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Abstract 

Background Emergence of antibiotic resistance in bacteria is an important threat to global health. Antibiotic 
resistance genes (ARGs) are some of the key components to define bacterial resistance and their spread in differ‑
ent environments. Identification of ARGs, particularly from high‑throughput sequencing data of the specimens, 
is the state‑of‑the‑art method for comprehensively monitoring their spread and evolution. Current computational 
methods to identify ARGs mainly rely on alignment‑based sequence similarities with known ARGs. Such approaches 
are limited by choice of reference databases and may potentially miss novel ARGs. The similarity thresholds are usually 
simple and could not accommodate variations across different gene families and regions. It is also difficult to scale 
up when sequence data are increasing.

Results In this study, we developed ARGNet, a deep neural network that incorporates an unsupervised learning 
autoencoder model to identify ARGs and a multiclass classification convolutional neural network to classify ARGs 
that do not depend on sequence alignment. This approach enables a more efficient discovery of both known 
and novel ARGs. ARGNet accepts both amino acid and nucleotide sequences of variable lengths, from partial 
(30–50 aa; 100–150 nt) sequences to full‑length protein or genes, allowing its application in both target sequencing 
and metagenomic sequencing. Our performance evaluation showed that ARGNet outperformed other deep learn‑
ing models including DeepARG and HMD‑ARG in most of the application scenarios especially quasi‑negative test 
and the analysis of prediction consistency with phylogenetic tree. ARGNet has a reduced inference runtime by up to 
57% relative to DeepARG.

Conclusions ARGNet is flexible, efficient, and accurate at predicting a broad range of ARGs from the sequencing 
data. ARGNet is freely available at https:// github. com/ id‑ bioin fo/ ARGNet, with an online service provided at https:// 
ARGNet. hku. hk.
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Background
Antibiotics are an essential clinical foundation for treat-
ing most bacterial infections. However, worldwide, effec-
tiveness of antibiotics is limited by resistance among 
bacteria to such drugs. Bacterial resistance to antibiotics 
can arise through genetic mutations or horizontal gene 
transfer among bacteria. High usage of antibiotics is a 
major evolutionary driver of antibiotic resistance, which 
is now considered a global public health threat [1, 2]. 
Given the global scope and microbiological complexity 
of resistance patterns and their underlying genes, more 
effective and efficient methods to track its emergence and 
prevalence are needed.

Antimicrobial susceptibility testing (AST), in which 
bacteria are cultivated in vitro and then exposed specific 
antibiotics to determine sensitivity or resistance patterns, 
is the standard method for determining resistance pat-
terns among bacteria. It is relatively slow, low-through-
put, and can be biased and limited only to culturable 
microbes [3, 4]. Alternative methods are next-generation 
sequencing (NGS) technologies and their related compu-
tational capabilities that allow sequence-based methods 
to detect antibiotic resistance genes (ARGs) [5]. These 
technologies extend to metagenomic analyses that enable 
the discovery of novel ARGs, identification of their global 
distribution, and the tracking of multidrug-resistant bac-
teria in clinical and natural environments [6–9].

Bacterial DNA can also be extracted from environ-
mental samples (e.g., water, soil) and sequenced using 
metagenomics approaches. ARGs in such samples usu-
ally are identified by comparing sample sequences 
against those in reference databases. Short reads from 
a sequencing platform, or assembled contigs (contigu-
ous fragments), can be annotated with resistance labels 
by sequence similarity-based alignment tools (such as 
BLAST [10], DIAMOND [11], and Bowtie [12]). These 
methods are limited by using fixed, usually high, cutoffs 
for global sequence identity (possibly 80% or 90%), which 
may lead to a high false-negative rate [13, 14]. And it is 
difficult to find out a universal cutoff optimal for different 
ARG categories. The accuracy of a sequence alignment 
depends on the underlying sequence similarity between 
the query and the reference sequences, while two unre-
lated protein sequences can match at up to 25% residues 
if gaps are allowed [15]. Alignment-based methods do 
not scale well with increasing sequence length and num-
bers [15].

Deep learning has been successfully deployed in many 
bioinformatics applications [16–20]. It allows a feature to 
be learnt directly from the data using a general-purpose 
procedure. DeepARG [21] and HMD-ARG [22] are deep 
learning models developed to identify ARGs. DeepARG 
detects ARGs from metagenomics data using sequence 

similarity scores calculated from BLAST against refer-
ence database to train the network. It still inherits the 
disadvantages of alignment-based methods and does not 
consider sub-sequence patterns such as genomic changes 
or regulatory elements beyond similarity [21]. The model 
scalability also suffers from increasing amounts of data 
and reference sequences. HMD-ARG [22] only works on 
amino acid sequences, which must conform to a limited 
range of lengths (50–1571 amino acids). Its performance 
on shorter contigs or short reads is not well studied.

Here, we developed a computational tool, denoted 
as ARGNet, based on deep neural networks to identify 
ARGs of variable lengths and classify them into 36 cat-
egories of antibiotics resistance. ARGNet-L was built 
to predict long sequences and ARGNet-S for short 
sequences. Both models have the same architecture: an 
autoencoder network followed by a convolutional neural 
network (CNN). ARGNet embeds sequences into a latent 
space using an unsupervised learning autoencoder neu-
ral network, so that ARGs are better reconstructed than 
non-ARGs. The following CNN predicts the category of 
antibiotic that the ARG resists. ARGNet was designed for 
four types of data input including nucleotide sequences 
and their translated amino acids that are either short 
reads directly generated from metagenomic short (100–
150 nucleotides or 30–50 amino acids) or long (greater 
than 150 nucleotides or 50 amino acids) sequences that 
are generated by target sequencing or assembled contigs 
from NGS reads, carrying partial or complete genes (full-
length sequences or contigs with different lengths). ARG-
Net outperformed current deep learning models, which 
have different model frameworks, on multiple datasets.

Methods
ARGNet‑DB
Antibiotic resistance gene sequences were collected from 
six major databases, CARD (v 3.1.2) [23], AMRFinder 
[24], ResFinder [25], Megares [26], deepARG [21], 
and HMD-ARG [22], composed of 48,615 amino acid 
sequences. Sequences annotated as conferring resist-
ance by single-nucleotide polymorphisms (SNPs) were 
removed. CD-HIT [27], with settings of 100% sequence 
identity and full-length alignment coverage, was used to 
remove duplicate sequences, leaving 27,464 unique ARG 
sequences. Sequences were labelled by the antibiotic 
resistance retrieved from metadata in the source data-
bases (Fig. 1a). Sequences exhibiting resistance to multi-
ple categories of drugs are appropriately annotated with 
the “multidrug” label. These sequences were assigned 
into 36 antibiotic resistance categories (Fig. 3a). In terms 
of model implementation, 80% of the data was randomly 
selected as the training set, and the remaining 20% (ARG-
test-db) was used as the test set.
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Data encoding
Input (amino acid) sequences for the deep learning 
model were encoded to a matrix format by the one-hot 
method. For a sequence X , any single position Xi,j was 
encoded to a one-hot value as follows:

where si was the i th position in the sequence and cj was 
the j th code in the code set, which comprised the 20 
single-character amino acid codes. Characters B , Z , and 
J  are ambiguity codes: B = D or N  , Z = E or Q , and 
J = I or L.

Model implementation
The model was built with Python3 and Keras, which is 
an interface to the TensorFlow library as the deep learn-
ing framework. For both ARGNet-S and ARGNet-L, the 
training dataset was first one-hot encoded and then input 
into the autoencoder to filter the ARG sequences, which 
were passed to the CNN classifier to predict the category 
of antibiotic resistance.

After hundreds to thousands of experiments, the best-
performing models of ARGNet-S and ARGNet-L were 
selected and are described below.

In ARGNet-S, the autoencoder model contained 35 
one-dimensional convolutional layers (14 in the encoder 
and 21 in the decoder) and 4 one-dimensional max-pool-
ing layers, each with a kernel size of 2, in the encoder and 
4 one-dimensional upsampling layers in the decoder. The 
CNN classifier contained four convolutional layers and 
five dense layers and an attention mechanism to address 
positive features learnt by the previous convolutional 
layers.

In ARGNet-L, the autoencoder had 28 one-dimen-
sional convolutional layers (14 in the encoder and 14 
in the decoder) and 6 max pooling layers in both the 
encoder and decoder. The CNN classifier contained four 
one-dimensional convolutional layers, two dense layers, 
and an attention mechanism.

