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Gut microbiota modulation enhances 
the immune capacity of lizards under climate 
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Abstract 

Background  Host-microbial interactions are expected to affect species’ adaptability to climate change but have 
rarely been explored in ectothermic animals. Some studies have shown that short-term warming reduced gut micro-
bial diversity that could hamper host functional performance.

Results  However, our longitudinal experiments in semi-natural conditions demonstrated that warming decreased 
gut microbiota diversity at 2 months, but increased diversity at 13 and 27 months in a desert lizard (Eremias mul-
tiocellata). Simultaneously, long-term warming significantly increased the antibacterial activity of serum, immune 
responses (higher expression of intestinal immune-related genes), and the concentration of short-chain fatty acids 
(thereby intestinal barrier and immunity) in the lizard. Fecal microbiota transplant experiments further revealed 
that increased diversity of gut microbiota significantly enhanced antibacterial activity and the immune response of liz-
ards. More specifically, the enhanced immunity is likely due to the higher relative abundance of Bacteroides in warm-
ing lizards, given that the bacteria of Bacteroides fragilis regulated IFN-β expression to increase the immune response 
of lizards under a warming climate.

Conclusions  Our study suggests that gut microbiota can help ectotherms cope with climate warming by enhancing 
host immune response, and highlights the importance of long-term studies on host-microbial interactions and their 
biological impacts.
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Graphical Abstract

Background
Climate change poses a serious threat to global biodiver-
sity and viable ecosystem functioning. Threats include 
a decline in survival rates of many species, increased 
prevalence of pathogens, and increased risk of species 
extinctions [1–4]. Traditional studies have focused on 
how climate change affects the behavior, physiology, and 
evolution of organisms [5–9]. To date, little attention has 
been paid to the effects of climate change on the role of 
host-associated microbial communities (i.e., microbi-
omes), which colonize almost all organisms as symbionts 
[10]. However, a growing body of evidence shows that 
microbial symbionts may regulate the way hosts respond 
to their external environment [11–13]. Therefore, the 
way in which microbial symbiosis modulates host behav-
ior and physiology could be crucial in determining the 
adaptability of hosts to climate change.

Recent research on warming experiments demonstrated 
that climate warming reduced gut microbial diversity in 
some ectotherms [14, 15]. Additionally, warming-induced 

loss of microbiota can reduce thermal tolerance in ecto-
thermic hosts [15, 16]. Nonetheless, the conclusion that 
climate warming reduces gut microbiota diversity is 
drawn from the results of short-term warming experi-
ments. How gut microbiota respond to long-term cli-
mate warming is critical for understanding the biological 
impact of climate change, but remains unknown. In addi-
tion, mechanisms underlying the thermal effects on the 
interaction between gut microbiomes and their hosts are 
also currently unknown. One possible mechanism is that 
temperature changes may alter the composition of gut 
microbiota, enabling hosts to adapt to climate warming 
by altering the immune system in ectothermic vertebrates 
[17, 18]. For example, the gut microbiome can modu-
late the host immune system by disrupting the balance 
between pro-inflammatory and regulatory responses, or 
through regulation of cytokine signaling [19–21]. How-
ever, it is still unclear whether changes in immune capac-
ity are a direct result of temperature, microbial alteration, 
or both [22]. Experiments in natural conditions are needed 
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to disentangle the interaction of temperature and microbi-
ome and the role they play in immune function. Given that 
high temperatures can facilitate the colonization of path-
ogenic bacteria in soil, and foraging and nesting by ecto-
therms may in turn increase the risk of pathogen infection 
[23, 24], we hypothesize that alterations in the gut micro-
biota of ectotherms in a warming climate may enhance 
their immunity that resists pathogen infection.

To answer these questions, we carried out field longi-
tudinal experiments to determine the effect of climate 
warming on gut microbiota and immune capacity in a 
viviparous desert lizard (Eremias multiocellata) facing 
relatively high rates of climate warming [25]. We also 
conducted fecal microbiota transplant (FMT) experi-
ments to verify gut microbiota modulation of lizard 
immunity. Finally, we conducted colonization experi-
ments to identify the key bacteria that modulate the 
immune capacity of hosts.

