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Abstract 

Background  Pre-term birth, the leading cause of neonatal mortality, has been associated with maternal periodontal 
disease and the presence of oral pathogens in the placenta. However, the mechanisms that underpin this link are 
not known. This investigation aimed to identify the origins of placental microbiota and to interrogate the association 
between parturition complications and immune recognition of placental microbial motifs.

Methods  Saliva, plaque, serum, and placenta were collected during 130 full-term (FT), pre-term (PT), or pre-term 
complicated by pre-eclampsia (PTPE) deliveries and subjected to whole-genome shotgun sequencing. Real-time 
quantitative PCR was used to measure toll-like receptors (TLR) 1–10 expression in placental samples. Source tracking 
was employed to trace the origins of the placental microbiota.

Results  We discovered 10,007 functionally annotated genes representing 420 taxa in the placenta that could 
not be attributed to contamination. Placental microbial composition was the biggest discriminator of pregnancy 
complications, outweighing hypertension, BMI, smoking, and maternal age. A machine-learning algorithm trained 
on this microbial dataset predicted PTPE and PT with error rates of 4.05% and 8.6% (taxonomy) and 6.21% and 7.38% 
(function). Logistic regression revealed 32% higher odds of parturition complication (95% CI 2.8%, 81%) for every 
IQR increase in the Shannon diversity index after adjusting for maternal smoking status, maternal age, and gravida. 
We also discovered distinct expression patterns of TLRs that detect RNA- and DNA-containing antigens in the three 
groups, with significant upregulation of TLR9, and concomitant downregulation of TLR7  in PTPE and PT groups, 
and dense correlation networks between microbial genes and these TLRs. 70–82% of placental microbiota were 
traced to serum and thence to the salivary and subgingival microbiomes. The oral and serum microbiomes of PTPE 
and PT groups displayed significant enrichment of genes encoding iron transport, exosome, adhesion, quorum sens-
ing, lipopolysaccharide, biofilm, and steroid degradation.

Conclusions  Within the limits of cross-sectional analysis, we find evidence to suggest that oral bacteria might trans-
locate to the placenta via serum and trigger immune signaling pathways capable of inducing placental vascular 
pathology. This might explain, in part, the higher incidence of obstetric syndromes in women with periodontal 
disease.
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Introduction
Pre-term birth, defined as any birth that occurs before 
37  weeks of gestation, is the leading cause of neona-
tal mortality [1]. Premature babies often have more 
health problems than those born at full-term; including 
breathing issues, necrotizing enterocolitis, and intellec-
tual and developmental disabilities [2]. Pre-term birth 
can be either spontaneous (unplanned) or medically 
indicated/induced (planned). While the exact cause 
of spontaneous preterm parturition is unknown, it is 
believed to be multifactorial, with infection and infec-
tion-driven inflammation as the leading factors [3]. 15% 
of pre-term births are also attributed to pre-eclampsia, 
a potentially life-threatening condition that is charac-
terized by the onset of systemic hypertension and pro-
teinuria during gestation. It has been postulated that 
the etiology of pre-eclampsia parallels that of preterm 
birth, with placental dysfunction resulting from infec-
tion-mediated inflammation frequently playing a major 
role [4, 5].

Intrauterine infection accounts for 25–40% of preterm 
births with or without pre-eclampsia [5]. In fact, bacte-
ria have been identified in the chorio-amnion of 80% of 
women who underwent cesarean section for preterm 
labor without a placental rupture, along with an associ-
ated inflammatory response in the amniotic fluid [6]. It 
is thought that the bacteria gain access to the amniotic 
fluid and chorion/placenta by ascending from the vagina, 
hematogenous dissemination from the placenta, acciden-
tal introduction during procedures, or retrograde spread 
from the fallopian tubes [6]. Indeed, bacterial vaginosis 
or imbalance in vaginal flora can result in a 1.5- to three-
fold greater risk for preterm birth [7, 8].

While local infection is the most proximate cause of 
inflammation, evidence from other diseases, e.g., rheu-
matoid arthritis and diabetes, implicates distant infection 
and systemic inflammation in the causal chain of events 
[9, 10]. Corroborating this, dysbiosis of the gut has been 
correlated with a heightened risk for adverse pregnancy 
outcomes [11, 12]. Indeed, maternal gut microbiomes 
associated with pre-term parturition demonstrate greater 
levels of oral bacteria than at-term controls [13].

On the other hand, the role of oral microbiota in the 
pathophysiology of pregnancy complications is not as 
well-defined. While a large body of evidence indicates 
that pre-term parturition and low birthweight are associ-
ated with maternal periodontal disease [14], a pathogen-
rich subgingival microbiome [15], and oral bacteria in 
the placenta, the evidence remains equivocal. Addition-
ally, a large-scale interventional study failed to demon-
strate improvement in pregnancy outcomes following 
non-surgical periodontal therapy to reduce subgingival 
pathogen burden and inflammation [16]. However, these 

investigations employed cultivation-based approaches or 
molecular assays that targeted a small suite of species.

Sequence-based approaches, especially those with the 
capability to explicate the genome content and function-
ality of the microbiome, have revolutionized our knowl-
edge of various human habitats by elucidating factors 
that facilitate the colonization and mobilization of these 
resident microbiota [17, 18]. Using these approaches, 
we are beginning to tease out the intricacies of the 
microbiome-gut-brain axis [19], the brain-endocrine-
immune axis [20], and the gut-integument-microbiome 
axis [21]. These explorations are challenging traditional 
dogmas about the sterility of certain environments [22] 
and the circumscribed influence of local microbial com-
munities [23].

