middle, and old
mouse groups
To determine if there are differences in the microbiomes
of mice of different ages, we compared the taxonomic
composition of the microbiome samples using several dif-
ferent methods. Initially, we extracted 16S rRNA riboso-
mal genes from the metagenomic sequences and assigned
these to 97% operational taxonomic units (OTUs) from
GreenGenes using the Quantitative Insights Into Microbial
Ecology (QIIME) closed-reference OTU-picking protocol.
Principal coordinate analysis of the samples showed
significant separation by age groups using both weighted
UniFrac (ANOSIM p value = 0.004) and unweighted
UniFrac (ANOSIM p = 0.001) (Figure 2). Principal coord-
inate 1 (PC1) (percent variation explained: 15.2%) of the
unweighted UniFrac separates all three sets of sam-
ples, while PC2 (10.8%) separates the old group from the
other samples even further. In the weighted UniFrac plot,
separation of the samples by age only appears after intro-
ducing PC2 (16.5%) and not with PC1 (54%), which
appears to be driven by substantial changes in taxo-
nomic relative abundance in two samples (Y7-Aug15 and
1E-May23). These two samples both have reduced levels
of Bacteroidales relative to Clostridiales and vary greatly
from all other samples including those taken from the
same mouse within very close time spans (Y7-Aug15:
1 day and 1E-May23: 32 days). In spite of these dif-
ferences, the clustering of samples by age group even
for these two outliers by unweighted UniFrac suggests
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Figure 1 Age (x-axis) and frailty index (y-axis) for the mice used in this study. Age correlated significantly with frailty index (Spearman
correlation = 0.86, p = 1.064 × 10−5) and samples were derived from three age groupings: young (red), middle (blue), and old (green). Note that
corresponding frailty scores were not performed for 4 of the 21 stool samples, so only 17 points are shown in the plot.
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Figure 2 Principal coordinate analysis of 16S sequences from 21 samples using unweighted (A) and weighted (B) UniFrac shows
distinct separation of samples based on their age and frailty into groups of young (red), middle (blue), and old (green).
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a strong relationship in qualitative terms. The clearer de-
lineation of samples by age in the unweighted UniFrac
analysis suggests that the presence or absence of par-
ticular OTUs is more important than the abundance of
these OTUs in separating the samples by age. To further
test if separation of samples was observed regardless
of method, a PCA plot was created that used only the
raw abundances of each OTU and did not use a beta di-
versity measure to relate the OTUs to each other. These
results were consistent with our initial PCoA analysis as il-
lustrated by the clear separation of the samples by age
group when PC1 (40.0%) and PC2 (23.4%) were plotted
(Additional file 3).
The second approach for determining taxonomic com-

position within the metagenomic samples used 40 con-
served protein-coding genes that have previously been
described [31] and were assigned using the PhyloSift
package [32]. Metagenomic reads matching to each of
the conserved protein-coding genes were then inserted
into their corresponding reference phylogenetic gene tree
using Pplacer [33] and then compared using Pplacer’s
edge principal component analysis (edge PCA) [34]. The
edge PCA method transforms the placed reads such that
each edge in the tree becomes a variable of interest, which
is then used for PCA. This has the added advantage of re-
lating each of the principal components directly to the
phylogenetic edges that are contributing to that signal.
Similar to the weighted UniFrac PCoA, the first princi-
pal component (87.4%) from the edge PCA did not pro-
vide any separation of the samples, and after visualizing
the drivers of PC1 on the phylogenetic tree provided
by Pplacer, it seems to be driven by a trade-off between
Firmicutes/Clostridia and Bacteroidetes [35]. However,
separation of samples by age did appear when using
PC2 (6%) and PC3 (4%) (Additional file 4A). Separation
between the old and middle samples occurred primarily
by PC2 of the edge PCA plot and was driven by the mid-
dle group having more Rikenellaceae, Lactobacillaceae,
Mycoplasmataceae, and Erysipelotrichaceae, and less
Lachnospiraceae, Clostridiaceae, Ruminococcaceae, Pre-
votellaceae, and Porphyromonadaceae (Additional file 4B).
PC3 primarily separated the young samples from the mid-
dle and old samples and was driven by the young having
more Lactobacillaceae, Prevotellaceae, and Porphyromo-
nadaceae and the middle and old groups having more
Rikenellaceae, Lachnospiraceae, Ruminococcaceae, and
Clostridiaceae (Additional file 4C). In all cases, the sam-
ples of young and old mice were more similar to each
other than either was to the middle group. This observa-
tion agrees with studies in humans that also showed that
middle-aged people had more distinct taxonomic [20] and
functional [36] compositions then other adult age groups.
Some samples were taken from the same mouse over a