Methods
Warming experiments
We built open-top chambers to conduct warming experi-
ments in the desert steppe region of Inner Mongolia, 
China (40.2N, 111.1E; elevation 1036  m). Each experi-
mental chamber was 5 m in circumference and built with 
a 1-m-high steel plate extending 0.5 m above and 0.5 m 
below the ground. The warming climate chambers were 
covered with nets (to keep out predators) and transpar-
ent plastic film with a 0.4-m-diameter hole at the center, 
while the present climate chambers were only covered 
with nets (Fig. S1). We recorded hourly ground-surface 
temperatures in the chambers using thermochron iBut-
tons (DS1921, MAXIM Integrated Products Ltd.) and 
relative humidity using humidity loggers (HOBO U12-
012, Onset) placed in the artificial climate chamber [26]. 
We conducted longitudinal experiments by setting up 
a series of experimental populations over several years 
from 2018 to 2021. From May to September (the active 
months of lizard) of each year, the mean temperature of 
29.3 ± 0.5  °C in the warming climate chambers closely 
mimicked the temperature of future climate (2081–2100) 
under SSP5-8.5 in our region, which is predicted by the 
BCC-CSM2-MR model in CMIP6 [27, 28]. Present cli-
mate chambers had a mean temperature of 26.4 ± 0.4  °C 
which closely mimicked current temperatures. The 
average daily maximum temperature was 38.2  °C in the 
warming climate chambers, and 35.3  °C in the present 
climate chambers. The average daily minimum tempera-
ture for both warming and present climate chambers was 
9.4  °C. Relative humidity did not differ between warm-
ing climate chambers (58.5 ± 1.3%) and present climate 
chambers (56.0 ± 1.5). Further details of the open-top 
chamber system we used are described in Hao et al. [26].

Our study animal, the multiocellated racerunner 
(Eremias multiocellata), is a small viviparous lizard 
[44–77 mm snout-vent length (SVL)] and is abundant in 
our study area [26]. We randomly captured lizards from 
natural populations every year and placed two females 
and two males in the different single  chamber. A clump 
of Artemisia ordosica (the dominant vegetation in the 
desert steppe habitat) was planted in the middle of each 
chamber to provide thermal heterogeneity for behavio-
ral thermoregulation by lizards [28]. We provided food 
(larvae of Tenebrio molitor and crickets) to lizards every 
3 days. We monitored the survival of lizards in the cham-
bers through mark-recapture in May and September 
every year. Survival analyses were performed using the 
libraries “survminer” and “survival” in R, and differences 
in survival rates were compared using generalized linear 
mixed models (GLMM) with binomial distributions.

Analysis of environmental and lizard gut microbiota
Sample collection
In 2020 and 2021, we collected fecal samples from 10 
wild-caught lizards, and 62 lizards that had been main-
tained in the chambers for 2  months (present N = 11; 
warming N = 11), 13  months (present N = 11; warming: 
N = 9), and 27  months (present N = 9; warming N = 11) 
to investigate the effects of climate warming on the gut 
microbiota of lizards. We collected fecal samples from 
two adult lizards in each chamber. To avoid potential con-
tamination, we palpated the abdomen of lizards to dis-
charge feces directly into a 2-mL sterile Eppendorf tube. 
Additionally, we collected soil samples from 20 chambers 
that had been exposed to 27 months of the warming cli-
mate treatment. To do this, we collected 3 cm of topsoil 
from five areas within each chamber. The soil was placed 
into 50-mL sterile tubes and mixed thoroughly. Following 
collection, samples were transported to the laboratory 
in a block of solid carbon dioxide and stored in a – 80 °C 
refrigerator for later analysis. See Table S1 in the Supple-
mentary Materials for detailed sample information.

DNA extraction and 16S rRNA gene profiling
Microbial DNA from fecal samples was extracted using 
TIANamp Stool DNA Kit (DP328, TIANGEN, China), 
and DNA from soil samples was extracted using DNeasy 
PowerSoil Pro Kit (QIAGEN, Germany) following the 
manufacturer’s protocol. The concentration of extracted 
DNA was measured by the A260/A280 ratio on a Nan-
odrop 2000 (Thermo Fisher Scientific, Carlsbad, CA, 
USA).

