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Abstract 

Background  Chronic infection and consequent airway inflammation are the leading causes of morbidity and early 
mortality for people living with cystic fibrosis (CF). However, lower airway infections across a range of chronic respira-
tory diseases, including in CF, do not follow classical ‘one microbe, one disease’ concepts of infection pathogenesis. 
Instead, they are comprised of diverse and temporally dynamic lung infection microbiota. Consequently, temporal 
dynamics need to be considered when attempting to associate lung microbiota with changes in disease status. Set 
within an island biogeography framework, we aimed to determine the ecological patterns and processes of tempo-
ral turnover within the lung microbiota of 30 paediatric and adult CF patients prospectively sampled over a 3-year 
period. Moreover, we aimed to ascertain the contributions of constituent chronic and intermittent colonizers on turn-
over within the wider microbiota.

Results  The lung microbiota within individual patients was partitioned into constituent chronic and intermittent 
colonizing groups using the Leeds criteria and visualised with persistence-abundance relationships. This revealed bac-
teria chronically infecting a patient were both persistent and common through time, whereas intermittently infecting 
taxa were infrequent and rare; respectively representing the resident and transient portions of the wider microbiota. 
It also indicated that the extent of chronic colonization was far greater than could be appreciated with microbiologi-
cal culture alone. Using species-time relationships to measure temporal turnover and Vellend’s rationalized ecological 
processes demonstrated turnover in the resident chronic infecting groups was conserved and underpinned princi-
pally by the deterministic process of homogenizing dispersal. Conversely, intermittent colonizing groups, represent-
ing newly arrived immigrants and transient species, drove turnover in the wider microbiota and were predominately 
underpinned by the stochastic process of drift. For adult patients, homogenizing dispersal and drift were found to be 
significantly associated with lung function. Where a greater frequency of homogenizing dispersal was observed 
with worsening lung function and conversely drift increased with better lung function.

Conclusions  Our work provides a novel ecological framework for understanding the temporal dynamics of polymi-
crobial infection in CF that has translational potential to guide and improve therapeutic targeting of lung microbiota 
in CF and across a range of chronic airway diseases.
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Background
For people living with cystic fibrosis (CF) the primary 
cause of morbidity and early mortality is chronic lung 
infection and consequent inflammation [1]. Regu-
lar microbiological surveillance of airway secretions 
throughout the life of a CF patient is considered best 
practice and is central to clinical care in CF [2]. It is used 
to distinguish intermittent or chronic infection status 
of CF canonical pathogens, guide the choice of anti-
microbial therapy, indicate the effectiveness of inter-
ventions against current chronic infection, and enable 
timely treatment of new infection to prevent the estab-
lishment of chronic infection with its association with 
poor long-term outcomes [2–5]. Following diagnosis 
of acute pulmonary exacerbation, increased surveil-
lance for the duration of treatment is also recommended 
to direct and assess efficacy of antibiotic therapy [2]. 
Moreover, surveillance is used to categorize CF patients 
by their lead chronic CF pathogen, dictating which seg-
regated outpatient clinics they attend to prevent cross-
infection between patients infected with, for example, 
Pseudomonas aeruginosa, methicillin-resistant Staphy-
lococcus aureus, or Burkholderia cepacia complex mem-
bers [6].

Clinical microbiological surveillance in CF is predomi-
nantly culture-based and is driven by ‘one microbe, one 
disease’ concepts of infection pathogenesis originating 
from Koch’s postulates [7, 8]. Where culture is used to 
report the presence or absence (and not abundance) of 
targeted CF pathogens [3, 4]. Conversely, basic research 
using molecular-based approaches developed for micro-
bial ecology has established that lung infection in CF is 
unquestionably polymicrobial, involving a complex and 
interacting lung microbiome, e.g. [7–12]. More broadly, 
it is the case that the lower airways in health and across a 
range of respiratory diseases contain diverse and dynamic 
microbiota, exemplifying the inadequacy of traditional 
models of lung microbiology and infection pathogenesis 
[13–15]. Nevertheless, therapeutic targeting of the lung 
microbiome translated into a clinical context, including 
in CF, remains challenging [7, 16].

Setting microbiome research within a theoretical 
ecology framework has long been promoted as a parsi-
monious and pragmatic solution to understanding and 
predicting the ecology of microbiota, regardless of hab-
itat or system [17]. The theory of island biogeography 
specifically has been promoted as a useful framework 
to apply and adapt to respiratory microbiome ecology, 

as lungs can be considered as dynamic island habitats 
that are subject to species immigration and extinc-
tion through time [13, 18, 19]. Island biogeography 
is appealing in this context as it has temporal turno-
ver, defined as “the number of species eliminated and 
replaced per unit of time”, as its central underpinning 
concept [20]. Originally developed in traditional ecol-
ogy to predict spatial and temporal patterns of animal 
and plant species richness on oceanic islands [19]. It 
has subsequently been applied and adapted for the 
study of microbiota across a diverse range of ‘island’ 
types, including water-filled tree-holes [21, 22], sea-
water mesocosms [23], engineering machine sump 
tanks [24], and wastewater treatment systems [25, 26]. 
Although aspects of the theory have been applied in a 
cross-sectional context to lung microbiota, e.g., [7, 14], 
to our knowledge it has not been applied to the lung 
microbiota of individual patients followed through 
time.