Therefore, we aimed to combine whole-genome shot-
gun sequencing, real-time reverse transcriptase PCR, 
and source tracking with a case-control study design to 
(i) investigate whether the presence and levels of bacte-
ria and bacterial genes in the placenta can discriminate 
between pregnancy outcomes, (ii) measure the impact of 
this genome content on the placental immuno-inflam-
matory response, (iii) use this system-scale profiling to 
derive salivary, subgingival, serum, and placental micro-
bial signatures of pregnancy complications, and (iv) 
interrogate the subgingival and salivary microbiomes as 
potential sources of placental microbiota.

Results
This analysis recruited 130 pregnant women with peri-
odontal disease in the third trimester of pregnancy from 
over 9000 women who presented to the maternal and 
fetal medicine clinics. The groups were not significantly 
different in age (p = 0.1003, ANOVA), BMI (p = 0.1234, 
ANOVA), smoking status (p = 0.2212, chi-square), or 
clinical metrics of periodontal health (probing pocket 
depths and clinical attachment levels, p = 0.0750 and 
0.2543 respectively, ANOVA). Both pre-term (PT) 
and pre-term complicated by pre-eclampsia (PTPE) 
groups delivered infants whose birth weight was signifi-
cantly lower than the full-term (FT) group (p < 0.0001, 
ANOVA). Table  1 summarizes the clinical and demo-
graphic data.

Quantitative PCR (q-PCR) revealed that placental and 
serum samples demonstrated significantly lower abun-
dances of bacterial DNA when compared to subgingi-
val and salivary samples (Table 2). A total of 1.47 billion 
total sequences derived from saliva, plaque, serum, and 
placenta samples were filtered down to 408 million bacte-
rial sequences after removing human sequences. Serum 
samples had an average of 448,507 sequences (3,853 to 
2,759,296), placental samples had an average of 285,334 
(137,442 to 432,490), plaque samples had an average of 
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1,419,217 (569,856 to 3,487,658), and saliva samples had 
an average of 1,290,661 (283,084 to 5,188,072) after filter-
ing out human reads.

COGs that did not exceed a relative abundance of 
0.01% were excluded from analysis as an unsupervised 
feature reduction technique, yielding 10007 functionally 
annotated genes (based on KEGG classification) were 
identified in the placenta, which contributed to 46 met-
abolic pathways. 9562 genes were identified in all three 
groups, while 445 were unique to one of the three groups. 
These sequences also represented 420 taxa across all 
samples (Supplemental Table S1).

The placenta demonstrates a diverse microbial presence
We began our investigation by comparing placental sam-
ples to negative controls. In addition to strict sampling 
and preparation handling controls designed to eliminate 
environmental contamination (see “Methods” section), 
we prepared and sequenced “blank” samples contain-
ing only sequencing kit materials. Following these con-
trols, we discovered that the placenta contains a suite of 
microbial genes that cannot be attributed to contamina-
tion from the environment, isolation kit, or sequencing 
(p = 0.014, PERMANOVA, Aitchison distance between 
kitome and placenta). The negative controls (“kitome”) 
contained 39 taxa, 34 which had three or fewer repre-
sentative transcripts per sample (Supplemental Table S2). 

All these 39 taxa were identified in the placental samples 
and subtracted before further analysis.

In order to verify that the placental tissue contained 
whole microbial cells and not just microbial DNA, a por-
tion of each placenta was treated with propidium mono-
azide (PMA) and along with another un-treated portion, 
amplified for the 16S gene, and quantified (see “Methods” 
section). Both PMA-treated and untreated samples evi-
denced bacterial DNA, indicating that this community 
contained a mixture of bacterial cells and free nucleic 
acid material among other cellular constituents.

We then investigated whether placental microbiota 
could be artifact induced by mode of delivery (Fig. 1A4, 
B4). Neither alpha (p = 0.655, Kruskal Wallis of Shannon 
diversity, Chao, ACE and Morisita Horn indices) nor beta 
diversity (p = 0.973, PERMANOVA and p = 0.282, PER-
MDISP, Aitchison distance of taxa and genes respectively) 
of the microbiomes differed between vaginal and caesar-
ian modes of delivery. Comparison of the core microbial 
guild (species and genes in 80% of individuals in a group) 
identified 64 species and 67–80% of genes in common, 
while 12 species and 7% of functional genes could be 
attributed to vaginal delivery. Prevotella sp. oral taxon 
299, Leptotrichia sp. oral taxon 215, Neisseria elongata, 
Stomatobaculum longum, Eubacterium sulci, and Actino-
myces sp. oral taxon 181 were identified only in vaginally 
delivered placentas while Haemophilus haemolyticus, 

Table 1  Summary of clinical and demographic data

Cells that share the same symbol are significantly different, p < 0.05. Plaque index shows the percentage of sites with plaque and gingival index shows the percentage 
of sites with bleeding on probing in each group calculated from the percentages in each woman

Table 2  Mean DNA copy numbers in 2 µl for each sample type and group as estimated by qPCR

a Statistically different from saliva (p < 0.05, 2-sample t-test)
b Statistically different from subgingival plaque (p < 0.05, 2-sample t-test)
c Statistically different from full-term controls (p < 0.05, 2-sample t-test)

Serum Saliva Subgingival plaque Placenta Placenta (PMA treated)

Pre-term (PT) (mean ± standard deviation)) 39725 ± 9291ab 7885312 ± 120553 4999338 ± 65321 52825 ± 8812abc 23555 ± 4028c

Pre-term w/pre-eclampsia (PTPE) 
(mean ± standard deviation))

47671 ± 13092ab 7178412 ± 409932 4585285 ± 55382 43858 ± 7600abc 28703 ± 5192c

Full-term controls (FT) ((mean ± standard 
deviation))

37509 ± 14029 8072130 ± 187449 3712912 ± 20285 24993 ± 9492 13524 ± 3492
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Leptotrichia wadei, Prevotella nigrescens, Gemella san-
guinis, Fusobacterium spp., and Lautropia mirabilis were 
unique to placentas delivered via c-section.