The V3–V4 hypervariable regions of the 16S rRNA 
gene were PCR-amplified with primers (338F: ACT​
CCT​ACG​GGA​GGC​AGC​A, 806R: GGA​CTA​CHVGGG​
TWT​CTAAT). PCR amplifications (total 25  μL) were 
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performed using 5  μL of buffer, 1  μL of each primer, 
0.25 μL of Fast pfu DNA Polymerase, 2 μL of dNTPs, and 
1  μL of DNA template. PCR amplification cycles con-
sisted of denaturation at 98 °C for 5 min, then 25 cycles 
of denaturation at 98  °C for 30 s, annealing at 53  °C for 
30 s, and elongation at 72  °C for 45 s, with a final elon-
gation of 5  min at 72  °C. PCR amplicons were purified 
using Vazyme VAHTSTM DNA Clean Beads (Vazyme, 
Nanjing, China) and quantified using the Quant-iT 
PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, 
USA). Purified amplicons were sequenced on the Illu-
mina NovaSeq platform (Shanghai Personal Biotechnol-
ogy Co., Ltd.) with pair-end reads of 250 bp.

Data analysis of 16S rRNA gene sequencing
Raw reads were imported into the QIIME2 (v2020.11.1) 
[29] for adapter removal, filtering, denoising, and calcu-
lation of diversity metrics. Cutadapt (v3.1) [30] was used 
to trim the adapters that had at least 90% base overlap 
between reads. The maximum error rate was 0.2, and 
we discarded reads in which no adapter was found. The 
amplicon sequence variants (ASVs) were generated by 
DADA2 (v1.18.0) [31]. We truncated the lengths of for-
ward and reverse reads to 220 and 225, respectively, and 
filtered out pairs of reads with a forward read error rate 
higher than 2 and a reverse read error rate higher than 
4. Since the default parameters removed too many chi-
meras, we adjusted the parameter ‘--p-min-fold-parent-
over-abundance’ to 8 (Table  S2). Our final sample size 
of 58,164 ASVs (we also got 25,308 environment sam-
ples and 11,500 FMT samples) was used for downstream 
analysis. We used MAFFT (v7.475) [32] and FastTree 
(v2.1.10) [33] to align sequences and construct the phylo-
genetic tree. The taxonomy of these features was assigned 
to the SILVA database (silva-138-99-nb-classifier.qza) 
[34] using QIIME2’s ‘qiime feature-classifier classify-
sklearn’ command with default parameters. We obtained 
relative abundance values at different taxonomic levels 
using the script ‘summarize_taxa.py’ of QIIME2.

Time series analysis
To identify the response of bacterial communities in a 
warming climate, based on changes in relative abundance 
over time, we used the gut microbiota from 10 sympatric 
wild-caught lizards as the reference point of the experi-
ment. A relative abundance score [35] was calculated 
using the following equation:

where A is the Pearson correlation between the curves 
for a given abundance over time between the present 

Score = (1− |A|)× B

and warming climate treatments, and B is the integrated 
numerical difference between the same curves. Thus, 
for a certain bacterial community, A tending towards 0 
means its relative abundance does not correlate over time 
between the two climates. Since B describes the absolute 
area between the two climates over time, a high value of 
B suggests a large difference in relative abundance for a 
given microbial community between the two climate 
treatments. For example, a microbial taxonomy can be 
detected when it changes dramatically over time as a 
result of a warming climate, but not as a result of the pre-
sent climate.

Analysis of alpha and beta diversity metrics
To assess differences in the diversity of a lizard’s gut 
microbiota community between present climate and 
warming climate groups, we performed alpha and beta 
diversity analysis. To normalize library size, the number 
of reads per sample was rarefied to 33,601 (we also rar-
efied to 43,520 environment samples and 30,446 FMT 
samples). QIIME2’s ‘qiime diversity core-metrics-phylo-
genetic’ command with default parameters was used to 
calculate alpha diversity indices and beta diversity met-
rics. For alpha diversity, we selected Observed features, 
Chao 1 index [36], Shannon’s index [37], and Faith’s PD 
[38] to account for species richness and evenness, and 
significance was evaluated by a two-sided Wilcoxon 
rank sum test (Table  S3). For beta diversity, we used 
unweighted UniFrac distance to highlight the differ-
ences in species composition between individual lizard 
gut microbiota communities. Permutation multivariate 
analysis of variance (PERMANOVA) [39] was performed 
to reveal the effect of a warming climate on lizard gut 
microbiota. We used the ‘adonis2’ function in R pack-
age vegan (v2.6-2) [40] for PERMANOVA analysis with 
default parameters (unweighted UniFrac distance and 
1000 permutations). We performed non-metric multi-
dimensional scaling (NMDS) based on unweighted Uni-
Frac distance using the ‘metaMDS’ function in R package 
vegan.