Details on the filter numbers in each convolutional and 
dense layer, the learning rate of each model, and other 
hyperparameters or parameters are in the Additional 
file 1: Tables S1–4. For both the autoencoder and CNN 
classifier models, an augmentation operation was per-
formed on the training data. For ARGNet-L, the autoen-
coder and CNN classifier were trained in mini batches 
mixed with full-length sequences and 90%, 80%, 70%, 
and 60% of full-length sequences. For ARGNet-S, both 
the autoencoder and CNN classifier were trained with 
mini batches that were mixed with 30–50 amino acid 
sequences.

The model is provided for use in local machines 
(https:// github. com/ id- bioin fo/ ARGNet) and can be used 

Xi,j =

1 if si = cj
0.5 if si = B and cj ∈ {D,N }

or si = Z and cj ∈ {E,Q}

or si = J and cj ∈ {I, L}
0 otherwise

Fig. 1 The cleaning and curation process of ARGNet‑DB, bacterial 
non‑ARG sequence dataset, and mcr‑like dataset. a Data collection 
and curation for ARGNet‑DB. ARG sequences were collected from six 
major public databases followed by removal of duplicate sequences 
and annotation from metadata. b Data collection and manipulation 
of bacterial non‑ARG sequence dataset. c Data collection 
and de‑duplication for mcr test dataset

https://github.com/id-bioinfo/ARGNet
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through the online analysis platform (https:// ARGNet. 
hku. hk).

Test datasets
Four datasets were used for testing, each of which was 
manipulated to be evaluated in different application sce-
narios. To test ARGNet-L with long sequences, five types 
of (sub) sequences (both amino acid, LSaa, and nucleo-
tide, LSnt) were generated for each sequences in each 
test dataset. They were the full-length sequences, and 
randomly generated subsequences with 90%, 80%, 70%, 
and 60% of full-length sequences, attempting to simulate 
applications containing both full-length sequences and 
contigs of different lengths. To test ARGNet-S with short 
sequences, three amino acid test datasets (SSaa) of 30, 
40, and 50 amino acids and three nucleotide test datasets 
(SSnt) consisting of 100, 120, and 150 nucleotides were 
randomly sub-sequenced five times from each full-length 
test sequences.

The testing and validation experiments conducted in 
this study are outlined in Fig. 2. To establish a threshold 
for distinguishing between ARGs and non-ARGs, an ini-
tial experiment was performed using an ARG test data-
set and a virus test dataset. Furthermore, five additional 
experiments were conducted to assess the performance 
of ARGNet under various scenarios:

1. Bacterial non-ARG sequences were curated to evalu-
ate the threshold derived from the ARG and virus 
sequences. These bacterial non-ARG sequences, 
being more closely related to ARGs than viruses, 
allowed us to test the model’s specificity in identify-
ing non-ARGs based on the threshold defined using 
viruses as negative data.

2. Sequences from ESKAPE pathogens, ranging from 0 
to 60% identity (providing less contrast and interme-
diate hits) [28] to ARGNet-DB, were collected to fur-
ther evaluate the sensitivity of ARGNet towards the 
primary sources of well-characterized ARGs.

3. Sequences (protein) from Escherichia coli K12 [29] 
were also curated to assess the sensitivity of ARGNet 
towards one of the most extensively studied microor-
ganisms.

4. The mcr gene sequences were collected to investigate 
the consistency of resistance phenotype prediction 
between ARGNet and phylogenetic tree inference.

5. A quasi-negative test, based on ARGNet-DB, was 
conducted to evaluate the performance of ARGNet 
in detecting novel ARGs.

The detailed process of preparing each test dataset is 
described in the subsequent sections.

Fig. 2 Illustration of testing and validation experiments conducted in this study

https://ARGNet.hku.hk
https://ARGNet.hku.hk
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ARG test dataset
Twenty percent of ARGNet-DB were used as positive 
test samples (ARG-test-db, 5490 sequences).

Virus test dataset
Virus sequences were used as negative dataset. A total 
of 4983 protein sequences from 12 animal virus fami-
lies were downloaded from the NCBI Protein RefSeq 
Database (accession date: 28 June 2021). These fami-
lies were Arenaviridae (198 sequences), Coronaviridae 
(595), Filoviridae (100), Flaviviridae (194), Hantaviridae 
(137), Orthomyxoviridae (164), Paramyxoviridae (534), 
Phenuiviridae (412), Picornaviridae (178), Pneumoviri-
dae (95), Reoviridae (1040), and Rhabdoviridae (1336).

Bacterial non‑ARG sequence dataset
Whole genome records were available for 33,583 bacte-
ria species in NCBI by June 2022. A total of 1000 bacte-
ria species were randomly selected and their reference 
genome sequences were downloaded. Prokka [30] was 
used to predict the open reading frames (ORFs) of each 
genome, which were submitted for BLASTx analysis 
against ARGNet-DB. ORFs with no hits to ARGNet-DB 
were retained as the bacterial non-ARG sequence data-
set to validate the identification threshold (Fig. 1b).

ESKAPE dataset
Full genomic reference sequences of ESKAPE were 
downloaded from NCBI via NCBI Datasets tool 
(accessed by Dec 18, 2023). To construct the ESKAPE 
test dataset, 10 GCF files for each ESKAPE pathogen 
were randomly selected, and the corresponding “pro-
tein.faa” files were extracted, resulting in a total of 
250,039 protein sequences to comprise the test dataset.

E. coli K12 dataset
Sixty-six full genomes of E. coli K12 were downloaded 
(accessed by Dec 18, 2023), and after removing dupli-
cated sequences, a total of 5349 protein sequences were 
extracted to serve as the test dataset. A total of 393 pro-
teins were designated as transporters based on their 
NCBI annotation.

mcr‑like dataset
Two distantly related mcr RefSeq protein sequences 
(mcr-1, WP_163397051.1; mcr-4, WP_099156046.1) 
were used as query sequences for a tBLASTn search 
against the NCBI nucleotide database. The top 5000 
results with the lowest e-value (in ascending order) 
in each tBLASTn search (resulting in 10,640 aligned 
sequences) were defined as mcr-like sequences (as to 
capture a large number of mcr-like sequences). Another 

set of 9903 mcr-labelled genes were obtained from 
the NCBI MicroBIGG-E web service (https:// www. 
ncbi. nlm. nih. gov/ patho gens/ micro bigge/). These two 
datasets were merged and de-duplicated, and 16,967 
sequences were retained. In addition, 233 EptA/B/C 
(mcr-like) sequences from one comparative study [31] 
were also included (no duplication with the cleaned 
16,967 sequences). The final mcr-like dataset contained 
17,200 sequences (Fig. 1c).

Phylogenetic tree implementation
To deduce the antibiotics resistance of the mcr-like data-
set, altogether, 17,200 sequences were aligned using FFT-
NS-i method from MAFFT [32]. Maximum likelihood 
phylogenetic tree was reconstructed as implemented in 
FastTree [33]. A total of 7865 sequences were labelled as 
“mcr” from their metadata, and the others were labelled 
as “unknown.” According to the inferred phylogenetic 
tree, the definition of mcr sequences was expanded. The 
most recent common ancestor (MRCA) was achieved 
for each set of mcr-1 to mcr-10 labelled sequences, and 
sequences belong to the clade of each MRCA were incor-
porated into the expanded “mcr” dataset (subtrees of 
each clade are in Additional file 1: Figs. S1–8). The pre-
diction of three deep learning models was evaluated 
using the expanded dataset derived from the phyloge-
netic tree. Model testing followed the standard procedure 
of model implementation.

Quasi‑negative test implementation
The quasi-negative test was carried out on long amino 
acid dataset, in a similar way as leave-one-out cross-
validation. An entire single category of ARG sequences 
was selected as quasi-negative data and used exclusively 
for model testing but not training. The remaining 35 cat-
egories were used for model training. Model training and 
testing followed the procedure of model implementation 
mentioned above. Quasi-negative test was performed for 
each of 36 categories, in both ARGNet and DeepARG, 
resulting into a total of 72 models trained and tested. The 
performance of those ARGNet and DeepARG models 
was compared for their capability to identify and classify 
“novel” category of ARG sequences (i.e., quasi-negative 
sequences in each leave-out dataset).