Parturition complications and BMI are discriminants 
of bacterial assemblages in the placenta
To quantify bacterial presence in the placenta, we 
inducted identical volumes of placental tissue from all 
samples into the quantitative PCR as well as DNA pro-
cessing and sequencing pipeline. On average, the DNA 
copy numbers as well as the number of sequences dif-
fered significantly between groups (p < 0.05, ANOVA, 
Table  2), with the highest number of sequences from 
placental samples in the PTPE group and the lowest 
from the FT group. To gain insights into the sources of 
variability in the placental microbiome, we integrated 
clinical and demographic metadata with Aitchison dis-
tance of the variance-stabilized abundances of genes 
and taxa. Class separation was quantified and visualized 
using linear discriminant analysis to investigate drivers 
of microbial presence in the placenta. BMI (p = 0.005, 
PERMANOVA) and pregnancy outcome (p = 0.001, PER-
MANOVA) emerged as significant discriminants of the 

placental metagenome, while maternal smoking status, 
maternal age, and gravida did not (Fig. 1A, B), corrobo-
rating previous evidence in the literature [24, 25].

Importantly, logistic regression revealed 32% higher 
odds of parturition complication (95% CI 2.8%, 81%) for 
every IQR increase in the Shannon diversity index after 
adjusting for maternal smoking status, maternal age, and 
gravida.

Comparing average within-group deviation from the 
group centroid in beta diversity (beta dispersion [26]) 
revealed that FT placentas exhibited the lowest disper-
sion, followed by PT. The microbiome of PTPE dem-
onstrated the greatest within-group heterogeneity 
(p = 0.001, PERMDISP of Aitchison distances).

Several recognized periodontal and endodontic path-
ogens were more abundant in PT and PTPE placental 
samples. For example, Aggregatibacter actinomycetem-
comitans and Enterococcus durans were more prevalent 
in PT while Granulicatella elegans, Tannerella forsythia, 
Treponema denticola, Prevotella intermedia, and Campy-
lobacter gracilis were more abundant in PTPE. Both 
sPLS-DA and LEfSe identified similar sets of species 
being discriminant of the respective sample groups, 

Fig. 1  Discriminants of the placental microbial assemblages. Principle coordinate analysis (PCoA) of CLR-transformed taxa are shown in A and PCoA 
of CLR-transformed functional genes in B. In both panels, the data was mapped on smoking status (1), maternal age (2), body mass index (BMI) (3), 
delivery mode (4), number of pregnancies, i.e., gravida (5), delivery week (6) and parturition outcome (7). The significance of clustering was tested 
using PERMANOVA
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indicating that these differences were robust against 
analytical methods. The presence of Bacillus subtilis 
was indicative of full-term births, Lactobacillis crispa-
tus was indicative of pre-term and pre-eclampsia, and 
Corynebacterium matruchotti, Prevotella, and Tannerella 
oral species were indicative of pre-eclampsia (Fig. 2A).

Bacterial genes encoding carbohydrate and protein 
metabolism, gram-positive cell wall components, and 
membrane transport were identified in all placental sam-
ples. However, genes encoding quorum sensing, necrop-
tosis, ubiquitination, drug resistance, serine, proline 
biosynthesis, PTS transport system, peptidoglycan bio-
synthesis, and exosomes were enriched in both PT and 
PTPE groups (Fig. 2B).

A machine learning algorithm trained on the  dataset 
was able to predict PTPE with 82% sensitivity and 87% 
specificity based on functional profiles and with 89% sen-
sitivity and 88% specificity when using phylogenetic met-
rics. The classifier also predicted PT with 72% and 75% 
sensitivity and 81% and 69% specificity for functional and 
taxonomic profiles respectively.

Specific microbial recognition pathways are associated 
with parturition complications
Quantitative reverse-transcriptase PCR revealed signifi-
cant over-expression of TLR5 and TLR6 in the PT group 
when compared to the FT group. Moreover, TLR1, TLR2, 
TLR4, TLR8, and TLR9 were significantly upregulated in 
the PTPE group when compared to the FT group, while 
TLR5, 6, and 9 were overexpressed in the PT group in 

comparison to the FT group. TLR7 was significantly 
downregulated in both PT and PTPE groups when com-
pared to FT (Fig. 3A). These patterns of TLR expression 
point to the recognition of signals from microbial nucleic 
acids in PTPE and a preponderant response to pyogenic 
bacteria in the PT group.

We then used graph theory to verify that the TLR 
response was indeed attributable to bacterial triggers. 
TLRs were highly networked with bacterial genes, with 
the PTPE group demonstrating the greatest co-occur-
rence (6035 edges and 4017 nodes), the highest between-
ness centrality and modularity followed by the PT and FT 
groups (Fig. 3B–D). In the PTPE group, genes encoding 
gram-positive cell wall components and gram-negative 
membrane-associated proteins, membrane transport-
ers, peptidoglycan biosynthesis, and enzymes within the 
protein and amino acid metabolism pathway were net-
work anchors, while membrane transporters, peptidogly-
can biosynthesis, and iron metabolism anchored the PT 
network.

Together, the high receptor signals and dense metage-
nome-TLR network topology point to bacterial nucleic 
acids as well as cellular components of gram-negative, 
gram-positive, and pyogenic bacteria as inflammatory 
triggers in placental tissue.