period of time, raising the question of whether intra-
mouse correlations artificially increased the apparent simi-
larity within age groups. To address this question, we ex-
amined the average beta diversity between all samples
taken from the same mouse in a given age group, versus
all pairs of samples taken from different mice. We found
no significant difference in means (Welch t test p < 0.05)
between the two types of samples at all ages, for both
weighted and unweighted UniFrac (Additional file 5). The
average distances being compared never differed by more
than 0.029 (middle mouse group; unweighted UniFrac),
and in the young group, the samples from the same mice
had greater beta diversity than those taken from differ-
ent mice. This lack of difference suggests that there are
substantial changes in the microbiome composition over
short periods of time but that there is commonality in
the microbiome as mice age under controlled labora-
tory conditions.
Taxonomic differences were compared across the dif-

ferent age groups to determine if particular taxa are as-
sociated with the gut microbiomes of aging and frail mice.
The Rikenellaceae family, which contains the Alistipes
genus and has previously been linked to microbiomes
from elderly people [22], was the most significantly over-
represented family within the middle and old groups in
comparison to young mice when using 16S data (Kruskal-
Wallis H test, Benjamini-Hochberg FDR multiple test cor-
rection p = 0.007) (Figure 3; Additional files 6 and 7). To
ensure that this taxonomic link between frailer mice and
people was not an artifact of using the 16S rRNA gene as
a marker, an independent analysis using protein markers
(PhyloSift) and phylogenetic placement (Pplacer) was con-
ducted. The latter method has the advantage of identifying
the phylogenetic context of sequenced reads but does not
provide statistical significance testing. However, the results
from this method did provide additional support that the
Alistipes were more abundant within the old and middle
mouse groups (Figure 4). The PhyloSift approach indicated
that the old mice have lower abundances of organisms
from the Lachnospiraceae family, a group often associated
with the production of beneficial SCFAs [37], even though
the 16S-based method did not show a significant difference
(p = 0.7) between the age groups. This contrasting result
suggests that the type of phylogenetic marker used for
taxonomic assessment can give conflicting results for
some taxon families. Lastly, the PhyloSift approach indi-
cated that some members of the Bacteroidaceae family
were abundant in the old and middle groups, while fewer
were abundant in the young group, which did agree with
the 16S results (old: 9.2% ± 7.9%; middle: 10.3% ± 1.3%;
young: 3.9% ± 1.4%, p = 0.06).
Previous research in humans showed a negative rela-

tionship between frailty and the abundance of Eubacteria-
ceae, Faecalibacterium, and Lactobacillus [21]. We found
virtually no Eubacteriaceae (eight sequences total) within
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Figure 3 Taxonomic composition for the nine most abundant families determined using identified 16S sequences, across all 21
samples ordered by increasing age; increasing frailty in each group is ordered from left to right. For visual clarity, only the nine
most abundant families are shown in the plot. Taxonomic ranks are indicated as follows: ‘k’, kingdom (or domain); ‘p’, phylum; ‘c’, class;
‘o’, order; ‘f’, family. The unspecified ‘f__’ represents those OTUs that do not have a specific family name but are known to be within the
order Clostridiales.
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any of our samples and no difference in proportions
of Faecalibacterium between the age groups (p = 0.828;
Additional file 6). These differing results could be due to
unique differences between aging in mice and in humans
or due to confounding signals from diet or habitat change
in the elderly study. Although a recent finding did identify
in aging mice the same decrease in Lactobacillus as in the
elderly [38], no significant decrease in Lactobacillus was
observed (old: 2.4% ± 2.4%; middle: 7.0% ± 4.6%; young:
4.9% ± 5.3%, p = 0.44; Additional file 6). Zhang et al. also
reported a large phylum shift for all their aged mice from
Firmicutes to Bacteroidetes, but we did not observe any
change in the Firmicutes/Bacteroidetes ratio among our
different age groups [38]. Additionally, we noted that the
genus Akkermansia was nearly absent from the old group
(0.003% ± 0.004%), compared to the middle (0.39% ±
0.27%) and young mice (0.50% ± 0.8%), but the difference
in means was again not significant at an alpha threshold of
0.05 (p = 0.058; Additional file 6). Akkermansia has been
linked to healthy microbiomes in some studies [39,40], al-
though members of this genus may also exacerbate certain
types of infection via mucin degradation [41].