Evaluation metrics
To evaluate the model performance on ARG identifica-
tion, precision, recall, and F1 score were calculated based 
on the numbers of true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN).

Precision is calculated as follows:

https://www.ncbi.nlm.nih.gov/pathogens/microbigge/
https://www.ncbi.nlm.nih.gov/pathogens/microbigge/
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Recall is calculated as follows:

F1 score is calculated as follows:

F1 score is the harmonic mean of precision and 
recall, providing a concordant measurement of model 
performance.

Classification accuracy of the CNN classifier is 
defined as the number of correct classifications (with 
prediction probability > 0.8) divided by the total num-
ber of classifications.

Identification specificity during the validation 
through bacterial non-ARG sequence dataset is 
defined as the number of identifications as non-
ARG divided by total number of non-ARG bacterial 
sequences.

Prediction accuracy of mcr dataset is defined as the 
number of correct predictions divided by the total 
number of mcr sequences (after expansion).

Sensitivity of quasi-negative test is defined as the 
number of correct identifications divided by the total 
number of sequences from quasi-negative category.

Comparison with other deep learning models
Two other deep learning models, DeepARG and 
HMD-ARG, were also applied to the same test data 
(as long as applicable), to compare their performance, 
prediction accuracy, and runtime, with ARGNet.

A new DeepARG model was trained and tested with 
the same dataset as ARGNet. For full-length test data-
set, the sequence similarity filter (“–iden 80”) and 
coverage (“–coverage 0.8”) were used. For other sub-
sequence test datasets, sequence similarity was set 
to the same, while the “coverage” was set according 
to their proportion to full-length sequences, namely, 
0.72, 0.64, 0.56, and 0.48, respectively. For short read 
test dataset, the “–iden 80” was used for sequence 
similarity, and coverage was set to 24, 32, and 40 for 
30, 40, and 50 amino acids, respectively. The website 
service of HMD-ARG (http:// www. cbrc. kaust. edu. sa/ 
HMDARG/) was used because the source code of the 
model was not released. Model testing was performed 
on long amino acid sequences as it only allows pro-
tein sequences ranging from 50 to 1571 amino acids as 
query.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2× precision× recall

Precision+ recall

Comparison with best hit approach
The test was conducted with the Resistance Gene Iden-
tifier (RGI) program [34] by using the ARG test data-
set and virus test dataset. These tests were carried out 
through the RGI web portal on the CARD website. The 
program was evaluated using two criteria: “Perfect and 
Strict hits only” and “Perfect, Strict, and Loose hits.” A 
Perfect RGI match is 100% identical to the reference 
protein sequence along its entire length, a Strict RGI 
match is not identical, but the bit score of the matched 
sequence is greater than the curated BLASTP bit-score 
cutoff, and loose RGI matches have a bit score less than 
the curated BLASTP bit-score cutoff. The outcomes of 
these tests were labelled as RGI_strict and RGI_loose, 
respectively.

Results
The ARGNet‑DB
A total of 27,464 ARG amino acid sequences were col-
lected and curated (see “Methods”) to the ARGNet-DB 
(Fig.  3a) for model training and testing. Sequences in 
the ARGNet-DB were categorized into 36 antibiotic 
resistance categories, each of which was updated from 
6 ARG public databases (by the middle of year 2021) 
with experiment support and expert curation. The top 
three resistance categories with the most sequences in 
ARGNet-DB were beta-lactam (8810, 32.1%), multidrug 
(5215, 19%), and bacitracin (4262, 15.5%). Comparatively, 
there were 28 and 33 ARG categories in databases of 
DeepARG (DeepARG-DB, 12,279 sequences) and HMD-
ARG (HMD-ARG-DB, 17,282), respectively (Fig.  3a). 
Among the 36 categories, 26 categories are found in all 
three databases. Streptothricin, qa_compound, elfamy-
cin, ethambutol, isoniazid, tunicamycin, and thiostrepton 
were curated in ARGNet-DB and HMD-ARG-DB but not 
DeepARG-DB. Oxazolidinone was curated in ARGNet-
DB and DeepARG-DB but not HMD-ARG-DB. Nitro-
furantoin and pyrazinamide were curated exclusively in 
ARGNet-DB.

The ARGNet
ARGNet is a two-stage deep neural network. In the first 
stage, an autoencoder model was developed for identi-
fication of ARGs from the input genomic sequence(s). 
In the second stage, a multiclass CNN was proposed to 
predict the categories of ARGs from genomic sequences 
identified as ARGs in the autoencoder model. The input 
sequences can be long (full length or contigs) or short 
(30–50 amino acids or 100–150 nucleotides) amino acid 
or nucleotide sequences. Overview of ARGNet work-
flow is illustrated in Fig.  3b. The architecture details of 

http://www.cbrc.kaust.edu.sa/HMDARG/
http://www.cbrc.kaust.edu.sa/HMDARG/
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autoencoder and CNN in ARGNet are shown in Fig. 4a 
and b, respectively.

The autoencoder model is an unsupervised artificial 
neural network designed to learn a data encoding effi-
ciently [35]. An unsupervised model was used here as 
only ARG sequences (positive samples) were in the data-
base where no sequences were labelled as “non-ARG” 
(negative samples). The autoencoder had an encoder 
and a decoder; the encoding (reduction) side is executed, 
while the decoding (reconstruction) is learnt. In the 
encoding process, the most representative information 
of the input ( I ) is compressed by the encoder, and the 
learnt information is stored in a variable called a latent 
space (“Code” in Fig.  4a). In the decoding process, the 
decoder generated output ( I ′ ) from the latent space that 
was as close as possible to its original input [36]. In this 
study, the anomaly detection function of autoencoder 
was implemented under the assumption that the model 
will reconstruct ARGs much better than “non-ARGs” 

as it was only trained with ARGs. ResBlock was built in 
autoencoder model to make the network deeper to get 
more ARG-related representation and avoid vanishing or 
exploding gradients [37]. One-dimensional convolution 
layers were used as the main neural network layers in the 
autoencoder and were followed by a batch normalization 
layer. To identify ARG sequences, a fixed value of recon-
struction error was required as identification threshold, 
which cannot be obtained without negative samples. 
Thus, a representative collection of virus sequences was 
incorporated as they are fundamentally “non-ARG.” The 
threshold was selected such that the total amount of false 
identification in ARG and “non-ARG” (virus) datasets 
was minimized.

In the second stage, a CNN was designed to predict the 
antibiotic resistance category for sequences determined 
as ARGs by the autoencoder. Filters in convolution layer 
can be thought as a series of motif or feature detectors 
(Additional file  1: Table  S5, Fig. S10) [38]. The CNN 

Fig. 3 ARGNet‑DB and workflow of ARGNet. a Composition of ARGNet‑DB, number of sequences for 36 ARG categories cleaned in ARGNet‑DB (red 
bar), DeepARG‑DB (yellow bar), and HMD‑ARG‑DB (green bar). Y‑axis is in log scale. b The workflow of ARGNet. Sequences are encoded and passed 
into the autoencoder. Sequences predicted as ARGs are passed to the convolutional neural network to classify the category of antibiotic they resist
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classifier contains convolution layers, followed by max 
pooling layers with an attention operation to increase 
the weights of positive output features that are fed into a 
dense layer to predict the ARG category.

ARGNet was implemented as ARGNet-L and ARGNet-
S for long and short sequence inputs, respectively. They 
both contained an autoencoder for filtering and a CNN 

for classification. The experimental workflow is shown in 
Fig. 4c.

Prediction of long sequences
ARGNet-L was designed to predict whether long 
sequence (LS; full length or contigs) was ARGs and the 
resistance category (if it was an ARG). The test dataset 

Fig. 4 Structure detail of autoencoder and convolutional neural network and experimental workflow. a Structure of the autoencoder in ARGNet. 
Upper part, encoder; lower part, decoder. Major steps are annotated. b Structure of the convolutional neural network in ARGNet. c training 
and testing process for ARGNet‑L (long sequences, left) and ARGNet‑S (short sequences, right)
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contained ARG-test-db (“Methods”) and negative 
sequence datasets of both amino acid sequences (LSaa) 
and nucleotide sequences (LSnt). Four datasets of par-
tial sequences (90 to 60% of full length) were generated 
for both amino acid and nucleotide sequences to test 
the flexibility of the model for variable sequence/contig 

lengths (“Methods”). This resulted in five LSaa and five 
LSnt datasets.