Placental microbiota has a systemic origin
We used a Bayesian analysis method (SourceTracker) to 
investigate the extent to which the placental microbiota 

Fig. 2  Differences in microbial community structure and function between full-term delivery, pre-term delivery, and pre-term delivery complicated 
by pre-eclampsia. Relative abundances of species-level OTUs are shown in each of the 130 women in A. B is a waterfall plot of the functional genes 
that were most likely to explain differences between classes using LefSe. Each bar represents the effect size (LDA) for a particular gene in a certain 
group. The length of the bar represents a log10 transformed LDA score. The data supporting this figure is available in Supplementary Table S1
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could be traced to the serum versus other sources. One 
hundred percent of the placental samples contained 
microbiota that could be traced to the serum.

Even more importantly, in the FT group, 82% of the 
placental microbial community could be traced to the 
serum, while 73% and 81% of the community in the PT 
and PTPE groups demonstrated serum origins. We 
repeated the analysis using the core placental species 
(species present in ≥ 80% of individuals in each group) 
and arrived at the same result, suggesting that placental 

microbiota have a systemic/serum origin and do not 
merely represent transient bacterial cells or nucleic acid 
material.

Serum analysis provides evidence of hematogenous 
spread from the oral cavity
We then used the same analysis to track serum micro-
biota to oral sources. We discovered that, indeed, oral 
bacteria translocated into the systemic circulation in 
all subjects, and that > 70% of serum microbiota were 

Fig. 3  Bacterial signal recognition in the placenta. Levels of expression of 10 toll-like receptors (TLRs) in the placenta are shown in A. The y-axis 
represents log(2)-transformed concentrations. Bars with the same symbol are significantly different (p < 0.05, Dunn’s test). Co-occurrence networks 
between pattern recognition receptors and microbial genes in each group are shown in B–D. Full-term delivery is shown in B, pre-term delivery 
in C, and pre-term delivery complicated by pre-eclampsia in D. Each network graph contains nodes (circles) and edges (lines). Nodes represent TLRs 
and KEGG-annotated genes, and edges represent Spearman’s ρ. Edges are colored green for positive correlation and red for negative correlation. 
Only significant correlations (p < 0.05, t-test) with a coefficient of at least 0.80 are shown
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sourced from the salivary microbiome. Subgingival 
plaque contributed to 1.4% of serum bacteria in FT, 12% 
in PT, and 6.8% in PTPE groups (p = 0.001, ANOVA). 
Approximately 15% of the serum microbiota was attrib-
utable to a non-oral source in FT and PT groups but only 
3% in PTPE (p = 0.007, ANOVA).

The most frequently identified oral taxa in serum 
samples included Streptococcus spp., Corynebacterium 
matruchotii, Fusobacterium nucleatum, and Granuli-
catella elegans. Together, these contributed to 62% of the 
bacterial abundance in serum, however, their abundances 
differed significantly between groups, with PTPE dem-
onstrating significantly higher levels of F.nucleatum and 
C. matruchotii when compared to FT, while F.nucleatum 
and G.elegans were more abundant in the serum of PT 
group when compared to FT. Moreover, Atopobium 
minutum, a Haemophilus phage, and Lactobacillus phage 
were uniquely identified in the FT serum, while Lacto-
bacillus coleohominis and Aggregatibacter phage were 
unique to PTPE and Eubacterium limosum and Haemo-
philus aegyptius were identified only in the PT serum.

We then investigated if these differences in serum were 
reflected in salivary and subgingival microbiomes using 
linear discriminant analysis (LDA) to examine group 

separation. Significant clustering of the salivary and sub-
gingival microbiomes by parturition complication was 
evident (p = 0.001, PERMANOVA, Aitchison distance, 
(Fig. 4)), with higher abundances of Prevotella spp., and 
Fusobacteria spp. in the PTPE saliva, and Streptococcus 
spp. and Actinomyces spp. in the PT saliva when com-
pared to the other two groups. Similarly, Provetella spp., 
Treponema spp., and Porphyromonas spp. were over-
represented in the subgingival microbiome of the PTPE 
group when compared to FT and PT. In both saliva and 
plaque, genes encoding iron transport, exosomes, adhe-
sion, quorum sensing, lipopolysaccharide biosynthesis 
biofilm formation, chaperones and ubiquitin, and ster-
oid degradation were elevated in the PTPE group when 
compared to FT, while COGs corresponding to exosome, 
lysosome, quorum sensing, adhesion, membrane traf-
ficking, chaperones and ubiquitin and biofilm formation 
were enriched in the PT group over the FT group (Fig. 5).

Discussion
Our knowledge of the placental environment is continu-
ally evolving; beginning with the “sterile womb hypoth-
esis” [27], to the identification of a low biomass yet 
distinct “microbiome” [25, 28, 29] that resembled the oral 

Fig. 4  Differences in salivary and subgingival microbial community structure and function between full-term delivery, pre-term delivery, 
and pre-term delivery complicated by pre-eclampsia. Linear discriminant analysis (LDA) of CLR-transformed salivary functional genes is shown in A, 
subgingival genes in B, salivary microbial taxa in C, and subgingival microbial taxa in D. The microbial profiles of subjects clustered by delivery type 
creating three statistically significant clusters (p = 0.001, MANOVA/Wilks)
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microbiome, to studies which posit that the “placental 
microbiome” is a contaminant from laboratory reagents 
or an artifact created by forces of labor and delivery [30]. 
When we combined whole genome shotgun sequencing 
of a carefully curated set of placental, serum, salivary, 
and subgingival plaque samples with quantitative PCR of 
pattern recognition receptor signals and graph theoretic 

based on social media networking algorithms, we discov-
ered not only a  microbial presence in the placental tis-
sue that could be traced to the oral cavity via the systemic 
circulation but also a florid upregulation of receptors that 
recognize these microbial motifs.