This could be important for understanding the 
dynamics of chronic and intermittent infecting bacteria 
within the wider lung microbiota of a patient through 
time. Indeed, it has been recommended that temporal 
dynamics need to be considered when attempting to 
connect changes in human microbiota to changes in 
health status [27]. Currently, there is no ‘gold stand-
ard’ clinical definition of chronic infection [28]. How-
ever, a commonly used definition is the Leeds criteria, 
originally developed to define chronic P. aeruginosa 
infection in CF patients [4]. In brief, patients are con-
sidered chronically infected when > 50% of the preced-
ing 12 months respiratory samples are culture-positive 
for P. aeruginosa [4]. We recently used a modification 
of the Leeds criteria to assess the infection status of 
P. aeruginosa and S. aureus in paediatric and adult CF 
patients, highlighting a striking underestimation of 
chronic infection using clinical microbiological culture 
when compared to targeted molecular approaches [3]. 
In a lung microbiome context, using high-throughput 
targeted amplicon sequencing to define the whole lung 
microbiota, we hypothesize that CF patients will be 
chronically colonized, as defined by the Leeds criteria, 
to a much greater extent and with a larger number of 
bacterial species than expected by clinical microbiolog-
ical culture alone [3, 7].

In the current study, respiratory samples from pae-
diatric and adult CF patients were prospectively col-
lected over a period of up to 3  years. Set within an 
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ecological framework and using the cornerstone con-
cept behind the theory of island biogeography [19], 
we aimed to determine the ecological patterns and 
processes underpinning the temporal turnover of 
chronic and intermittent colonizing bacterial taxa 
within the lung microbiota of individual participating 
patients. To achieve this, we sought to define a chronic 
and intermittent status for all bacterial taxa coloniz-
ing the airways of individual patients visualised using 
persistence-abundance relationships of the wider lung 
microbiota. Using species-time relationships [22, 25, 
29], we assessed the temporal turnover of the chronic 
and intermittent taxa groups and how they contributed 
to patterns of turnover in the whole lung microbiota 
within individuals and across patients. We then ascer-
tained which ecological processes underpinned the 
temporal turnover of bacterial taxa within the chronic 
and intermittent taxa groups and the wider lung micro-
biota [22]. Finally, we related those ecological patterns 
and processes to lung function. Specifically, we used 
forced expiratory volume in 1  s (FEV1), expressed as a 
normalized percent of the predicted value (%FEV1), as 
it is currently the single best clinical indicator of health 
for individuals living with CF [7, 30].

Methods
Study and patient sampling
Patients were recruited as part of a longitudinal observa-
tional study of adults and children with CF cared for at 
two different CF centres [31]. Adults were recruited from 
the Manchester Adult CF Centre (Wythenshawe Hospi-
tal), and children from the Royal Manchester Children’s 
Hospital. Patients were required to be at least 5 years old, 
with a FEV1 of > 50% predicted at study entry. Patients or 
parents/guardians provided written informed consent 
and children provided assent. This study was reviewed 
and approved by the NHS Research Ethics Committee 
North-West, Lancaster (Ref 14/NW/1195). For the cur-
rent study, paediatric and adult patients from the wider 
study were excluded from further analyses if they had 
provided < 6 samples over the sampling duration and if 
the maximum duration of sampling was less ≤ 730 days, 
i.e., did not extend into the 3rd year of the overarching 
study.

The clinical characteristics of patients included in the 
current study are summarised in Table  1. Patients were 
assessed at their usual clinic appointments by their regu-
lar clinical team and included routine and emergency vis-
its. Spirometry was performed by the usual clinical team. 
Normal ranges for spirometry were those from the Global 
Lung Initiative [30]. At study entry, 93% of adults (14/15) 
were on long-term azithromycin treatment, while one 
patient (patient 110) was receiving long-term colistin. 

Seventy-three percent of paediatric patients (11/15) were 
also on long-term azithromycin, the remaining four (201, 
212, 216, and 228) were not prescribed any long-term 
antibiotics. Sputum or cough swab samples were taken 
at each clinic visit for diagnostic and molecular microbi-
ology. All sputum samples were spontaneously expecto-
rated. Molecular microbiology samples were transported 
to the lab within three hours and stored at -80 °C prior to 
DNA extraction and PCR [32, 33]. Sputum samples were 
mixed and weighed prior to splitting and storage.