ARGNet had average precision, recall, and F1 values 
(“Methods”) of 0.994, 0.960, and 0.977 (with minima 
of 0.989, 0.952, and 0.970) over the five LSaa datasets 
(Fig.  5a). Consistent results were observed across the 
datasets of different lengths. DeepARG had higher 

Fig. 5 Performance of the deep learning models on test datasets. Precision, recall, F1 score, and classification accuracy of long sequences a 
and short sequences d. Left, amino acids; right, nucleotides. Datasets are indicated as proportion of the full‑length sequences a and sequence 
length d. Classification accuracy of long amino acid sequences b, long nucleotide sequences c, short amino acid sequences e, and short nucleotide 
sequences f by antibiotic category. Nineteen minor ARG categories (with fewer than 50 sequences) are combined and displayed as one category 
called “others.” Accuracy level is indicated by asterisk with different colors. Identification specificity of bacterial non‑ARG amino acid sequences g. 
Left, long sequence; right, short sequence. Datasets are indicated as proportion and sequence length, respectively
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average precision (1.000) but lower recall (0.902) and F1 
(0.949) scores. HMD-ARG demonstrated relatively infe-
rior performance, indicated by lower average precision, 
recall, and F1 scores (0.911, 0.747, and 0.817). Its per-
formance was affected by the completeness of the input 
sequences. A comparison was also conducted with the 
best hit approach, where the Resistance Gene Identifier 
(RGI) was evaluated. RGI attained an average prefect 
precision (1.000) but exhibited low recall (0.197) and F1 
score (0.301) with using “prefect and strict hits only” cri-
teria. When employing the criteria of “perfect, strict, and 
loose hits,” RGI achieved perfect precision (1.000) along 
with high recall (0.979) and F1 score (0.989). According 
to the five LSnt datasets, a similar pattern of performance 
was observed. Average precision, recall, and F1 score 
were found to be 0.989, 0.938, and 0.963, respectively, 
for ARGNet, while 1, 0.900, and 0.947, respectively, for 
DeepARG (Fig. 5a). Performance of HMD-ARG on ARG 
prediction using nucleotide sequences was not computed 
as it did not accept nucleotide sequences as input. In the 
“perfect and strict hits only” criteria, RGI achieved preci-
sion, recall, and F1 score values of 1.000, 0.208, and 0.302, 
respectively. When considering the criteria of “perfect, 
strict, and loose hits,” RGI demonstrated precision, recall, 
and F1 score values of 1.000, 0.927, and 0.961, respec-
tively. ARGNet outperformed DeepARG, HMD-ARG, 
and RGI (under both strict and loose criteria) at classi-
fication on the LSaa dataset where average accuracies 
were 0.986, 0.770, 0.733, 0.915 (strict), and 0.733 (loose), 
respectively, and it outperformed DeepARG and RGI 
(under both strict and loose criteria) on the LSnt dataset 
(0.976 vs 0.878 vs 0.879 (strict) vs 0.836 (loose)) (Fig. 5a).

Based on five LSaa datasets, ARGNet exhibited higher 
accuracy than the other two deep learning models for 
all categories (Fig. 5b). Consistent results were observed 
across the truncated sequence sets. An average clas-
sification accuracy > 0.9 was achieved in 10 categories 
with polymyxin (0.995), bacitracin (0.993), beta-lactam 
(0.981), quinolone (0.959), and MLS (0.958) having aver-
age accuracy values > 0.95. DeepARG achieved high aver-
age classification accuracy (> 0.9) in only two categories. 
While HMD-ARG predicted eight categories with accu-
racy > 0.9 in the full-length dataset, it performed poorly 
on the truncated sequences for all categories (average 
accuracies were 0.56, 0.35, 0.21, and 0.14 for 90%, 80%, 
70%, and 60% of full-length dataset, respectively). In 
terms of loose criteria, RGI exhibited an additional cat-
egory with an accuracy greater than 0.9 in comparison to 
ARGNet. However, under strict criteria, RGI displayed 
one fewer category with an accuracy exceeding 0.9 when 
compared to ARGNet.

For the five LSnt datasets, ARGNet showed high clas-
sification performance (average accuracy > 0.9) in nine 

categories, while DeepARG achieved high accuracy in 
only two categories. The top five predictions in ARGNet 
were polymyxin (0.981), beta-lactam (0.965), bacitracin 
(0.948), MLS (0.943), and quinolone (0.931) (Fig.  5c). 
ARGNet outperformed DeepARG in 17 of the 18 antibi-
otic resistance categories. ARGNet had two fewer catego-
ries with accuracy > 0.9 than RGI in the loose criteria and 
had the same number of categories with accuracy > 0.9 
with RGI in the strict criteria (Fig. 5c).

Prediction of short reads
ARGNet-S was designed to predict ARGs from short 
sequence (SS; sequences with 30–50 amino acids or 
100–150 nucleotides). The short-read test datasets (SSaa 
and SSnt; “Methods”) were generated from ARG-test-db 
and negative sequence datasets (of both amino acid and 
nucleotide sequences) in short-sequence format. There 
were three SSaa datasets with sequence lengths of 30, 40, 
and 50 amino acids and three SSnt datasets with lengths 
of 100, 120, and 150 nucleotides. Performance of HMD-
ARG on short sequence prediction (both amino acid 
and nucleotide datasets) was not computed as it did not 
accept short sequences.

Over the three SSaa datasets, ARGNet achieved aver-
age precision, recall, and F1 score of 0.986, 0.936, and 
0.960, respectively. As with SSnt datasets, these values 
were 0.989, 0.919, and 0.952, respectively. DeepARG 
obtained average precision, recall, and F1 scores of 1, 
0.920, and 0.958 on SSaa and 1, 0.842, and 0.914 on SSnt. 
RGI attained an average precision, recall, and F1 score of 
1.000, 0.004, and 0.008, respectively, under the strict cri-
teria and 1.000, 0.812, and 0.896, respectively, under the 
loose criteria on SSaa. On SSnt, RGI achieved an overall 
precision, recall, and F1 score of 1.000, 0.003, and 0.007, 
respectively, in the strict criteria and 1.000, 0.834, and 
0.909, respectively, in the loose criteria (Fig. 5d).

The accuracy of ARGNet was higher than that of Deep-
ARG and RGI under the loose criteria, across the differ-
ent lengths of both SSaa and SSnt (Fig. 5d) with average 
accuracies of ARGNet vs DeepARG vs RGI (loose) of 
0.980 vs 0.918 vs 0.795 for SSaa and 0.911 vs 0.838 vs 
0.848 for SSnt. RGI, when evaluated using the strict cri-
teria, demonstrated a higher classification accuracy pri-
marily due to its identification of a limited number of 
ARG categories, encompassing only a small number of 
sequences, for both the SSaa and SSnt datasets.

On the three SSaa datasets, ARGNet had higher aver-
age accuracies than deepARG and RGI under both 
strict and loose criteria, in all ARG categories (Fig.  5e). 
ARGNet obtained an average accuracy > 0.9 in 16 cat-
egories, while DeepARG achieved such average accuracy 
in 6 categories. In ARGNet, the highest accuracy was 
observed in polymyxin (0.995), beta-lactam (0.995), and 
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bacitracin (0.994), while multidrug, MLS, chlorampheni-
col, quinolone, sulfonamide, aminoglycoside, fosfomycin, 
tetracycline, trimethoprim, and qa_compound also dem-
onstrated accuracy > 0.95. Under the loose criteria, RGI 
demonstrated nine categories with a prediction accuracy 
greater than 0.9. However, under the strict criteria, RGI 
had only one category with an accuracy exceeding 0.9. 
Within the three SSnt datasets, ARGNet outperformed 
DeepARG (Fig.  5f ) with 6 well-classified categories 
(accuracy > 0.9). They were polymyxin (0.98), beta-lac-
tam (0.952), bacitracin (0.934), MLS (0.929), multidrug 
(0.921), and fosfomycin (0.911). Under the loose criteria, 
RGI exhibited 9 categories with a prediction accuracy 
greater than 0.9. However, under the strict criteria, RGI 
had only one category with an accuracy exceeding 0.9.