LDA effect size analysis
To identify biomarkers among different climate treat-
ments, we performed linear discriminant analysis (LDA) 
on effect size (LEfSe) [41] based on relative abundance 
values at the genus level. Prior to this, we filtered out 
those ASVs with unclear species classification. Signifi-
cance was evaluated by a two-sided Wilcoxon rank sum 
test. We set 1,000,000 as the normalization value. Bio-
markers were identified with a P value < 0.05 and the LDA 
score cutoff was > 3.2 for fecal samples (Table S4).
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Metagenomic function prediction
To predict the function of each ASV, we used PICRUSt2’s 
(v2.3.0_b) pipeline ‘pathway_pipeline.py’ with default 
parameters [42] to obtain the abundance data for each 
KEGG pathway. First, the sequence of each ASV was 
aligned with the SILVA database to obtain the closest 
16S rRNA  gene for each ASV. The copy number of the 
respective 16S rRNA gene for each ASV was then nor-
malized to eliminate misestimation of gene abundance 
due to multiple copies of the gene. Finally, the function 
of metagenomics was predicted according to the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
[43]. To detect differences in the abundance of the KEGG 
pathway, we performed differential abundance analy-

sis based on a zero-inflated log-normal model using the 
‘fitFeatureModel’ function in the R package metagen-
omeSeq (v1.36.0) [44] with 1000 bootstraps (Table S5).

Immunity measurement
We captured eight adult lizards that had been kept for 
27 months from each treatment of the present and warm-
ing climates. Subsequently, these lizards were transported 
to our laboratory in Beijing for further experiments. After 
the lizards had been euthanized, serum and intestinal tis-
sue were collected using sterilized tubes and scissors.

Histological analysis of intestinal mucosa
To investigate the health of the lizard’s intestinal mucosa, 
we carried out histological analysis on the samples. Ileum 
samples were fixed with 4% paraformaldehyde and par-
affin embedded upon collection. Modified tissue blocks 
were cut into 4-μm slice thickness and stained with 
hematoxylin-eosin (HE). The target area of analysis for 
the tissue blocks was a ×40 image, filled with the whole 
field of vision. After imaging was completed, Image-Pro 
Plus 6.0 analysis software was used to measure the height 
(mm) of five intact intestinal villi and the mucosal thick-
ness of five sites in each section. Average values were 
then calculated.

Serum antibacterial activity
To verify the immune capacity of lizards, we meas-
ured serum antibacterial activity. Whole blood samples 
were collected from a lizard’s eye socket with a capillary 
glass tube and stored at 4  °C until the serum separated. 
Serum was then isolated via refrigerated centrifugation 
at 3000 × g for 20 min, then frozen at −20 °C. Escherichia 
coli (BNCC133264, BeNa Culture Collection) and Aero-
monas hydrophila (BNCC336453) were grown for 24  h 

at 37 °C with constant agitation (140 r/min) to reach log-
phase growth, respectively. The bacterial solution was 
then diluted with sterile phosphate-buffered saline (PBS) 
until the absorbance at 680 nm was 0.20 and then diluted 
100-fold to make the working solution. Five microliters of 
serum were mixed with 20  μL of bacterial solution and 
25 μL of sterile PBS culture at 37 °C for 30 min; 20 μL of 
bacterial solution with 30 μL of sterile PBS was used as 
the control solution. Next, the serum-bacterial solution 
was plated on the surface of a nutrient broth agar plate 
and incubated at 37  °C overnight. To achieve maximum 
robustness of the results, two technical replicates were 
set for each sample. Finally, the antibacterial activity of 
serum was calculated using the following equation:

RNA extraction and qRT‑PCR gene expression analysis
To demonstrate the activation of intestinal immunity in 
lizards, we performed an expression analysis of intes-
tinal immunity-associated genes. Intestinal tissue was 
obtained immediately after the lizards were euthanatized, 
and the tissues were placed in tubes and frozen promptly 
using liquid nitrogen. RNA of intestinal tissues was iso-
lated using TRIzol Reagent (CWBIO). The concentration 
of extracted RNA was then measured using a Nanodrop 
2000 (Thermo Fisher Scientific, Carlsbad, CA, USA). 
cDNA was prepared using HiFiScript cDNA Synthesis 
Kit (CW2569M, CWBIO) genes, and UltraSYBR Mix-
ture (CW2601H, CWBIO) was used for quantitative real-
time PCR by LightCycler 480 Instrument II (ROCHE, 
Germany). Each sample was run in triplicate, and the 
common wall lizard (Podarcis muralis) EF1A1 gene was 
used as the internal control. Sequences of the primers are 
shown in Table S6.