Sequencing
Nucleic acid extraction was performed on sputum and 
cough swab samples as previously described, with a 
modification for the latter sample type [34]. As an alter-
native to the wash stage for sputum, cough swabs were 
saturated in sterile phosphate buffer solution for 5  min, 
then squeezed with sterile tweezers to extract as much 
material as possible. The resulting solution was then 
introduced at the bead-beating stage and the protocol 
continued as normal for the sputum samples thereafter 
[3].

Following DNA extraction, approximately 2 ng of tem-
plate DNA was amplified using Q5 high-fidelity DNA 
polymerase (New England Biolabs, Hitchin, UK) using a 
paired-end sequencing approach targeting the bacterial 
16S rRNA gene region (V5–V6) as previously described 
[35]. Pooled barcoded amplicon libraries were sequenced 
on the Illumina MiSeq platform (V3 chemistry). Mock 
communities, DNA extract, and PCR negative controls 
were included in each sequencing run [35]. Sequence 
processing and analysis were carried out in R (Ver-
sion 4.0.1), utilising the package DADA2, as previously 
described [36]. Raw sequence data have been deposited 
in the European Nucleotide Archive under study acces-
sion number PRJEB62148. All sequences were putatively 
assigned genus or species level identification by using 
the GTDB database [37] and then any remaining non-
assigned ASVs were run through BLAST [38]. Given the 
length of the ribosomal sequences analysed, species iden-
tities should be considered putative. A sequence match 
of 97% or more when run through the databases was 
required for identification.

Statistical analysis
All regression analyses, coefficients of determination 
(R2), degrees of freedom, F-statistics, and significance (P) 
were calculated using XLSTAT v2018.1 (Addinsoft, Paris, 
France). Kruskal–Wallis analyses.

in conjunction with the post hoc Dunn test, were per-
formed in XLSTAT.

We used a temporal variation of the occu-
pancy-abundance relationship, which we term the 
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persistence-abundance relationship (PAR) to reflect the 
temporal nature of this study [11, 39]. Wherein, in place 
of plotting a measure of species occupancy of spatially 
separated sites or habitats against species abundance, 
temporal persistence was substituted for occupancy; 
defined here as the percentage number of samples each 
bacterial taxon was observed in the lung microbiota of a 
given patient over time.

Species-time relationships (STRs) were constructed 
using the moving window method [22]. New taxa were 
defined as the number of taxa present in the second/last 

sample of a window, but not observed in the first sample 
as a window was moved sequentially along a time series. 
Adjoining time sample points were taken pairwise mov-
ing along the time series, with the richness of the first 
sample added to the number of new taxa found in the 
second. For example, a 20-time point time series, rich-
ness in sample 1 is added to the new taxa observed in 2, 
then 2 and 3, 3 and 4, 4 and 5, etc., up to 19 and 20. The 
moving window approach incorporates multiple immi-
grations and extinctions of the same taxa through time, 
which would be anticipated in a time series of this study’s 

Table 1  Clinical characteristics of individual (A) paediatric and (B) adult patients

a Patients receiving Ivacaftor CF transmembrane conductance regulator (CFTR) modulator therapy
b Age in years at the start of the study
c Mean lung function ± standard deviation (SD) over the course of the study
d Number of acute pulmonary exacerbations experienced over the course of the study

Ageb Sex CFTR Genotype1 CFTR Genotype2 CF-related 
diabetes

Pancreatic 
insufficiency

%FEV1
c SD Exacerbationsd

(A)

  201a 12 Female F508del G551D No Insufficient 84.4 2.7 3

  203 6 Female F508del F508del No Insufficient 100.2 10.7 1

  212 9 Female F508del F508del No Insufficient 83.9 6.3 4

  213 6 Male F508del F508del No Insufficient 82.3 15.7 3

  216 9 Female SN549N SN549N No Insufficient 117.8 5.2 1

  217 8 Male F508del G542X No Insufficient 100.4 2.7 0

  218 11 Male F508del F508del No Insufficient 89.6 6.6 2

  219 8 Male F508del R56OT No Insufficient 98.7 1.4 0

  223 8 Male F508del S1235R No Sufficient 110.0 1.7 0

  228 6 Male F508del R553X No Insufficient 99.8 6.2 0

  233 15 Male F508del F508del No Insufficient 71.2 9.9 1

  240 11 Female F508del F508del No Insufficient 60.6 6.3 1

  242a 6 Female F508del G551D No Insufficient 74.7 8.6 2

  245 6 Male F508del F508del No Insufficient 92.0 14.2 3

  246 9 Female 3849 + 10kbC > T 3849 + 10kbC > T No Sufficient 91.0 9.1 2

(B)