Validation through bacterial non‑ARG sequence dataset
Virus sequences were used as a “non-ARG” dataset 
(negative samples) to determine the cutoff and evalu-
ate ARG identification in the autoencoder model. The 
specificity of ARGNet to distinguish non-ARG sequences 
was further evaluated using bacterial non-ARG (amino 
acid) sequence dataset as they were likely to have more 
intrinsic affinity to the bacterial ARG sequences. ARG-
Net, DeepARG, and HMD-ARG had average identifica-
tion specificity of 0.900, 1.000, and 0.758, respectively, for 
the 5 LSaa datasets and 0.989 and 0.999 (ARGNet and 
DeepARG) on the 3 SSaa datasets (Fig.  5g). DeepARG 
achieved such high specificity because there is no well-
defined non-ARG database, and the test dataset here was 
built from sequences with no BLAST hits to ARGNet-DB 
(“Methods”).

Prediction of ESKAPE sequences
To evaluate the performance of ARGNet on ESKAPE 
sequences with varying sequence identities to ARGNet-
DB, DIAMOND analysis was conducted. The analysis 
involved using ESKAPE sequences as queries and ARG-
Net-DB as the reference. The sequence identities were 
categorized into four ranges: (0, 30), [30, 40), [40, 50), and 
[50, 60), representing less contrast and intermediate hits. 
The test result is presented in Table  1. The result indi-
cates that sequences falling within higher identity ranges 

have a greater likelihood of being predicted as ARGs. In 
the identity range of (0, 30), only 0.41% and 0.09% (con-
sidering the classification probability equal to or greater 
than 0.8) of sequences were predicted as ARGs, suggest-
ing that ARGNet may not exhibit excessive sensitivity 
during identification.

Prediction of E. coli K12 sequences
ARGNet predicted that 9.15% (5.04% when considering 
only predictions with a probability greater than or equal 
to 0.8) of all the E. coli K12 testing sequences were ARGs. 
The RGI program on the same dataset predicted 1.61% of 
the test sequences as “Perfect and Strict hits only” ARGs 
and 8.00% as “Perfect, Strict, and Loose hits” ARGs. The 
classification of ARGs into different categories is visu-
ally represented in Fig. S9a. Among the 5349 protein 
sequences in the dataset, a total of 393 sequences were 
annotated as “transporter.” Notably, 5.85% of these trans-
porter sequences were predicted as ARGs by ARGNet 
(5.60% when considering only predictions with a proba-
bility greater than or equal to 0.8), whereas RGI predicted 
25.95% and 3.05% of the transporter sequences as ARGs 
under the “Perfect, Strict, and Loose hits” and “Perfect 
and Strict hits only” modes, respectively. The classifica-
tion of ARGs within the transporter subset is visually 
depicted in Fig. S9b.

Prediction of phylogenetically inferred mcr genes
Based on curation of ARGs mostly from cultured 
pathogens, the current antibiotic resistance databases 
(e.g., CARD) provide standard collection of resistance 
determinants, while they may not accommodate the 
fast-evolving resistome from metagenomic datasets. Phy-
logenetic approach was applied to expand the definition 
of the rapidly disseminated mobilized colistin resistance 
genes (mcr, mcr-1 to mcr-10). The mcr genes have been 
actively researched in the recent years, and some newly 
identified mcr genes were reported in the literature but 
not yet documented in the databases, e.g., mcr-9 and 
mcr-10 were reported in 2022, but they were not yet in 
the CARD database at the time when the authors con-
ducted this research. A phylogenetic tree was constructed 
(Fig. 6a, “Methods”) for 17,200 mcr-like sequences, from 
which 8403 sequences (7865 originally labelled as mcr 
genes and 538 expanded by tree) were designated as mcr 
genes based on their phylogenetic placement (under the 
same clades with known mcr genes; “Methods”). Long 
and short mcr/mcr-like amino acid and nucleotide data-
sets (with variation in sequence length) were generated 
using the same approach as in generating the LSaa/LSnt/
SSaa/SSnt datasets. Based on phylogenetic designation, 
the prediction accuracy was compared among three deep 
learning models.

Table 1 Result of ARGNet test on ESKAPE sequences

Identity range Prediction of ARG 
(%)

Classification of ARG 
with probability >  = 0.8 
(%)

(0, 30) 0.41 0.09

[30, 40) 1.35 0.52

[40, 50) 6.20 3.38

[50, 60) 14.27 9.14
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Fig. 6 Prediction of mcr genes. a Phylogenetic tree of mcr‑like dataset. Tree designation (inner circle) and deep learning model predictions (outer 
circles) are annotated for each sequence, with different colors (red for mcr, yellow for non‑mcr). The clade of each subtype of mcr genes is shaded 
in green and labelled in white. The three major groups of inconsistent prediction across models are marked with circled number. b Prediction 
accuracy of mcr genes on long amino acid and nucleotide sequences (left) and short amino acid and nucleotide sequences (right). Accuracy 
was calculated and displayed for mcr‑labelled genes and expanded mcr genes, respectively
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Based on the long sequence amino acid datasets, 
ARGNet, DeepARG, and HMD-ARG had average pre-
diction accuracies of 0.997, 0.990, and 0.545, respec-
tively, for the 7865 mcr-labelled sequences and 0.970, 
0.950, and 0.497, respectively, for the 538 expanded 
mcr sequences. For the long nucleotide sequences, 
ARGNet and DeepARG had accuracies of 0.997 and 
0.980 and 0.974 and 0.945 for these two sets of mcr 
sequences, respectively (Fig. 6b).

For the short sequence datasets, average accuracies 
for ARGNet and DeepARG were 0.996 and 0.998 for 
amino acids and 0.991 and 0.997 for nucleotides on the 
mcr-labelled genes. As with the expanded mcr genes, 
the accuracies for ARGNet and DeepARG were 0.998 
and 0.996 for amino acids and 0.984 and 0.993 for 
nucleotides (Fig.  6b). ARGNet achieved good consist-
ency of prediction accuracy (> 0.95) across all the mcr 
test datasets.

Although not annotated as mcr based on phyloge-
netic tree, three groups of sequences were inconsist-
ently predicted as mcr by either one or two of the 
testing deep learning models (Fig. 6a). Further experi-
mental validation will indicate the potential of deep 
learning models to identify undetermined ARGs.

Potential of novel ARG detection
A quasi-negative test (“Methods”) was conducted on long 
amino acid dataset from each category of ARGs. The 
result is presented in Fig.  7. The performance of ARG-
Net is better than DeepARG in all 36 ARG categories. 
The average sensitivity was higher than 0.6 for ARGNet 
across all ARG categories. There were 14 categories pos-
sessing average sensitivity higher than 0.9. They were 
fosfomycin, quinolone, ethambutol, tunicamycin, nitro-
furantoin, puromycin, thiostrepton, pyrazinamide, oxa-
zolidinone, fosmidomycin, tetracenomycin, elfamycin, 
qa_compound, and mupirocin, with the first 10 catego-
ries fully identified as ARG in the test. There were two 
categories (fosmidomycin and qa_compound) with aver-
age sensitivity higher than 0.5 in DeepARG.

Runtimes
The wall time of the prediction process between ARGNet 
and DeepARG was compared. ARGNet and DeepARG 
were run on the same machine and utilized 48 Intel(R) 
Xeon(R) Gold 6252 CPU cores and one Tesla V100 GPU 
card when program running. Four representative LSaa/
LSnt/SSaa/SSnt datasets were used. ARGNet outper-
formed DeepARG in all tests, with 39.5–57.0% shorter 
runtime across the four datasets (Table 2).

Fig. 7 Sensitivity of quasi‑negative test. The quasi‑negative test sensitivity of ARGNet (upper part, separated by datasets of different sequence 
length) and DeepARG (lower part, separated by datasets of different sequence length) for each ARG category was shown in heatmap

Table 2 Runtime test of ARGNet and DeepARG 

Test dataset (sequence type | long or short | sequence 
number | dataset size)

Runtime (mm:ss) Time saved (%)

ARGNet DeepARG 

Amino acid | full length | 5690 | 2.3 M 00:42 01:32 54.0

Nucleotide | full length | 3567 | 4.3 M 00:28 00:50 44.0

Amino acid | short reads | 82,350 | 7.5 M 01:01 02:22 57.0

Nucleotide | short reads | 53,505 | 9.4 M 00:55 01:31 39.5
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ARGNet and DeepARG were evaluated on four data-
sets, long or short amino acid, or nucleotide sequences. 
The number of sequences and size of the data set (meg-
abytes) are indicated. Relative time saved by ARGNet 
was calculated as the difference between the runtimes 
of DeepARG and ARGNet, divided by the runtime of 
DeepARG.