Recognizing that bacterial presence in the placenta does 
not denote colonization [31] and that a cross-sectional 

Fig. 5  Waterfall plot of subgingival (A) and salivary (B) functional genes that were most likely to explain differences between classes using LefSe. 
Each bar represents the effect size (LDA) for a particular gene in a certain group. The length of the bar represents a log10 transformed LDA score
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investigation is not designed to distinguish between tran-
sient members (allochthonous constituents) or stable 
colonizers (autochthonous community) [17, 32], we used 
multiple complementary strategies and stringent controls 
to interrogate the placental microbiome. We (a) sampled 
only those women who underwent scheduled c-section 
prior to the onset of labor, and excluded  unscheduled 
c-sections (starting as vaginal delivery but ending up 
with c-section)  to control for labor-induced placen-
tal blood flow as an explanation of bacterial presence in 
the placenta [30, 33], (b) minimized contamination dur-
ing sample collection, processing, and DNA isolation, (c) 
examined the core metagenome to minimize the effect of 
allochthonous species and genes on the analysis (borrow-
ing from the strategy initially used by the Human Micro-
biome Project), (d) investigated mode of delivery as a 
potential source of contamination, and (e) controlled for 
PCR and sequencing artifacts by using positive and nega-
tive controls.

Another concern arising from DNA-based approaches 
is the inability to differentiate between intact bacterial 
cells versus free-floating nucleic acid (relic DNA) [18]. 
We used a two-pronged approach to navigate this ques-
tion. As a first step, we tested the hypothesis that bacte-
rial presence in the placenta was due to cellular debris 
by treating the samples with PMA to remove relic DNA. 
Both PMA-treated and untreated samples produced 
strong bacterial signals following DNA amplification, 
indicating that the placental metagenome was derived 
from a mixture of intact cells and bacterial nucleic acid. 
As a second step, we used network analysis to investigate 
TLR-microbial interactions. Bacterial DNA is sensed by 
a subset of TLRs that reside in endosomal compartments 
(intracellular TLR), specifically, TLR3 (dsRNA), TLRs 
7 and 8 (ssRNA), and TLR 9 (hypomethylated cytosine-
phosphate-guanine (CpG) DNA) [34, 35]. On the other 
hand, TLRs 1, 2, 4–6, and 10 localize to the cell surface 
and recognize pathogen-associated microbial patterns 
(PAMPs) such as lipids, lipoproteins, flagellin, pepti-
doglycan, lipoarabinomannan etc. [36]. The amplitude 
of signals we recorded from all 10 TLRs strongly bolsters 
the evidence that a combination of bacterial cells as well 
as bacterial genetic material is associated with pregnancy 
complications.

The most striking finding was that the placenta is 
not free of microbial presence even in states of health, 
corroborating previous studies using cultivation-inde-
pendent approaches [25, 37]. However, in the present 
investigation, not only were significantly more bac-
terial sequences identified in the placenta of PTPE 
and PE groups than FT, but specific microbial assem-
blages were also associated with each pregnancy out-
come. Furthermore, different combinations of pattern 

recognition receptors were upregulated in each group, 
pointing to different types of bacterial triggers. Cor-
roborating this, significantly higher numbers, and 
different permutations, of TLR-microbial gene interac-
tions were evident in the PTPE and PT groups in com-
parison to the FT group. Together, the data point to a 
state of homeostasis between a low biomass microbial 
community and the immuno-inflammatory machin-
ery in the healthy placenta. The data also indicate that 
this immuno-tolerant system can be overwhelmed by 
higher bacterial loads or pro-inflammatory bacterial 
triggers or both. In addition, the evidence points to 
the fact that this disruption is associated with adverse 
pregnancy outcomes. In this context, we must make a 
reference to our finding that B. subtitis was identified 
as a discriminator of full-term births. While it is pos-
sible that this is an artifact of the database, evidence 
is emerging from recent studies that this organism is 
a normal commensal of the human gastrointestinal 
tract [38]. Moreover, prebiotic supplementation with 
this organism in late gestation has been shown to exert 
beneficial reproductive outcomes in animals [39, 40]. 
While we do not have data about prebiotic usage in our 
subjects, these lines of evidence might suggest that B. 
subitis is not necessarily an artifact, but that probiotics 
for human reproductive health are a promising line of 
investigation.

We also find evidence of a strong pro-inflammatory 
pathology underlying pre-term delivery, either with 
or without pre-eclampsia. Immune tolerance towards 
paternal and fetal proteins that leak into the mater-
nal circulation is critical to successful gestation [41]. 
It is now recognized that inflammation revokes this 
immune privilege, which creates a downstream cas-
cade of events resulting in pregnancy complications 
[42]. Of particular interest to us is TLR9, which dem-
onstrated ~ 100-fold higher gene expression in PTPE 
and ~ eightfold higher expression in the PT group in 
comparison to the FT group. TLR9 has evolved to sense 
CpG-rich hypomethylated DNA, which is largely found 
in bacterial, mitochondrial, and fetal DNA [43]. Emer-
gent evidence identifies TLR9 as a key player in blood 
pressure regulation [44] and TLR9-mediated inflamma-
tion is implicated in the causal chain of pre-eclampsia 
[45]. In support of this, a concomitant downregulation 
of TLR7 (capable of downregulating expression of TLR9 
[46]) was observed in both the PT and PTPE groups. 
Both TLR7 and 9 are responsible for recognizing and 
responding to microbial nucleic acid in the endosome, 
however, TLR7 plays an additional role in inhibiting 
CpG-ODN induced IFNα production from plasmacy-
toid dendritic cells and B cells following TLR7/TLR9 
co-stimulation [47]. This inverse link between the two 
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receptors, along with the remarkably amplified signal, 
suggests an important role for TLR9 in driving preg-
nancy outcomes, warranting further investigation.