  101 22 Male R334W R75X No Sufficient 64.2 2.1 7

  103 22 Male F508del 3849 + 10kbC > T No Sufficient 79.7 7.9 1

  104 28 Male 3849 + 10kbC > T 3849 + 10kbC > T No Sufficient 77.9 7.5 2

  106 19 Male F508del F508del No Insufficient 57.2 8.0 8

  108 35 Male F508del F508del No Insufficient 60.7 1.5 2

  110 28 Female F508del F508del No Insufficient 120.1 2.7 1

  112 24 Male F508del F508del No Sufficient 93.2 4.5 1

  113 21 Female F508del Delexon2-3 No Insufficient 58.1 1.4 3

  114 21 Male F508del F508del No Insufficient 87.1 1.9 0

  116 24 Male R117H S549N No Sufficient 99.6 2.1 0

  118 25 Female F508del F508del No Insufficient 73.8 4.2 3

  119 20 Female R553X 2622 + 1G- > A Yes Insufficient 47.9 2.9 3

  120 19 Male F508del F508del No Insufficient 78.6 3.3 0

  121 29 Male F508del R117H No Sufficient 92.9 3.7 1

  140 17 Male F508del 2622 + 1G > A No Sufficient 47.3 6.9 6
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extent [22]. This is a key difference compared to other 
STR construction approaches, which only use the first 
appearance of each bacterial taxon, even though taxa can 
emerge and disappear multiple times across a time-series 
for a given microbiota [22]. All STRs were constructed 
and plotted in Microsoft Excel (Microsoft Corporation, 
Redmond, WA, USA).

To test to what extent temporal turnover within each 
patient’s lung microbiota was accounted for by Vellend’s 
rationalised ecological processes [40], patient micro-
biota were compared using a Monte Carlo procedure 
(1000 randomizations) to determine whether any two 
lung microbiota samples were more or less similar than 
expected by chance using the Raup and Crick probabil-
ity-based index of similarity (SRC) [41]. For each patient, 
the ‘regional’ species pool was defined as all species 
that occurred through the time series for all patients. 
The SRC probability-based index, which is independ-
ent of sample size and based on presence-absence data, 
was rescaled to range from 1 to − 1 [41], but, contrary 
to Chase et  al., maintained as an intuitive measure of 
similarity and not dissimilarity [22]. Pairwise SRC indices 
of ≥ 0.95 and ≤  − 0.95 are significantly similar or dissimi-
lar, respectively, than expected by chance, and SRC indi-
ces between 0.95 and -0.95 indicate similarity no greater 
than expected by chance [22, 41]. This has been extended 
to quantify which ecological processes shape differences 
between microbiota [22]. When SRC is used as a similar-
ity index, values near 1 (0.95 to 1) indicate homogenizing 
dispersal, values near − 1 (− 0.95 to − 1) indicate disper-
sal limitation, and values between 0.95 to − 0.95 indi-
cate drift. SRC indices were calculated using PAST v3.25 
(www.​nhm.​uio.​no/​engli​sh/​resea​rch/​resou​rces/​past/) 
[22].

Results
Here we analysed respiratory samples from 15 pediatric 
and 15 adult CF patients prospectively collected over a 
3-year period. The clinical characteristics of individual 
patients are summarised in Table 1. The mean sampling 
duration ± standard deviation of the mean (SD) across 
the patients was 959.0 ± 120.8  days, with a minimum 
and maximum of 785 and 1166 days, respectively. The 

mean number of respiratory samples ± SD taken from 
participating patients was 8.7 ± 2.9, with a minimum 
and maximum of 6 and 20 samples, respectively. Fol-
lowing our previous work, a minimum of ≥ 6 samples 
was chosen, as less samples would have increased the 
likelihood of misclassifying chronic or intermittent 
infection status [3].

Chronic and intermittent colonization
Using a modification of the Leeds criteria [3, 4], indi-
vidual patients were considered to be chronically or 
intermittently colonized with a given bacterial taxon if 
it had > 50% or ≤ 50% persistence, respectively, across 
the samples taken over the 3-year study period [3]. To 
visualise the distribution of chronic and intermittently 
colonizing bacteria taxa within each patient, the lon-
gitudinal persistence of every bacterial taxon observed 
in the lung microbiota over time was plotted against 
its mean relative abundance across the temporal sam-
ples it was detected in (Fig.  1). The resulting persis-
tence-abundance relationships were all positive and 
significant. Wherein, the chronic infecting taxa were 
persistent and common, while the intermittent infect-
ing taxa were typically rare and infrequent.