Functional differences among microbiomes
Annotation of metagenomic sequences using MG-RAST
led to the identification of 99 SEED level 3 categories
that had significant mean abundance differences across
the young, middle, and old categories using STAMP [42]
(Kruskal-Wallis p < 0.05 with Benjamini-Hochberg FDR
correction). Detailed results are shown in Additional file 8;
here, we focus on functions of particular interest due to
their possible roles in aging and frailty.
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Figure 4 Taxonomic differences between sample types as predicted by PhyloSift. Lineages that are overrepresented in the old and middle
groups are shown in orange, while those more prevalent in the young group are shown in green. Branches which have no difference in abundance
between groups were pruned from the tree. Taxon branches are collapsed to family level where the significant overrepresentation is not to a specific
species. Numbers within brackets are the count of taxa within that family.
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Carbohydrate and lactate utilization
Most monosaccharide utilization categories were overrep-
resented in the old group compared to the young and mid-
dle groups, with the complex polysaccharide-xyloglucan
utilization category underrepresented in the old group
(0.112% ± 0.014%, p = 0.034) compared to the middle
group (0.122% ± 0.016%) (Figure 5A). Monosaccharide
utilization categories with statistically significant changes
among age groups were L-fucose (old: 0.268%± 0.015%; mid-
dle: 0.243% ± 0.015%; young: 0.172% ± 0.022%, p = 0.034),
L-rhamnose (old: 0.347% ± 0.059%; middle: 0.146% ±
0.014%; young: 0.322% ± 0.064%, p= 0.040), D-galacturonate
and D-glucuronate (old: 0.579%± 0.032%; middle: 0.431% ±
0.052%; young: 0.492% ± 0.025%, p = 0.036), and xylose
(old: 0.333% ± 0.040%; middle: 0.182% ± 0.040%; young:
0.317% ± 0.055%, p = 0.042). This observation agrees with
earlier reports of decline in the saccharolytic potential of
microbiome with age and further suggests a limited supply
of simple sugars for gut epithelium function in the old
age group.
Additionally, the D-galacturonate and D-glucuronate

utilization category includes glucuronidases that catalyze
the hydrolysis of D-glucuronic acid as a part of complex
carbohydrate metabolism [43]. Elevated levels of human
β-glucuronidase activity in tumors compared to normal
cells led to the development of several selective cancer
chemotherapeutics [44]. However, many microbial species
contain β-glucuronidase homologs, which have been shown
to reactivate the cancer drug irinotecan (e.g., CPT-11) lead-
ing to severe diarrhea and thus limiting the efficacy of the
drug [45,46]. Fructooligosaccharides (FOS) and raffinose
are carbohydrates that are commonly used as prebi-
otics to promote growth of Lactobacilli and Bifidobacteria
in the GI tract of older individuals [29,47]. The underrep-
resentation of FOS and raffinose utilization in old mice
(0.142% ± 0.037%, p = 0.031) compared to mice in the
young (0.200% ± 0.044%) and middle (0.314% ± 0.048%)
groups could be another contributing factor to perturbing
beneficial microbe populations and an increased risk of
opportunistic infection.
The concentration of lactate in the colon is typically

maintained by lactate-utilizing bacteria and metabolism of
D-lactate by host lactases [48]. The reduced colonic ability
to utilize lactate in the old group (0.018% ± 0.011%, p =
0.041) compared to the middle group (0.061% ± 0.014%)
and the negative effect of aging on host lactase activity
[49] can adversely affect host health with accumulation
of lactate in the colon. High fecal lactate is associated
with ulcerative colitis and other inflammatory bowel
diseases [50,51].