While local inflammation could be the underlying 
cause of this hyperinflammatory signature, two key 
findings argue against it. The first is that all subjects 
were negative for bacterial vaginosis or other local 
infections. The second is that 70–82% of the placen-
tal microbiota in each woman was a complete subset 
of her serum bacteria. Bacterial translocation to the 
serum is well established, as is the link between serum 
bacterial load and hypertension [48]. Plasma LPS levels 
are a known predictor of future sustained hypertension, 
which cannot be explained by other cardiometabolic 
risk factors [49, 50]. In support of this argument, we 
observed the highest serum bacterial load as well as the 
largest numbers of serum-derived bacteria and bacte-
rial genes in the placentae of the PTPE group, which 
consists of hypertensive women. It is possible that 
either specific species in the serum or high abundances 
of circulating bacteria predispose these women to 
hypertension, and during pregnancy, the altered vascu-
lar dynamics create a scenario favorable to seeding the 
placenta with these organisms. Alternatively, the patho-
logical hemodynamics created by hypertension could 
be the underlying factor in increased systemic bactere-
mia as well as the homing of these organisms to the pla-
centa. It is beyond the scope of this study to investigate 
this hypothesis, however, exploring the inter-relation-
ship between hypertension and bacterial dissemination 
into circulation will be important to explicate the link 
between bacteremia and several non-infectious sys-
temic diseases.

Our data also suggest that the oral microbiome is a 
predominant source of bacteria that translocate via the 
serum to the placenta, corroborating multiple human 
and animal studies [25, 51, 52]. The systemic circulation 
is seeded by oral bacteria during daily activities such as 
chewing, brushing, and flossing [53, 54], therefore it 
is not surprising to find oral bacteria in highly vascular 
niches. Pregnancy induces changes in the oral mucosal 
barrier and vasculature [55], further facilitating the egress 
of bacteria from this ecosystem into the circulation. We 
have previously demonstrated that the pregnancy-associ-
ated oral microbiome is enriched for species belonging to 
the genera Pseudomonas, Acidovorax, Enterobacter, Ente-
rococcus, Diaphorobacterium, and Methylobacterium 
[56]. Corroborating and expanding on previous evidence, 
we now find evidence to suggest that specific salivary and 
subgingival microbial profiles are associated with dissem-
ination to the serum. Of note are genes encoding biofilm 
formation, chaperones and ubiquitin, iron transport, and 
adhesion. It is important to note that all of our subjects 

demonstrated gingivitis or early periodontitis, suggesting 
that integrating oral healthcare into pre- and ante-natal 
care is critical.

In summary, within the limits of a cross-sectional 
analysis, we find evidence to support the theory that 
infection-mediated inflammation underlies the etiology 
of pregnancy complications. While oral bacteria trans-
locate to the placenta during all pregnancies, they exert 
a powerful, detrimental effect on the placental system 
in certain subjects, altering the immunotolerance of 
the mother, and triggering a signaling pathway capable 
of inducing placental vascular pathology. Two possible 
mechanisms appear to underlie this phenomenon: sys-
temic hypertension and oral microbial signatures rich in 
genes encoding iron transport, adhesion, biofilm forma-
tion, and lipopolysaccharide. To the best of our knowl-
edge, this investigation provides the first evidence that 
implicates TLR recognition of oral microbial signatures 
in obstetric syndromes and begins to explore potential 
mechanisms that underlie this pathology.

Methods
Study approval
Approval for this study was obtained from the Office of 
Responsible Research Practices at Health Science Univer-
sity Tepecik Education and Research Hospital (IRB pro-
tocol number 40465587-28) and the study was conducted 
between January and December 2018 in accordance with 
approved guidelines. Written informed consent was 
received from all subjects prior to participation.

Subject selection and recruitment
One hundred thirty women in their third trimester of 
pregnancy who fulfilled the following inclusion and 
exclusion criteria were recruited following written 
informed consent, and comprehensive clinical peri-
odontal examination. The inclusion criteria were age 
between 18–34 years, clinical periodontal diagnosis of 
gingivitis or Stage 1 periodontitis (defined by probing 
depths ≤ 5  mm, bleeding index (BOP) > 30% and clini-
cal attachment loss < 2  mm), systemic health (defined 
as ASA (American Society of Anesthesiologists) I or 
II) and pregnancy with a single fetus. Plaque index 
and gingival bleeding index were evaluated dichoto-
mously as present or absent and percentages of sites 
with plaque and bleeding were calculated for each 
woman, and then mean percentages were calculated 
for each group. Exclusion criteria included body mass 
index (BMI) of ≥ 30, history of pre-eclampsia in previ-
ous pregnancy, history of cervical cerclage and amni-
ocentesis in current pregnancy, oligohydramnios, 
polyhydramnios, stillbirth history, fetus complicated 
with chromosomal abnormalities, HIV or vaginal 
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infection, preterm premature rupture of membranes 
(PPROM), malignancy, GDM, any acute or chronic 
infectious or inflammatory disease, sepsis, hemoglobu-
lin ≤ 10, thrombocytopenia (platelet count < 50 × 109/L), 
thrombocytosis (platelet count > 50 × 1011/L), uterus 
abnormalities, hypertension, coagulation disorders, 
deep vein thrombosis or use drugs that affect platelet 
function such as acetylsalicylic acid. Patients with sig-
nificant obstetric or medical complications, unreliable 
maternal and fetal status information, clinical chorio-
amnionitis, placental abruption, significant antepartum 
hemorrhage, and intrauterine growth restriction (10% 
of estimated standard birth weight below for gesta-
tional age), controlled or uncontrolled diabetes, those 
using immunosuppressant medications, bisphospho-
nates, or steroids, antibiotic therapy or oral prophy-
lactic procedures within the preceding 3  months, and 
fewer than 20 teeth in the dentition were also excluded. 
Sample size was estimated based on the probability 
of least an 80% chance of detecting clades of bacterial 
genes that differed in abundance by more than 2% [57]. 
Forty-five women delivered full-term (FT), 49 women 
without pre-eclampsia delivered pre-term (PT), and 36 
women who delivered preterm also had pre-eclampsia 
(PTPE).