Mean taxa richness ± SD between patient cohorts was 
found to be significantly higher in the adult patients 
(Kruskal–Wallis: H = 8.55, P < 0.003). Where richness 
within the paediatric and adult groups was 147.8 ± 55.3 
and 207.9 ± 49.4, respectively. No significant differences 
(H = 0.83, P = 0.361) in the mean richness of chronic 
colonizing taxa were observed between patient cohorts; 
paediatric taxa richness = 27.1 ± 8.6 and adult taxa rich-
ness = 24.1 ± 9.4. Conversely, the mean intermittent taxa 
richness was significantly higher (H = 9.29, P = 0.002) 
across adult patients (183.8 ± 42.5) when compared to 
paediatric patients (120 ± 49.4). While the intermittent 
taxa accounted for the majority of the microbiota diver-
sity, the chronic taxa accounted for the majority of the 
relative abundance (chronic taxa mean abundance ± SD 
in the paediatric patients = 77.5% ± 10.1% and adult 
patients = 71.5% ± 11.4%).

Fig. 1  Persistence and abundance of chronic and intermittent colonizing bacteria within the lung microbiota of individual patients. Using 
a modification of the Leeds criteria, (A) paediatric and (B) adult patients were deemed to be chronically or intermittently colonized with a given 
bacteria if > 50% or ≤ 50% of samples, respectively, over the 3-year study period were positive by for that taxon. Chronic and intermittent 
colonizing taxa are denoted with orange and grey circles, respectively. When present, canonical pathogens are denoted with different coloured 
diamonds: Pseudomonas aeruginosa, black; Staphylococcus aureus, light green; Stenotrophomonas maltophilia, gold; Burkholderia cepacia complex 
members, light blue; Haemophilus influenzae, purple; and Achromobacter xylosoxidans, blue. Chronic or intermittent colonization status for all 
bacterial taxa within the microbiota of each patient is highlighted in the supplemental microbiota data (see Availability of data and materials). All 
persistence-abundance relationships were significant (P < 0.0001 in all instances). Regression statistics are provided in Supplementary Table S1

(See figure on next page.)

http://www.nhm.uio.no/english/research/resources/past/
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Temporal turnover and species‑time relationships
Next, the contribution of the chronic and intermittent 
colonizing taxa on overall turnover within the wider lung 

microbiota was assessed. To measure turnover, we plot-
ted for each patient the species-time relationships (STRs) 
for the chronic and intermittent colonizing taxa as well 

Fig. 1  (See legend on previous page.)
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as the wider lung microbiota (Fig.  2). STRs describe 
how the observed species richness of a microbiota in a 
defined habitat increases with the length of time over 
which that microbiota is monitored [22, 25]. The STR is 

modelled with the power law equation S = cTw, where S 
is the number of observed species observed over time T, 
c is an empirically derived species- and patient-specific 
constant, and w is the slope of the fitted line or temporal 

Fig. 2  Species-time relationships for the lung microbiota within individual patients. Given for individual (A) paediatric and (B) adult patients 
are species-time relationships (STRs) for the microbiota (blue) and the chronic (orange) and intermittent (grey) colonizing taxa groups. Also 
given in each instance is the slope values (w) from the fitted STR models for the (M) microbiota and the (C) chronic and (I) intermittent colonizing 
taxa groups. All STRs were significant (P < 0.05 in all instances). Regression summary statistics are provided in Supplementary Table 2 and 3
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scaling exponent [25]. Increasing values of w can be taken 
as greater values of temporal turnover [22].

The mean temporal scaling exponent for the lung 
microbiota across all patients was w = 0.286 ± 0.069, rang-
ing from 0.151 to 0.437 (Fig. 2). Turnover was significantly 
higher for the intermittent taxa (mean w = 0.332 ± 0.120) 
than the chronic taxa (mean w = 0.161 ± 0.04)(H = 37.10, 
P < 0.0001). No significant differences in temporal turno-
ver were observed between paediatric and adult patients 
for the whole microbiota (H = 0.31, P = 0.576), the 
chronic- (H = 1.30, P = 0.254), or the intermittent-colo-
nizing taxa (H = 0.01, P = 0.950).

Ecological process underpinning temporal turnover
To assess the processes that underpin temporal turno-
ver, we used Vellend’s simplified framework of ecologi-
cal processes [40]. Within that framework, the ecological 
processes which could explain temporal turnover have 
been distilled into the influence and interplay between 
four rationalised processes; dispersal limitation, homog-
enizing dispersal, drift, and speciation [40, 42]. In brief, 

dispersal limitation results from biotic and abiotic pres-
sures causing minimal exchange of organisms between 
microbiotas. Homogenizing dispersal is the degree to 
which individuals of species move between and success-
fully establish in local microbiota. Drift results from sto-
chastic changes in population sizes, and speciation is the 
evolution of new species [22]. Here the Raup and Crick 
probability-based index of similarity (SRC) was used to 
test to what extent ecological processes (homogeniz-
ing dispersal, dispersal limitation, and drift) accounted 
for temporal turnover within chronic and intermittent 
colonizing taxa and the wider lung microbiota for each 
patient (Fig. 3).