Biosynthesis of vitamins and creatine degradation
Cobalamin (B12) biosynthesis was significantly underrep-
resented within the old group (0.037% ± 0.041%, p = 0.041)
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Figure 5 Notable functional categories with significant differences in abundance across the young, middle, and old mice. (A) Functions
related to carbohydrate and lactate metabolism. (B) Other functions including vitamin biosynthesis and DNA repair.
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compared to the middle (0.129% ± 0.026%) and young
(0.054% ± 0.018%) groups (Figure 5B). In a previous study,
55% of people aged 43 and under had a microbiome en-
coding a gene, cbiN (cobalamin biosynthesis protein; pfam
ID PF02553), involved in B12 biosynthesis, while only 11%
those over the age of 43 had a copy of it [36]. Deficiency
in B12 within elderly people has been well documented in
the past [52,53], and the decreased potential of the micro-
biome to synthesize vitamin B12 has been suggested as a
contributing factor [54]. Conversely, creatine and creatin-
ine degradation functionality was overrepresented in the
gut microbiomes of the old group (0.0076% ± 0.002%, p =
0.030) compared to the middle (0.0031% ± 0.001%) and
young (0.0018% ± 0.001%) groups. Creatine supplementa-
tion has been shown to promote muscle strength and
hypertrophy in elderly people [55]. Therefore, an increase
in degradation of creatine by the microbiome may have
negative consequences for the host if creatine abundance
was limited and thus indirectly affected the FI by leading
to reduced lean mass.
Another vitamin, biotin (vitamin B7), is synthesized in

considerable amounts by microbiota of the large intes-
tine (sometimes greater than the amount taken in the
diet), and a significant portion of this is absorbed by hu-
man and animal colonocytes [56]. Biotin synthesis was sig-
nificantly underrepresented within the young (0.011% ±
0.022%, p = 0.040) and old (0.058% ± 0.103%) groups com-
pared to the middle group (0.158% ± 0.044%). Younger in-
dividuals require less biotin compared to those of middle
and old age, so low contributions from gut microbiota in
the young group may not lead to biotin deficiencies under
a normal diet. In the old group, however, low biotin can
lead to biotin deficiency which in turn increases colon
cancer risk [57].
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DNA repair and persister cells
Bacterial SOS genes (including uvrABC and uvrD) play
an essential function in bacterial nucleotide excision repair
and decreasing the rate of mutagenesis [58]. Although no
observations have been made until now on the status of
DNA repair in any microbiome studies, the significant un-
derrepresentation of uvrD (0.0006% ± 0.0008%, p = 0.040)
and uvrABC (0.57% ± 0.10%, p = 0.039) within the old
group compared to the young group (uvrD: 0.061% ±
0.029%; uvrABC: 0.675% ± 0.066%) suggests potentially
higher rates of mutagenesis and the possibility of ac-
quiring antibiotic resistance within the gut microbiota
of the old group. The rise in functional groups associated
with persister cells from young (undetectable, p = 0.034)
and middle (0.005% ± 0.002%) groups to the old group
(0.007% ± 0.004%) points to the possibility of multidrug-
resistant bacterial populations which may contribute to in-
flammation in old age [20].

Amino acid degradation
Rampelli et al. [23] suggested an association of aromatic
amino acid degradation (except histidine) with aging. In
the present study, there was no change in tryptophan and
histidine metabolism among age groups. However, we
found significant underrepresentation of other aromatic
amino acid degradation within the old group (0.024% ±
0.003%, p = 0.049) compared to young (0.028% ± 0.004%)
and middle (0.039% ± 0.006%) groups, although the effect
size was very small.

Taxonomic assignments of identified functions
Using the RITA software package [59], we performed
taxonomic assignment of sequence reads to determine if
the shift in abundance was accompanied by a shift of a
specific set of microbes. Many key functions showed a
shift from genera Akkermansia and Parabacteroides to
Bacteroides and Firmicutes. For example, 49.5% of co-
balamin synthesis genes in the young and middle mouse
groups were assigned to the genus Bacteroides, versus
71.1% in the old mice. Conversely, the contribution of
Parabacteroides to this function dropped from 24.8% to
7.0%. Akkermansia was the predicted source of 74.4% of
UvrD and related functional genes in the young and
middle mouse groups, versus 13.3% in the old mouse co-
hort, which is instead dominated by Bacteroides and to a
lesser extent Oscillibacter and Clostridium. Although the
assignment of functions to taxonomic groups can be
error-prone, the difference in these assignments between
samples from mice of different ages indicates that differ-
ences exist, even if some assignments may be suspect.