Sample collection
Saliva, subgingival plaque, serum, and placental sam-
ples were collected at the time of delivery. Subgingival 
plaque samples were collected and pooled from 15 sites 
on 6 maxillary and mandibular anterior teeth using 
sterile endodontic paper-points (Caulk-Dentsply, Mil-
ford, DE, USA). Prior to subgingival plaque sampling, 
supragingival plaque was removed gently using sterile 
Gracey curettes while paying attention not to induce 
gingival bleeding. Saliva samples were collected by hav-
ing all the participants expectorate into collection tubes 
for 3 min. Serum was collected by venipuncture of the 
right ante-cubital fossa. Placental dissection was done 
immediately after delivery. The covering decidua basa-
lis on the maternal side of the placenta was removed, 
and 3 × 3 cm of placental tissue pieces were taken from 
different sites along the placenta and placed in sterile 
calcium/magnesium-free phosphate-buffered saline 
(PBS) (Gibco, UK). Care was taken to avoid contamina-
tion with the chorioamnion. The tissue was repeatedly 
washed with PBS to remove  contaminated blood, and 
then a 1-mm3 sample was minced from each placenta 
and snap-frozen in separate tubes. Care was taken not 
to form any blood clots or fibrous tissue. The placenta 
and plaque samples were stored at − 20  °C until sam-
ple processing, and the serum and saliva samples were 

divided into 1 ml aliquots and freeze-dried in a vacuum 
freezer before storage at − 20 °C.

DNA isolation, biomass estimation, and metagenomic 
sequencing
DNA was isolated using the MagMAX Total Nucleic Acid 
Isolation Kit (Applied Biosystems) as previously described 
[58]. Briefly, the subgingival plaque samples were prepared 
by adding 100  μL phosphate-buffered saline (PBS) to the 
paperpoints and vortexing for 30  min at room tempera-
ture, incubating at 43  ºC hot water bath for 10 min, then 
incubating at 4  ºC overnight. The placental samples were 
prepared by adding 100  μL of PBS to 1  g of sample and 
vortexing for 30  min at room temperature, incubating at 
43  ºC hot water bath for 10 min, then incubating at 4  ºC 
overnight. The serum and saliva samples were prepared by 
adding 100 μL of PBS to the lyophilized sample, vortexing 
for 30  min, and incubating overnight at 4  ºC. One hun-
dred microliters of solution for each of the samples was 
then used for DNA isolation following the manufacturer’s 
protocol. The samples were isolated in a fume hood that 
had been cleaned with 70% ethanol and sterilized by UV 
light for 30 min before isolation. Libraries were generated 
using the NEBNext® UltraTM II FS DNA Library Prepara-
tion Kit for Illumina (New England Biolabs, Inc.). 100  ng 
of the sample was used as input. DNA was fragmented to 
100–250 bp. Adapters were then ligated to the fragments. 
Twelve unique adapters were used so that 12 samples could 
be pooled together during sequencing. Size selection was 
not performed, however, the adapter-ligated samples were 
cleaned before proceeding with PCR enrichment. Six cycles 
of PCR were completed before cleaning and pooling the 
samples. Pooled libraries were sequenced on the Illumina 
HiSeq4000 platform using 150 bp paired-end chemistry.

Two microliters of DNA were used for quantitative 
real-time PCR. The samples were analyzed for total bac-
teria using a previously described methodology [59]. 
Briefly, 400 pg of DNA was used as a template in a 25-μl 
reaction containing 0.5  U of Platinum Taq polymerase, 
buffer containing 50 mM KCl, 10 mM Tris–HCl (pH 8.8) 
5 mM MgCl2, a 0.2-mM concentration of each deoxynu-
cleoside triphosphate, 10 ng of yeast tRNA, 0.8 μM con-
centrations of forward and reverse primers CCT​ACG​
GGDGGC​WGC​A and GGA​CTA​CHVGGGTMTCT​
AAT​C, 100  nM probe (6FAM-CAG​CAG​CCG​CGC​
GGTA), and 60  nM Rox reference dye. Amplification 
and detection were carried out in a 384-well format on 
a QuantStudio 12  K Flex instrument (Applied BioSys-
tems). Bacterial DNA concentrations were computed by 
comparison to standard curves generated from known 
amounts of 4 bacterial species.



Page 12 of 15Pax et al. Microbiome           (2024) 12:64 

Quality control
DNA isolation kits were newly opened immediately prior 
to sample prep and used exclusively for the present inves-
tigation. For each batch of sample preparation and DNA 
isolation, a negative control was processed alongside the 
samples by carrying out all steps in the DNA isolation 
protocol with the exception that sterile paper points were 
used instead of the paper points containing samples. All 
samples were sequenced in two runs, and samples were 
randomly assigned to each run to minimize batch effects. 
Both positive (defined culture) and negative (no tem-
plate) controls were used. Replicate sequencing was car-
ried out for two samples in each batch, and the replicates 
showed good reliability across the 5 batches, with a coef-
ficient of variability ranging from 0.26 to 1.3% for alpha 
diversity of taxonomy, and 3.4 to 6.3% for predominant 
functions (carbohydrate metabolism, respiration, and vir-
ulence, disease, and defense).