Temporal turnover of chronic colonizing taxa was over-
whelmingly characterized by the deterministic process of 
homogenizing dispersal in both the paediatric and adult 
patients (mean SRC = 98.3 ± 3.6% and SRC = 96.2 ± 4.7%, 
respectively), and to a lesser degree by drift (1.7 ± 3.9% 
and 3.8 ± 4.7%, respectively) (Fig. 3). Conversely, turnover 
of intermittent colonizing taxa was characterized by the 
stochastic process of drift for both paediatric and adult 

Fig. 3  Ecological processes underpinning species turnover within patient lung microbiota. Given are percentage frequencies of Raup and Crick 
probability-based index pairwise values assigned to homogenizing dispersal (gold), drift (green), and dispersal limitation (blue) for the microbiota 
and the chronic and intermittent colonizing taxa groups within individual (A) paediatric and (B) adult patients
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patients (mean SRC = 65.1 ± 13.6% and SRC = 71.1 ± 12.1%, 
respectively), followed by homogenizing dispersal 
(SRC = 34.6 ± 13.7% and SRC = 28.1 ± 12.3%, respec-
tively), and slight influence from dispersal limitation 
(SRC = 0.2 ± 0.9% and SRC = 0.8 ± 1.6%) (Fig. 3).

Moreover, within the wider microbiota, the mean 
percentage frequency of homogenizing dispersal 
was significantly higher in paediatric patients (mean 
SRC = 82.8 ± 22.4% [paediatric] versus SRC = 53.7 ± 20.7% 
[adult]) (H = 10.93, P < 0.01) (Fig.  3). Whereas drift was 
significantly greater within the adult patients (mean 
SRC = 17.0 ± 22.3% [paediatric] versus SRC = 45.5 ± 20.9% 
[adult]) (H = 10.87, P < 0.01). Dispersal limitation had a 
negligible influence across all patients.

Relationships between ecological processes and lung 
function
As could be expected in CF, lung function was 
significantly lower in adult patients (mean 
%FEV1 = 75.9 ± 18.9%) when compared to paediatric 
patients (90.5 ± 14.5%) and was inversely correlated with 
the number of acute pulmonary exacerbations experi-
enced by patients over the course of the study (Fig. 4A, 
B) [1]. For the adult patients only, homogenizing disper-
sal and drift were found to significantly associate with 
lung function (Fig.  4C, D). Where a greater frequency 
of homogenizing dispersal was observed with worsen-
ing lung function. Conversely, the frequency of drift 
increased with better lung function.

Discussion
Here we set out to understand the ecological patterns 
and processes of temporal turnover within the lung infec-
tion microbiota of paediatric and adult people with CF. 
Further, we aimed to ascertain the contribution of the 
constituent chronic and intermittent infecting bacteria 
on temporal turnover within the wider lung infection 

microbiota. The lung microbiota in individual patients 
were partitioned into chronic and intermittent species 
groups based on persistence using the clinically relevant 
Leeds criteria and visualized using persistence-abun-
dance relationships (PARs) [4]. Strikingly, PARs across 
all paediatric and adult patients demonstrated that the 
commonness and rarity of bacterial species coloniz-
ing the airways of a patient is related to their temporal 
permanence (Fig. 1) [39]. In a clinical context, pathogen 
infection status in CF is based on culture-based presence-
absence data alone and does not incorporate measures of 
pathogen abundance [4]. Moreover, culture has recently 
been found to significantly underestimate lung pathogen 
detection and chronic infection status in CF [3, 43, 44]. 
Here we found that bacterial taxa chronically infecting a 
patient were both persistent and common, whereas inter-
mittent taxa were typically infrequent and rare. Or rather, 
the chronic and intermittent colonizing taxa respectively 
represent the resident and transient portions of the wider 
lung infection microbiota. Similar relationships have 
been previously observed in a spatial context, in the form 
of occupancy-abundance relationships for core and sat-
ellite species distributions in cross-sectional studies, e.g., 
[7, 11, 45]. However, this is the first time this has been 
applied to taxa distributions within patient microbiota 
through time.