Discussion and conclusions
A neural network that identifies and classifies antibiotic 
resistance genes from both short reads and contigs of 
different lengths has been developed. ARGNet does not 
require alignments and outperforms other deep learn-
ing methods (DeepARG and HMD-ARG) and best hit 
approach in most tests.

The pursuit of the optimal approach to classify biologi-
cal sequences is always addressing the balance between 
false positive and negative. Alignment-based approach 
(e.g., BLAST) has been widely used for ARG identifica-
tion and classification based on the identity of nucleo-
tide/amino acid sequences against reference database 
[13, 39]. In practice, an identity cutoff was normally set 
to 80% as it greatly minimizes the false-positive rate [40]. 
By adopting the similarity distribution from BLAST 
into deep learning framework, DeepARG clearly filtered 
out non-ARG sequences, resulting in perfect precision 
in different test datasets in this study. However, it still 
inherits the disadvantage of alignment-based approach 
and attenuate the robustness to detect novel ARGs [13]. 
In this study, by adopting autoencoder model, ARGNet 
showed comparable precision and superiority in both 
recall and F1 score in the identification of ARGs. It also 
demonstrated great potential to recognize novel ARGs, 
justified by the detection of quasi-negative ARGs (see 
“Results,” Fig. 7). Autoencoders have been widely used to 
learn representations of sets of data, especially where a 
reduction in dimensionality is needed, by using a trained 
network to remove noise and compress information (e.g., 
for face recognition [41] and anomaly detection [42, 43]). 
The autoencoder model captures representative features 
from the reference ARG sequences through multiple lay-
ers of dimension reduction (encoding, Additional file  1: 
Fig. S9), which can be expanded to identify distantly 
related ARGs. A potential caveat is that the identifica-
tion threshold of ARGNet was determined based on only 
the ARGNet-DB and curated virus sequences, which may 
introduce bias to differentiate other non-ARG sequences. 
Nonetheless, using the same threshold, ARGNet was 
also able to recognize non-ARG bacterial sequences (see 
“Results,” Fig.  5g) which demonstrated the robustness 
and effectiveness of the proposed model. The robustness 
of the autoencoder model in identifying ARGs suggests 

that deep learning model may be useful in sequence 
searching comparable to the state-of-the-art approaches.

Compared to other two models, ARGNet showed 
generally higher accuracy in ARG classification across 
different test datasets (LSaa/LSnt/SSaa/SSnt). In princi-
ple, these three tools used three different model archi-
tectures. While ARGNet used a one-dimensional CNN 
model structure, DeepARG used a dense network, and 
HMD-ARG used a two-dimensional CNN model struc-
ture. CNNs have been widely used to characterize and 
classify raw sequence data [44] as they outperform tradi-
tional machine learning methods by recognizing features 
directly from raw sequences, avoiding human-defined 
feature generation. The outperformance of ARGNet 
against the other two tools may indicate the superiority 
of using one-dimensional CNN in “one-dimensional” bio-
logical sequences such as nucleotide and protein, which 
has been well-known for sequence motif detection (Addi-
tional file 1: Fig. S10, Table S5) and used in classification 
of different biological sequences [45, 46]. The classifica-
tion accuracy was slightly decreased in ARG categories 
with fewer sequences, which may be due to the issues 
from the multiclass imbalanced data [47, 48]. There were 
13 categories with < 10 sequences available in the current 
database. With the continuous efforts on sequencing and 
antibiotics resistance test, more entries will be included 
to enrich the training database, which should result in an 
improved classification performance.

With the development and advance of NGS technol-
ogy, shotgun metagenomic sequencing has been used 
in investing emergence of infectious disease including 
viruses and antibiotic-resistant bacteria [39, 46]. Due to 
the limited read length of NGS, metagenomic sequencing 
reads are not able to generate complete gene sequences of 
interest, in the case of AMR or ARGs. Consequently, two 
strategies have been used for ARG identification, based 
on short reads or assembled contigs [49]. Comparatively, 
the latter strategy is thought to be more accurate as the 
longer assembled contigs contain more information. In 
this study, ARGNet-S and ARGNet-L were implemented 
for both strategies. According to the performance test, 
ARGNet performed consistently well across different 
datasets (both assembled contigs with different com-
pleteness and short reads of different sequence lengths), 
supporting its usage in different application scenarios, 
even without the requirement of the time-consuming 
sequence assembly [50].

Antibiotic-resistant bacteria becomes ubiquitous in 
the world, leading to a public health threat of drug-
resistant infections. Multidrug resistance was identi-
fied in various clinical bacteria which may result in 
increased mortality and also cost in treatment [51]. 
Without the appropriate diagnosis of the ARG type, 
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it is likely to lead to limited antibiotic treatments and 
delay the control of pathogens. Hence, it is essential to 
develop rapid ARG detection methods for both clinical 
and environmental settings [52]. In this study, ARG-
Net demonstrated superior time efficacy. ARGNet uti-
lized batch processing which operates sequences with 
different batch sizes at one time for speeding up pre-
diction. In the era of big data, it is common to receive 
large volume of sequences. ARGNet can take use of 
computational resources (such as GPU memory). The 
application of ARGNet is efficient and scalable, without 
pre-processing steps such as sequence assembly (for 
ARGNet-S) and BLAST alignment.

ARGNet was developed to identify ARG genes and 
further classify into 36 categories based on nucleotide 
and amino acid sequence. It was not designed to predict 
antibiotic resistance derived from SNPs. Although ARG-
Net demonstrated capability to detect distantly related 
(novel) ARGs (quasi-negative test), it cannot explicitly 
classify ARGs from entirely novel category that out of the 
current classification scheme. As with other deep learn-
ing models, the performance of ARGNet is relied on the 
quality of database, which is hinged by the intrinsic char-
acteristics (e.g., lack of negative dataset, imbalanced data 
of different ARG categories) of the database. Currently, 
ARGs are identified mainly based on alignment-based 
methods, with the implicit assumption that ARGs are 
determined by the sequence similarity against reference 
database. However, for ARGs that function as proteins, 
their three-dimensional structural form will be impor-
tant in determining their resistance activity [53]. Predic-
tion based on three-dimensional structure has identified 
thousands of ARGs distantly related to the known ones 
[54]. As an alignment-free deep learning model, ARGNet 
provides a framework compatible with functional anno-
tation derived from structure-based evidence. It can pro-
vide in silico prediction of ARGs that may be distant in 
sequence from those in existing ARG databases. These 
can then be used to search for potential novel ARG can-
didates in sequences from real samples (such as humans, 
animals, or the environment), which could be validated 
via experiments.

In addition, ARGNet provides a promising and effi-
cient approach for ARG identification and classification 
in multiple application scenarios, which can be further 
extended. For example, third-generation sequencing 
technology such as nanopore sequencing has been widely 
used for ARG discovery [55]. Although possessing high 
error rate, it is reputed by the fast turnaround time, real-
time sequencing, and portability [56]. The extension of 
our deep learning model into error-corrected long-read 
prediction of ARGs will provide a powerful tool for 
timely monitoring of antibiotic-resistant bacteria.

Genetic sequence identification and classification 
approaches offer a number of advantages over the clas-
sical culture-based AST method. However, current 
sequence-based approaches are also limited by the 
inability to link the ARGs, with absolute confidence, 
to their hosting bacterial genomes and cells. Long-read 
sequencing technologies, such as nanopore sequenc-
ing, can be used to identify the bacterial genomes and 
species in which chromosomal ARGs are located. For 
ARGs located in plasmids, single-cell deep sequencing 
can reveal their association. However, it is important 
to note that the presence of ARGs may not be the sole 
determinant of resistant phenotypes. Therefore, inter-
preting the clinical implications based on the ARGs 
identified from metagenomic data requires caution.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168‑ 024‑ 01805‑0.