To investigate if the placenta contained intact bacteria 
or nucleic acid material, a portion of the placental tissue 
was treated with propidium mono-azide (PMA) [60], and 
DNA isolation was carried out using the same protocol 
described above. Both PMA-treated and untreated sam-
ples were amplified using 40 cycles of PCR with universal 
primers targeted to the 16S rRNA gene (805R (5′-GAC 
TAC HVG GGT ATC TAA TCC-3′) and 341F (5′-CCT 
ACG GGN GGC WGC AG-3). The PCR was replicated, 
and amplicons were visualized using gel electrophoresis 
with ethidium bromide staining. Additionally, both PMA 
and non-PMA-treated samples were subject to quantita-
tive PCR as described above.

Metagenomic sequence analysis
Sequences were quality filtered, and screened for human 
DNA using Sickle and the short-read alignment tool, 
Bowtie [61]. The phylogenetic profiles were assigned 
using Kraken [62] trained on the Human Oral Microbi-
ome Database (HOMD) [63]. Prodigal was used for cod-
ing sequence (CDS) prediction, and genes were aligned 
against the NCBI nonredundant database of proteins 
using DIAMOND [64]. The biological pathways and pro-
tein functional categories were determined by assign-
ment to the Kyoto Encyclopedia of Genes and Genomes 
orthology (KEGG) [65], and the Virulence Factor Data-
base (VFDB) [66] using MEGAN [67].

Quantification of placental toll‑like receptor (TLR) gene 
expression
Total RNA was harvested from 2 gms of placental sam-
ples and reverse transcriptase quantitative PCR (qPCR) 
was used to measure gene expression. cDNA was gener-
ated from 500 ng of RNA using the SuperScript™ VILO™ 
Master Mix (ThermoFisher Scientific (Waltham, MA, 

USA)) according to the manufacturer’s protocol. Briefly, 
a reaction mixture containing 4  μL of 5X SuperScript 
Enzyme Mix, 500  ng of total RNA, and nuclease-free 
water was incubated using the following cycling param-
eters: 25 ˚C for 10 min, 42 ˚C for 60 min and 85 ˚C for 
5  min. The cDNA mixture was then diluted 1:10 and 
qPCR was performed using the following conditions: 
95 ˚C for 20 s, 95 ˚C for 1 s, and 60˚ for 20 s for 40 cycles. 
Ct values were generated for 10 TLRs and GAPDH 
(housekeeping gene). No-template controls were 
included in all reactions. Primers and probes for all target 
genes were purchased from ThermoFisher Scientific.

Statistical analysis
Principal Coordinate Analysis (PCoA) was used for 
dimensionality reduction and visualization of micro-
bial data. The significance of group-wise clustering in 
the Principal Coordinate Analysis (PCoA) was interro-
gated with a permutational multivariate analysis of vari-
ance (PERMANOVA) using the R package vegan [68]. 
Sparse partial least squares discriminant analysis (sPLS-
DA) using the mixOmics R package [69] and linear dis-
criminant analysis effect size (LEfSe [70]) were used to 
determine the drivers of the differences. LefSe uses a 
non-parametric factorial Kruskal–Wallis sum-rank test 
to identify significantly differential abundances between 
groups, the unpaired Wilcoxon rank-sum test to estimate 
biological, and LEfSe uses LDA to estimate the effect size 
of each differentially abundant gene/taxa. PhyloToAST 
[71] and QIIME2 [72] were used for data visualization 
and statistical analyses.

Bayesian analysis (SourceTracker [73]) was used to 
trace the sources of the serum and placental micro-
biomes. Datasets were filtered to remove genes/taxa 
that were not present in at least 1% of samples. Default 
parameters (rarefaction depth 1000, burn-in 100, restart 
10, alpha (0.001), and beta (0.01) dirichlet hyperparam-
eter) were used for analysis.

The ability of genes and species to discriminate 
between groups was examined using a machine-learn-
ing algorithm (RandomForest package in R). Two-thirds 
of the dataset was used to train the classifier, which was 
tested on the remaining data (1000 trees/tenfold cross-
validation). For all iterations of the test a ‘confusion table’ 
was created for each of the exposures based on the num-
ber of correctly classified and misclassified samples, and 
this data was used to compute sensitivity and specificity. 
The robustness of the classifier was evaluated using ROC 
curves (ROCR package in R).

Co-occurrence networks were created between abun-
dances of functionally annotated bacterial genes and TLR 
transcripts for each group. To decrease the occurrence 
of spurious associations due to rare taxa, co-occurrence 
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networks were computed only on the core taxa [74]. JMP 
(SAS Institute Inc., Cary, NC, USA) was used to calculate 
pairwise correlations; significant co-occurrences (defined 
as Spearman’s rho > 0.75 and p < 0.05 (t test of rho)) were 
imported into Networkx [75] to create the graph struc-
tures, and Gephi[76] to visualize and label the graphs. 
Betweenness centrality was calculated using Python pack-
age ‘Networkx’. Robustness of clustering was examined 
using an algorithm incorporating betweenness centrality, 
differential abundances, and frequency of occurrence in a 
group as described before [56].

Differences in the expression of TLR genes were tested 
using ANOVA with correction for multiple compari-
sons (Tukey HSD). Normalized gene expression data was 
inducted into the analysis.

Cells that share the same symbol are significantly differ-
ent, p < 0.05. Plaque index shows the percentage of sites 
with plaque and gingival index shows the percentage of 
sites with bleeding on probing in each group calculated 
from the percentages in each woman.
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