PARs represent a novel means of visualising the tempo-
ral distributions of individual bacterial taxa that chroni-
cally and intermittently infect the airways of a patient. 
They highlight that patients can be chronically colonized 
with multiple bacterial species, including canonical CF 
pathogens. Moreover, our data demonstrates it is possi-
ble for a patient to be chronically and/or intermittently 
colonized with multiple canonical CF pathogens (Fig. 1). 
Our data clearly indicates that the true extent of chronic 
infection in a patient is missed when applying traditional 
culture-based ‘one microbe, one disease’ approaches of 

Fig. 4  Relationships between lung function and ecological processes. (A) Comparison of mean lung function (%FEV1) over course of the study 
between paediatric and adult study patients; Kruskal–Wallis test H = 4.39, P = 0.03. B Relationship between lung function and number of acute 
pulmonary exacerbations experienced by each patient over course of study; R2 = 0.39, F1,28 = 17.4, P < 0.0001. C, D Relationships between lung 
function and ecological processes in adult patients; C R2 = 0.30, F1,13 = 5.44, P = 0.03 and (D) R2 = 0.31, F1,13 = 5.68, P = 0.03. Relationships for paediatric 
patients are not shown as both were nonsignificant. %FEV1 vs homogenizing dispersal: R2 = 0.001, F1,13 = 0.02, P = 0.865. %FEV1 vs drift: R.2 = 0.0003, 
F1,13 = 0.0001, P = 0.952
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infection pathogenesis to CF [3, 7]. More broadly, this 
further highlights an inadequacy in traditional models of 
lung infection and a need to move to therapeutic target-
ing of the lung microbiota in general [14, 16, 46].

The lungs can be considered as ecological island habi-
tats that are open to immigration of bacteria from the 
upper airways, oral cavity, and wider environment, 
with those same bacteria also subject to elimination 
and extinction resulting from, for example, mucociliary 
clearance, host immune responses, and antimicrobial 
interventions [7, 13, 21]. To measure turnover, we plot-
ted STRs constructed with an approach that accounts 
for both immigration and extinction within a microbi-
ota through time (Fig. 2) [22]. All temporal turnover (w) 
values were within the ranges observed for STRs from a 
wide range of microbial, animal, and plant communities 
[47, 48]. We also found temporal turnover was signifi-
cantly higher in the intermittent taxa when compared to 
the chronic taxa. This indicated that the intermittent col-
onizing taxa primarily drives turnover of the wider lung 
microbiota, while turnover in the chronic taxa is con-
served in comparison. From an ecological perspective, 
this would seem logical as intermittent colonizing taxa 
account for the transient species and newly arrived immi-
grants, which have a higher probability of going locally 
extinct due to smaller population sizes [19, 39]. Con-
versely, the resident chronic colonizing taxa are invari-
ably common with larger established species populations 
(Figs.  1 and 2) which are less likely to become locally 
extinct in comparison and as such would be more diffi-
cult to eradicate [19, 39]. This therefore adds newfound 
support to the established approach of early eradication 
of recently acquired infection to prevent the transition to 
chronic infection.

From an island biogeography perspective, the lungs 
of children and adults could be considered as small ver-
sus large island systems, respectively. As such, theoreti-
cal predictions from island biogeography anticipate that 
smaller islands have lower species richness and greater 
turnover, whereas larger islands have higher richness 
and reduced turnover over time; for example, due to 
less available physical niche space and habitat hetero-
geneity in the former and more in the latter [19, 22, 24]. 
Although significantly lower microbiota richness was 
observed in paediatric patients, no significant differ-
ences in turnover were observed between paediatric and 
adult patients. We posit there may exist a lack of direct 
equivalence in lung habitat similarity between children 
and adult patients with CF, primarily resulting from the 
cumulative effects of CF pulmonary disease experienced 
with increasing age along with the spectrum of disease 
severity dictated by the CFTR mutations that individual 
patients have inherited [1]. Further, CF lung microbiota 

are highly personalized to the individual patient [7], and 
it would also appear that the degree of temporal variabil-
ity, as observed here within the STRs, is also highly per-
sonalized [27].

There is a recognised need to understand the ecologi-
cal processes and mechanisms that underpin spatial and 
temporal patterns of species distribution and turnover 
[17, 22, 42]. Temporal turnover of the chronic taxa was 
found to be predominantly driven by the deterministic 
process of homogenizing dispersal (Fig. 3). This could be 
expected given that chronic taxa are composed of species 
which are temporally persistent with large population 
sizes. Conversely, the turnover of intermittent colonizing 
taxa was characterized by the stochastic process of drift, 
followed by homogenizing dispersal (Fig.  3). The higher 
levels of drift within the intermittent taxa are likely due 
to the transient species having an increased probabil-
ity of experiencing chance events [19]. Where stochas-
tic events include death, reproduction, and migration, 
and all underpin the process of drift [22, 41]. Moreover, 
a substantial degree of homogenizing dispersal could be 
anticipated from those species transitioning from tran-
sient intermittent status to established chronic infection 
status over time [49]. We therefore posit that in the wider 
microbiota, the influence of homogenizing dispersal and 
drift is largely due to the distinct ecological properties 
of the constituent chronic and intermittent taxa. Inter-
estingly, the observation within the wider microbiota of 
higher homogenizing dispersal in paediatric patients and 
greater drift in adult patients is intriguing as the oppo-
site could be anticipated, i.e., a shift from the stochastic 
process of drift with increasing age to greater frequencies 
of the deterministic process of homogenizing dispersal, 
attributable to progressive airway and lung parenchymal 
damage resulting from a vicious cycle of unchecked air-
way infection and inflammation [7, 50].