Conclusions
Although previous microbiome studies in humans have
shown changes with age, the results were confounded by
other possible impacts on the microbiome such as diet,
living conditions, and medications that also change with
age. Here, we have used a mouse model that allows us to
control for these factors, and we have observed taxonomic
and functional changes in the microbiome that correlate
with age and frailty. Consistent with an earlier study of frail
humans, the genus Alistipes was found to be overrepre-
sented in old mice, suggesting there may be some parallel
shifts that occur in aging human and mouse populations.
Further, we identify several additional bacterial taxa and
functions that may be associated with the aging process.
Our results suggest that the aging microbiome could have
an effect on the availability of vitamins (B12 and B7) and
creatine, DNA repair, and carbohydrate metabolism as well
as the potential to interfere with some drug treatments.
Further work with larger mouse cohorts, particularly

older mice with a range of frailty scores, will be needed to
separate the effects of frailty and aging on the microbiome.
Larger longitudinal studies would also clarify the relation-
ship between specific clinical attributes and changes to the
microbiome during aging. For example, previous work
showed a steady increase in mouse weight up to a peak at
15–20 months, followed by a steady decline as the mice
age [60]. The microbiomes of obese individuals tend to
have different taxonomic and metabolic properties [61];
there may be corresponding weight-associated micro-
biome shifts as mice age. Another important factor within
this study is the possible role of cage effects on the micro-
biome. Hildebrand et al. showed that up to 30% of the
variation in the microbiome can arise from cage effects,
possibly due to coprophagy [62], and the authors recom-
mended that groups of interest be housed in the same
cage, or individually. However, neither of these approaches
is appropriate since solitary cages for the entire life of a
mouse can induce high levels of stress [63] which may in
turn influence the microbiome, while a single cage for all
mice is not practical for large-scale animal studies. Explicit
tests of housing strategies are needed to examine the ef-
fects of this important factor. Although larger studies will
be necessary to reveal the fine details of aging, frailty, and
the microbiome, our results show that the mouse micro-
biome changes throughout various life stages and suggests
that similar changes in humans may have a significant ef-
fect on health.

Methods
Subject mice and frailty assessment
Female C57BL/6 J mice purchased from Charles River
(St. Constant, Quebec) at 3–4 weeks of age were housed
in micro-isolator cages on a 12-h light/dark cycle in the
Carlton Animal Care Facility at Dalhousie University. All
mice in this study had free access to the same food (Prolab
RMH 3000, LabDiet, St. Louis, MO) and water in their home
cages. Three ages of mice were used in the experiments: a
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young adult group (174 ± 15 days old), a middle adult
group (589 ± 18 days old), and old adult group (857 ±
16 days old). Study animals from the same age group were
all housed in the same cage, with the exception of one old
mouse which was housed together with another old
mouse from which no data were obtained. Experiments
were performed following the guidelines outlined by the
Canadian Council on Animal Care Guide to the Care and
Use of Experimental Animals (CCAC, Ottawa, ON: Vol. 1,
2nd edition, 1993; Vol. 2, 1984). All animal protocols were
approved by the Dalhousie University Committee on
Laboratory Animals.
Clinical examinations were performed between 10 am

and 1 pm every day. Animals were first observed in their
home cage and then taken to an assessment room. Mice
were weighed, and body surface temperature was mea-
sured with an infrared temperature probe directed at the
abdomen (Infrascan; La Crosse Technology). A brief clin-
ical exam was then used to create a FI score for each
mouse as described above.

Fecal sample collection and sequencing
Each mouse was placed in an empty, sterilized 43-cm-
long, 21-cm-wide cage for 1.5 to 2 h to collect individual
fecal samples in a manner similar to Lomansey et al. [64].
A duration of 1.5 to 2 h of isolation may induce some
stress in the mice, although much longer times seem to be
required to induce major changes in behavior consistent
with stress [65]. Samples were collected between 10 am
and 1 pm. To minimize sample contamination, mice had
no access to food and water during this time and sterile
forceps were used for sample handling. On average, mice
produced between 100 and 200 mg of sample during each
collection period. Immediately after collection, samples
were frozen at −80°C.
Genomic DNA (gDNA) was isolated from fecal sam-