Additional file 1: Fig. S1. Phylogenetic tree of mcr‑1 gene. Fig. S2. 
Phylogenetic tree of mcr‑2 gene. Fig. S3. Phylogenetic tree of mcr‑3 gene. 
Fig. S4. Phylogenetic tree of mcr‑4 gene. Fig. S5. Phylogenetic tree of 
mcr‑5 gene. Fig. S6. Phylogenetic tree of mcr‑8 gene. Fig. S7. Phyloge‑
netic tree of mcr‑9 gene. Table S1. Autoencoeder in ARGNet‑L. Adam 
optimizer was utilized with learning rate 1e‑4 and trained with batch‑
size of 256. Table S2. Convolutional neural network (CNN) in ARGNet‑L. 
Adam optimizer was utilized with learning rate of 0.001 and trained with 
batch‑size of 256. Table S3. Autoencoeder in ARGNet‑S. Adam optimizer 
was utilized with learning rate of 1e‑4 and trained with batch‑size of 2048. 
Table S4. CNN in ARGNet‑S. Adam optimizer was utilized with learning 
rate 0.001 (learning rate decay of 0.001) and trained with batch‑size of 
2048. Table S5. Weight sum distribution along sequence position of ARGs. 
Fig. S8. Phylogenetic tree of mcr‑10 gene. Fig. S9. Prediction on E. coli K12 
sequences with ARGNet and RGI. a Classification results of the E. coli K12 
sequences identified as ARGs by ARGNet and RGI. b Classification results 
of the transporters sequences from E. coli K12 identified as ARGs by ARG‑
Net and RGI. Fig. S10. Latent space representation of autoencoder. The 
upper part is the illustration of autoencoder model. W denotes the weight 
of each neuron learned and optimized from the input data. The lower 
part is dimension reduction via tSNE of the latent space extracted from 
the ARGNet’s autoencoder trained by our ARG reference data (n=21971). 
Fig. S11. The weight sum distribution along sequence position in the 
latent space. Each boxplot represents the weight sum distribution of all 
test sequences in each category. The red line chart shows the number of 
sequences (right y‑axis) on each range of positions (x‑axis). The highest 
weight sum position ranges (x‑axis) supported by enough number (> 
90%) of sequences are highlighted in orange.

Acknowledgements
We thank Professor Keiji Fukuda for helpful discussions and manuscript 
editing. We thank Miss Ningqi Zhao, Mr. Issac Wu, and Mr. David Cheung for 
supporting the development of web service of ARGNet.

Authors’ contributions
T.L. conceived this study. T.L. and Y.P. initiated the study. Y.P. built the database 
and developed and evaluated the deep learning model. Y.P., M.S., and Y.S.L. 
performed the phylogenetic analysis and evalution. T.L., Y.P., and M.S. designed 
the webserver. Y.P., Y.S.L, and V.L. wrote the manuscript under the supervision 
of T.L. All authors are involved in the discussion and finalization of the manu‑
script. The authors read and approved the final manuscript.

https://doi.org/10.1186/s40168-024-01805-0
https://doi.org/10.1186/s40168-024-01805-0


Page 16 of 17Pei et al. Microbiome           (2024) 12:84 

Funding
This project is supported by the Hong Kong Research Grants Council’s 
Theme‑based Research Scheme (T21‑705/20‑N), the National Natural Sci‑
ence Foundation of China’s Excellent Young Scientists Fund (Hong Kong 
and Macau) (31922087), the Innovation and Technology Commission’s 
InnoHK funding (D24H), and the Government of Guangdong Province 
(projects 2019B121205009, HZQB‑KCZYZ‑2021014, 200109155890863, 
190830095586328 and 190824215544727).

Availability of data and materials
ARGNet consists of a command line program where the input is in the format 
of FASTA. The program, models, and test data are on https:// github. com/ 
id‑ bioin fo/ ARGNet. The online service of ARGNet could be found on https:// 
argnet. hku. hk/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 State Key Laboratory of Emerging Infectious Diseases, School of Public 
Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. 2 Joint 
Institute of Virology (Shantou University and The University of Hong Kong), 
Guangdong‑Hongkong Joint Laboratory of Emerging Infectious Diseases, 
Shantou University, Shantou, Guangdong 515063, China. 3 Laboratory of Data 
Discovery for Health (D²4H), Hong Kong Science Park, Pak Shek Kok, Hong 
Kong SAR, China. 4 Advanced Pathogen Research Institute, Futian District, 
Shenzhen City, Guangdong 518045, China. 5 Centre for Immunology & Infec‑
tion (C2i), Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China. 
6 Division of Biotechnology, Research Center of Emerging Viral Infections, 
College of Medicine, Chang Gung University, Taoyuan, Taiwan. 7 International 
Master Degree Program for Molecular Medicine in Emerging Viral Infections, 
College of Medicine, Chang Gung University, Taoyuan, Taiwan. 8 Department 
of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 
Taiwan. 9 National Institute of Infectious Diseases and Vaccinology, National 
Health Research Institutes, Zhunan, Taiwan. 10 Department of Civil Engineering, 
The University of Hong Kong, Pokfulam, Hong Kong SAR, China. 11 Department 
of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong 
SAR, China. 

Received: 10 August 2023   Accepted: 2 April 2024

References
 1. Hofer U. The cost of antimicrobial resistance. Nat Rev Microbiol. 

2019;17(1):3.
 2. Alos JI. Antibiotic resistance: a global crisis. Enferm Infecc Microbiol Clin. 

2015;33(10):692–9.
 3. Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ. Antimicrobial suscepti‑

bility testing: a review of general principles and contemporary practices. 
Clin Infect Dis. 2009;49(11):1749–55.

 4. D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibi‑
otic resistome. Science. 2006;311(5759):374–7.

 5. Schmieder R, Edwards R. Insights into antibiotic resistance through 
metagenomic approaches. Future Microbiol. 2012;7(1):73–89.

 6. Wang R, van Dorp L, Shaw LP, Bradley P, Wang Q, Wang X, et al. The global 
distribution and spread of the mobilized colistin resistance gene mcr‑1. 
Nat Commun. 2018;9(1):1179.

 7. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase‑producing 
Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791–8.

 8. Potter RF, D’Souza AW, Dantas G. The rapid spread of carbapenem‑resist‑
ant Enterobacteriaceae. Drug Resist Updat. 2016;29:30–46.

 9. Canton R, Akova M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M, 
et al. Rapid evolution and spread of carbapenemases among Enterobac‑
teriaceae in Europe. Clin Microbiol Infect. 2012;18(5):413–31.

 10. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment 
search tool. J Mol Biol. 1990;215(3):403–10.

 11. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using 
DIAMOND. Nat Methods. 2015;12(1):59–60.

 12. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory‑
efficient alignment of short DNA sequences to the human genome. 
Genome Biol. 2009;10(3):R25.

 13. Yang Y, Jiang X, Chai B, Ma L, Li B, Zhang A, et al. ARGs‑OAP: online analy‑
sis pipeline for antibiotic resistance genes detection from metagenomic 
data using an integrated structured ARG‑database. Bioinformatics 
(Oxford, England). 2016;32(15):2346–51.

 14. McArthur AG, Tsang KK. Antimicrobial resistance surveillance in the 
genomic age. Ann N Y Acad Sci. 2017;1388(1):78–91.

 15. Zielezinski A, Vinga S, Almeida J, Karlowski WM. Alignment‑free 
sequence comparison: benefits, applications, and tools. Genome Biol. 
2017;18(1):186.

 16. Cao C, Liu F, Tan H, Song D, Shu W, Li W, et al. Deep learning and its 
applications in biomedicine. Genomics Proteomics Bioinformatics. 
2018;16(1):17–32.

 17. Leung MK, Xiong HY, Lee LJ, Frey BJ. Deep learning of the tissue‑regu‑
lated splicing code. Bioinformatics (Oxford, England). 2014;30(12):i121‑9.

 18. Umarov RK, Solovyev VV. Recognition of prokaryotic and eukaryotic 
promoters using convolutional deep learning neural networks. PLoS One. 
2017;12(2):e0171410.

 19. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence 
specificities of DNA‑ and RNA‑binding proteins by deep learning. Nat 
Biotechnol. 2015;33(8):831–8.

 20. Hie B, Zhong ED, Berger B, Bryson B. Learning the language of viral evolu‑
tion and escape. Science. 2021;371(6526):284–8.

 21. Arango‑Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. 
DeepARG: a deep learning approach for predicting antibiotic resistance 
genes from metagenomic data. Microbiome. 2018;6(1):23.