With regards to speciation, this process is not directly 
accounted for using the SRC index, nonetheless, it can 
cause differences in diversity among sets of communi-
ties that do not exchange individuals through dispersal 
[22, 40]. Consequently, speciation should have negligible 
influence within a set of communities where individu-
als disperse among local communities within a spatial 
or temporal metacommunity [22, 51]. This was the case 
in the current study where dispersal limitation either 
had negligible or no influence. Furthermore, speciation 
should be negligible given the longitudinal timeframe of 
this study and the method used to define taxa, i.e., 16S 
rRNA gene amplicon sequencing [22].

The observed relationships between homogenizing dis-
persal and drift with lung function in only adult patients 
could well be a response to increasing selection pres-
sure with reducing lung function and associated worse 
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clinical outcomes [7] (Fig. 4). Similar has been observed 
for bacterial communities in model systems when a spe-
cific selective pressure was experimentally increased [25]. 
An explanation for why this was observed only in adult 
patients could be, again, attributable to more progressive 
airway and lung parenchymal damage experienced with 
increasing age. It could also be the case that the paediat-
ric patients within the study had, along with better lung 
function, less range and variation in %FEV1 compared to 
the adult patients. Therefore, studies with larger patient 
numbers and hence the potential for more variation 
could elucidate whether that was a factor or not.

There are potential limitations to this study that 
deserve consideration. Both sputum and cough swabs 
(taken when a patient was not sputum-productive) sam-
ples were taken across the study and this could have 
introduced bias to the underlying microbiota character-
istics. We found that the number of sequence reads per 
sample was significantly higher in sputum samples, but 
taxa richness and compositional similarities were not sig-
nificantly different between sample types (Supplementary 
Table S4). Further, the maximum sampling duration and 
number of samples per patient were not uniform within 
the study. However, we found that richness and STR scal-
ing exponents were not significantly affected by either 
potential factor (Supplementary Table  5 and 6). Finally, 
respiratory samples were collected before the widespread 
availability of effective CF transmembrane conductance 
regulator (CFTR) modulators. It is not known how the 
lung infection microbiota will be affected longitudinally 
in CFTR-modulated paediatric and adult patients. This 
will be a subject for our future work. Importantly, the 
current study establishes an invaluable pre-CFTR modu-
lator therapy baseline to compare to in such future work.

Conclusions
Lower airway infections across a range of chronic res-
piratory diseases are comprised of diverse and temporally 
dynamic lung microbiota. In diseases like CF where the 
primary cause of morbidity and early mortality is chronic 
lung infection, understanding the dynamics of micro-
biota turnover and the contribution of the chronic and 
intermittent infection elements is crucial. Set within an 
ecological framework and drawing upon concepts cen-
tral to the theory of island biogeography, we determined 
the patterns and processes underpinning temporal turn-
over within the dynamic lung microbiota of individual 
paediatric and adult CF patients. We establish that in all 
patients, chronically infecting taxa represent the common 
and conserved resident portion of the lung microbiota, 
underpinned principally by the deterministic process of 
homogenizing dispersal. Conversely, intermittent coloniz-
ing taxa drive turnover in the wider microbiota, as they 

account for the rarer and highly dynamic transient species 
along with newly arrived immigrants and are predomi-
nantly driven by the stochastic process of drift. Our find-
ings add newfound support to the established approach of 
early eradication of recently acquired infection to prevent 
the transition to chronic infection. Further, our findings 
clearly indicate the extent of chronic colonization in indi-
vidual patients is far greater than is appreciated through 
clinical microbiological culture alone. Combined, this 
study further illustrates the inadequacy of traditional ‘one 
microbe, one disease’ models of lung microbiology and 
infection pathogenesis. While culture has been useful 
for clinical microbiological surveillance, it has repeatedly 
been shown to be both limited and biased in CF, e.g., [3, 
43, 44]. Given the unquestionable polymicrobial nature 
of CF lung infection, it is sensible to recommend using 
molecular approaches that can define all microbial species 
within a patient’s lung infection microbiota. Moreover, 
when combined with a novel ecological framework for 
understanding the temporal dynamics of polymicrobial 
infection in CF has translational potential to guide and 
improve therapeutic targeting of lung microbiota in CF 
and across a range of chronic airway diseases.
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