ples using the PowerSoil DNA isolation kit (MO BIO
Laboratories, Inc.) according to instructions from the
manufacturer. Once the isolation procedure was com-
pleted, the concentration of gDNA was determined for each
sample by spectrophotometry and the sample was then
frozen at −80°C. Samples were then shipped to Génome
Québec (McGill University and Génome Québec Innovation
Centre, Montreal, Québec, Canada) where they under-
went quality control assessment to confirm sample integ-
rity. Metagenomic sequencing of the microbial DNA
extracted from the 21 stool samples was conducted on an
Illumina HiSeq generating 100-bp paired-end reads. This
produced a total of 85.61 Gbps (mean 2.04 ± 0.81 Gbps
per sample) and 428.06 million reads (mean 9.96 ± 0.37
million reads per sample).
Raw FASTQ files for each paired end of the 21 samples

were processed with MG-RAST [66] and made publicly
available (project id: 3907). MG-RAST default pipeline
options were used, including dereplication, screening
against M. musculus NCBI v37 to remove host DNA se-
quences, and dynamic read trimming for quality control
of sequence reads.

Taxonomic and functional analysis
In this study, three different methods were used to
characterize the taxonomic diversity of samples: (i) using
only the 16S rRNA gene (16S), (ii) using 40 different con-
served protein genes [31], and (iii) assigning taxonomic
classifications to metagenomic reads. Each of these methods
is described in more detail below.
Files containing ribosomal 16S rRNA gene (16S) frag-

ments as annotated by MG-RAST were downloaded for
each paired end (e.g., ‘425.search.rna.fna’) and combined
into their respective sample for further processing with
QIIME [67]. The putative 16S reads were assigned to
existing OTUs using a closed picking protocol that con-
siders only OTUs already present in a reference database.
We used the QIIME-compatible UCLUST version 1.2.22q
[68] to map the reads to version 13_5 reference package
of GreenGenes [69] using a 97% identity threshold. Every
sample was rarefied to 15,000 OTUs to remove possible
bias from the variation in sequencing depth for different
samples. To visualize and compare the differences be-
tween samples, principal coordinate analysis (PCoA) plots
were generated with weighted and unweighted UniFrac
beta diversity metrics [70]. In addition, a PCA plot based
only on the relative OTU abundances in each sample
was generated using the R function ‘prcomp’. Taxonomic
summary bar charts were created for 16S data by collaps-
ing to different taxonomic ranks (level 5) using QIIME’s
‘summarize_taxa.py’ script, taking only the top ten most
abundant families across all samples, renormalizing by
sum samples, and then plotting using QIIME’s ‘plot_taxa_
summary.py’ Python script.
PhyloSift was used as an alternative method to 16S

for determining taxonomic composition [32]. PhyloSift
uses 40 conserved protein-coding genes that have
previously been used for phylogenomic analysis [31]
and places metagenomic read fragments onto a refer-
ence tree of sequenced genomes using Pplacer [33].
Metagenomic reads passing MG-RAST quality control
were downloaded (‘299.screen.passed.fna’), and paired
ends were used as input to PhyloSift (git branch de-
velopment version: 9a03023cb) with default options. The
Pplacer ‘.jplace’ files representing the sequences placed
on a concatenated 40-gene tree output by PhyloSift
for each sample were used to create an ‘edge PCA’ [34]
and visualized in R. The individual sample ‘.jplace’ files
were then merged into different age groupings using the
‘guppy merge’ command. Comparison of age groupings
was conducted using the pairwise ‘guppy kr_heat’ pro-
gram which allows visualization of the differences in
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organism abundance between two groupings on a phylo-
genetic tree.
Functional SEED [71] annotations including abundance