 22. Li Y, Xu Z, Han W, Cao H, Umarov R, Yan A, et al. HMD‑ARG: hierarchical 
multi‑task deep learning for annotating antibiotic resistance genes. 
Microbiome. 2021;9(1):40.

 23. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalat‑
mand A, et al. CARD 2020: antibiotic resistome surveillance with the 
comprehensive antibiotic resistance database. Nucleic Acids Res. 
2020;48(D1):D517–25.

 24. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, et al. 
Validating the AMRFinder tool and resistance gene database by using 
antimicrobial resistance genotype‑phenotype correlations in a collection 
of isolates. Antimicrob Agents Chemother. 2019;63(11):e00483‑19.

 25 Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. Res‑
Finder 4.0 for predictions of phenotypes from genotypes. J Antimicrob 
Chemother. 2020;75(12):3491–500.

 26. Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C, et al. MEG‑
ARes 2.0: a database for classification of antimicrobial drug, biocide and 
metal resistance determinants in metagenomic sequence data. Nucleic 
Acids Res. 2020;48(D1):D561–9.

 27. Li W, Godzik A. Cd‑hit: a fast program for clustering and comparing large 
sets of protein or nucleotide sequences. Bioinformatics (Oxford, England). 
2006;22(13):1658–9.

 28. Hu Y, Yang X, Qin J, Lu N, Cheng G, Wu N, et al. Metagenome‑wide 
analysis of antibiotic resistance genes in a large cohort of human gut 
microbiota. Nat Commun. 2013;4:2151.

 29 Serres MH, Gopal S, Nahum LA, Liang P, Gaasterland T, Riley M. A 
functional update of the Escherichia coli K‑12 genome. Genome Biol. 
2001;2(9):RESEARCH0035.

 30. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 
(Oxford, England). 2014;30(14):2068–9.

 31. Huang J, Zhu Y, Han ML, Li M, Song J, Velkov T, et al. Comparative analysis 
of phosphoethanolamine transferases involved in polymyxin resistance 
across 10 clinically relevant gram‑negative bacteria. Int J Antimicrob 
Agents. 2018;51(4):586–93.

https://github.com/id-bioinfo/ARGNet
https://github.com/id-bioinfo/ARGNet
https://argnet.hku.hk/
https://argnet.hku.hk/


Page 17 of 17Pei et al. Microbiome           (2024) 12:84  

 32. Katoh K, Standley DM. MAFFT multiple sequence alignment software 
version 7: improvements in performance and usability. Mol Biol Evol. 
2013;30(4):772–80.

 33. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum‑likeli‑
hood trees for large alignments. PLoS One. 2010;5(3):e9490.

 34. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, 
et al. CARD 2023: expanded curation, support for machine learning, and 
resistome prediction at the Comprehensive Antibiotic Resistance Data‑
base. Nucleic Acids Res. 2023;51(D1):D690–9.

 35. Kramer MA. Nonlinear principal component analysis using autoassocia‑
tive neural networks. Aiche J. 1991;37(2):233–43.

 36. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P‑A. Stacked denois‑
ing autoencoders: learning useful representations in a deep network with 
a local denoising criterion. J Mach Learn Res. 2010;11:3371–408.

 37. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 
In Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2016. pp. 770–778.

 38. Wainberg M, Merico D, Delong A, Frey BJ. Deep learning in biomedicine. 
Nat Biotechnol. 2018;36:829.

 39. Kleinheinz KA, Joensen KG, Larsen MV. Applying the ResFinder and 
VirulenceFinder web‑services for easy identification of acquired antibiotic 
resistance and E. coli virulence genes in bacteriophage and prophage 
nucleotide sequences. Bacteriophage. 2014;4(1):e27943.

 40. Bengtsson‑Palme J, Larsson DGJ, Kristiansson E. Using metagenomics to 
investigate human and environmental resistomes. J Antimicrob Chem‑
other. 2017;72(10):2690–703.

 41. Hinton GE, Krizhevsky A, Wang SD. Transforming auto‑encoders. In 
Artificial Neural Networks and Machine Learning–ICANN 2011: 21st 
International Conference on Artificial Neural Networks, Espoo, Finland, 
June 14‑17, 2011, Proceedings, Part I 21. Springer Berlin Heidelberg; 2011. 
pp. 44–51.

 42. Sakurada M, Yairi T. Anomaly detection using autoencoders with non‑
linear dimensionality reduction. Proceedings of the MLSDA 2014 2nd 
Workshop on Machine Learning for Sensory Data Analysis ‑ MLSDA’14. 
2014. p. 4–11.

 43. Zhou C, Paffenroth RC. Anomaly detection with robust deep autoencod‑
ers. Proceedings of the 23rd ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining. 2017. p. 665–74.

 44. Thomas J, Thomas S, Sael L. Feature versus raw sequence: deep learning 
comparative study on predicting pre‑miRNA. arXiv preprint 2017:177–86.

 45. Aoki G, Sakakibara Y. Convolutional neural networks for classifica‑
tion of alignments of non‑coding RNA sequences. Bioinformatics. 
2018;34(13):i237–44.

 46. Budach S, Marsico A. pysster: classification of biological sequences by 
learning sequence and structure motifs with convolutional neural net‑
works. Bioinformatics. 2018;34(17):3035–7.

 47. Tanha J, Abdi Y, Samadi N, Razzaghi N, Asadpour M. Boosting methods for 
multi‑class imbalanced data classification: an experimental review. J Big 
Data. 2020;7(1):70.

 48. Krawczyk B. Learning from imbalanced data: open challenges and future 
directions. Prog Artific Intell. 2016;5(4):221–32.

 49. Boolchandani M, D’Souza AW, Dantas G. Sequencing‑based meth‑
ods and resources to study antimicrobial resistance. Nat Rev Genet. 
2019;20(6):356–70.

 50. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, 
et al. SPAdes: a new genome assembly algorithm and its applications to 
single‑cell sequencing. J Comput Biol. 2012;19(5):455–77.

 51. Vivas R, Barbosa AA, Dolabela SS, Jain S. Multidrug‑resistant bacteria and 
alternative methods to control them: an overview. Microb Drug Resist. 
2019;25(6):890–908.

 52. Diekema DJ, Pfaller MA. Rapid detection of antibiotic‑resistant organism 
carriage for infection prevention. Clin Infect Dis. 2013;56(11):1614–20.

 53. Reeve SM, Lombardo MN, Anderson AC. Understanding the structural 
mechanisms of antibiotic resistance sets the platform for new discovery. 
Future Microbiol. 2015;10(11):1727–33.

 54. Ruppé E, Ghozlane A, Tap J, Pons N, Alvarez A‑S, Maziers N, et al. Predic‑
tion of the intestinal resistome by a three‑dimensional structure‑based 
method. Nat Microbiol. 2019;4(1):112–23.

 55. Dai D, Brown C, Bürgmann H, Larsson DGJ, Nambi I, Zhang T, et al. Long‑
read metagenomic sequencing reveals shifts in associations of antibiotic 

resistance genes with mobile genetic elements from sewage to activated 
sludge. Microbiome. 2022;10(1):20.

 56. Arango‑Argoty GA, Dai D, Pruden A, Vikesland P, Heath LS, Zhang L. 
NanoARG: a web service for detecting and contextualizing antimicrobial 
resistance genes from nanopore‑derived metagenomes. Microbiome. 
2019;7(1):88.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	ARGNet: using deep neural networks for robust identification and classification of antibiotic resistance genes from sequences
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Methods
	ARGNet-DB
	Data encoding
	Model implementation
	Test datasets
	ARG test dataset
	Virus test dataset
	Bacterial non-ARG sequence dataset
	ESKAPE dataset
	E. coli K12 dataset
	mcr-like dataset
	Phylogenetic tree implementation
	Quasi-negative test implementation
	Evaluation metrics
	Comparison with other deep learning models
	Comparison with best hit approach

	Results
	The ARGNet-DB
	The ARGNet
	Prediction of long sequences
	Prediction of short reads
	Validation through bacterial non-ARG sequence dataset
	Prediction of ESKAPE sequences
	Prediction of E. coli K12 sequences
	Prediction of phylogenetically inferred mcr genes
	Potential of novel ARG detection
	Runtimes

	Discussion and conclusions
	Acknowledgements
	References