information and actual annotated sequences were down-
loaded and formatted from the MG-RAST API using in-
house scripts that are available at Github (https://github.
com/mlangill/get_mgrast_data). Sequences with functions
that statistically varied over the age groupings were fil-
tered; a subset of these that yielded reliable sequence
counts were subjected to taxonomic analysis. To de-
termine and compare the taxonomic characterization
of these particular functions, metagenomic reads an-
notated with these functions were analyzed using
RITA [59]. Briefly, RITA uses a reference database of
sequenced and draft genomes to list the annotated
proteins for each genome and construct compositional
models of each genome. RITA uses a combination of
homology search and compositional analysis to assign
sequences to different classification groups. We used
RITA v1.0.1 with a database of 2,987 finished and draft
genomes, with USEARCH version 4.1.93 [68] used for
the homology search and FCP version 1.0.3 [72] for com-
positional matching. Classes of RITA results considered
for summary purposes were as follows: (i) cases where
the top compositional and homology matches agreed
with one another at the genus level and (ii) cases
where the expectation value of the best-matching gen-
ome was at least 10 orders of magnitude better than
the best-matching genome from another genus. Sum-
maries were constructed for a small set of taxa that
showed variation between a group comprising young and
middle mice and old mice: Parabacteroides, Bacteroides,
and Lactobacillus; all remaining genera in phyla Bacteroi-
detes and Firmicutes; and phylum Verrucomicrobia.
Statistical analysis
The statistical significance of samples between age group-
ings was calculated using ANOSIM as implemented in the
R package vegan version 2.0-10 [73], with 999 permuta-
tions and the weighted and unweighted UniFrac dis-
tance matrices. All multiple-group comparisons were done
using the Kruskal-Wallis H test with Benjamini-Hochberg
FDR multiple test correction as calculated within STAMP
version 2.0.7 [42]. Where appropriate, reported p values
are those corrected for multiple testing. Abundance values
reported in the results and in the additional files are re-
ported as mean relative abundances for the age groups
along with the standard deviation.
Availability of supporting data
The data set supporting the results of this article is avail-
able in the MG-RAST repository, as project 3907, http://
metagenomics.anl.gov/linkin.cgi?project=3907.
Additional files

Additional file 1: Clinical measurement components of murine
frailty index scores. Individual frailty index scores were obtained for
each mouse with a non-invasive clinical frailty index tool that has been
described in detail previously [74]. Clinical assessment of the mice
included evaluation of the integument, musculoskeletal system,
vestibulocochlear and auditory systems, ocular and nasal systems,
digestive system, urogenital system, respiratory system, signs of discomfort,
as well as the body weight (g) and body surface temperature (°C). A list of
each potential deficit evaluated in this study is shown in the left hand
column of the table. Each potential deficit could have a minimum
score of 0 (no deficit present) and a maximum score of 1 (severe deficit).
For each animal, the scores for each deficit were added and divided
by the total number of deficits measured (31) to yield a frailty index
score of between 0 and 1. The average score (±SEM) for each potential
deficit for all three age groups is also shown in the table.

Additional file 2: Microbiome sample metadata. Microbiome
metadata for 21 samples from 10 mice.

Additional file 3: PCA plot of relative OTU abundance. PCA plot
based only on the relative OTU abundances in each sample, generated
using the R function ‘prcomp’ shows separation of samples by age
groups.

Additional file 4: Pplacer edge PCA plot. Taxonomic separation of
samples from protein-coding metagenome markers using the PhyloSift
and Pplacer packages is shown using an edge PCA plot (A) with taxa
contributing to the signal shown for PC2 (B) and PC3 (C). Taxa contributing
to the positive direction of the PC are shown in orange while those
contributing in the negative direction of the PC are shown in green.
Branches that did not contribute to the PC were pruned from the tree.
Taxon branches are collapsed to family level where the overrepresentation
inferred by Pplacer is not restricted to a single species. Numbers within
brackets are the count of taxa within that family.

Additional file 5: Variation within samples taken from same and
different mice. Comparison of beta-diversity measurements between
samples taken from either the same mouse or a different mouse for
each age group (young, middle, old) using weighted UniFrac (A) or
unweighted UniFrac (B).

Additional file 6: Taxonomic assignments. The proportion of
sequences assigned to each sample at each taxonomic rank, along with
means for each age group and significance of difference in means using
Kruskal-Wallis H -test with Benjamini-Hochberg FDR multiple test correction,
is illustrated. Taxa with p value <0.05 are highlighted in green.

Additional file 7: Taxonomic composition of samples. Taxonomic
composition identified using 16S sequences for all 21 samples ordered
by increasing age and frailty from left to right at the phylum (A), family
(B), and genus (C) levels.

Additional file 8: Functional assignments. List of all SEED level 3
category functions with significance of difference in means using
Kruskal-Wallis H test with Benjamini-Hochberg FDR multiple test correction.
SEED level 3 categories with p value <0.05 are highlighted in green.
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