Measurements of short‑chain fatty acids (SCFAs)
SCFAs were extracted from fecal samples using 900  µL 
methanol and 100  µL 2-ethylbutyric acid (1000  μg/mL) 
as the internal standard. Six SCFAs (Acetate, Propionate, 
Butyrate, Isobutyrate, Valerate, Isovalerate) were meas-
ured via an Agilent 8890B-5977B GC/MSD (gas chro-
matography/mass selective detector) (Agilent, USA). An 
HP FFAP capillary column (30  m × 0.25  mm × 0.25  μm, 
Agilent J&W Scientific, Folsom, CA, USA) was used for 
the carrier gas with 1  μL of high-purity helium (purity 
not less than 99.999%). The gas chromatography column 
temperature was programmed to hold at 80 °C and rise to 
120 °C at a rate of 40 °C/min, then rise to 200 °C at 10 °C/
min, finally holding at 230 °C for 6 min. Masshunter soft-
ware (v10.0.707.0, Agilent) was used for the identification 
and quantification of the compounds (Table S7).

BKA = (1−themean number of clones for each sample/themean number of clones for the control)×100%
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Fecal microbiota transplantation (FMT)
We carried out fecal microbiota transplant experiments 
to verify the gut microbiome modulation of immune 
capacity in lizards exposed to different climate treat-
ments. We collected N = 3 and N = 5 adult male lizards 
(kept for 27 months) from different chambers of the pre-
sent and warming climate treatments as donors, respec-
tively. We dissolved fecal pellets from the two groups of 
donor lizards then made a supernatant with sterile PBS 
(add 1 mL of sterile PBS per 100 μg), and used the super-
natant for FMT after it had been centrifuged at 500 × g 
for 1 min. We used 16 adult males captured from the wild 
as recipients (sample details and sequencing information 
in  Tables  S8 and S9) to avoid the confounding effect of 
female reproductive status. The recipient lizards were 
treated with 60  μL of composite antibiotics (contain-
ing 100  μg/mL neomycin, 50  μg/mL streptomycin, and 
100 U/mL penicillin; YUANYE Bio-Technology Co., Ltd., 
China) every day during  7  days via intragastric gavage 
before FMT [45]. The recipient lizards were then allo-
cated equally into two groups, and received 60 μL of the 
microbiome supernatant from the present or warming 
climate groups via intragastric gavage for 7  days, using 
syringes equipped with blunt end gavage needles, respec-
tively. In this experiment, the recipients were housed in 
6 sterilized plastic containers in a temperature-controlled 
room at 25.5 ± 0.1 °C. The water and sand provided in the 
containers were also sterilized. Fecal and tissue samples 
were collected after FMT for 1 week.

Colonization with Bacteroides fragilis
Due to the 16S rRNA gene sequencing, distinguish-
ing bacteria at the species level was not feasible. Thus, 
we used Bacteroides fragilis as a representative to verify 
the immune effect of the genus Bacteroides on a lizard’s 
gut microbiota [21]. B. fragilis BNCC336948 strain was 
cultured anaerobically at 37  °C on Columbia blood agar 
plates. The bacterial cells were washed with sterile PBS 
on the plate, then the bacterial solution was diluted to 
108–109 colony-forming units (CFU). We depleted the 
microbiota of an additional N = 16 male lizards using the 
same methods as for FMT. Sixty microliters of B. fragilis 
bacteria were administered to N = 8 lizards by oral gavage 

for 7 days. The remaining eight lizards were treated with 
60  μL sterile PBS. All lizards were housed in sterilized 
plastic containers in a temperature-controlled room for 
2 weeks.

Results
Effects of climate warming on environmental microbiota
To detect any changes in the experimental chamber envi-
ronment of lizards after 27 months, we performed micro-
bial analysis of soil from both the warming and present 
climate chamber treatments. The alpha diversity of envi-
ronmental microbiota was lower in the warming climate 
chambers than in the present climate chambers after 
27 months (P = 2.38 × 10−5, Fig. S2a), and the composition 
of the bacterial communities within each group showed a 
significant separation (P = 0.001, Fig.  S2b). At the genus 
level, there was a significant increase in the relative abun-
dance of Pseudarthrobacter (P = 1.19 × 10−5), Massilia 
(P = 2.38 × 10−5), and Cellulomonas (P = 0.001) from the 
warming climate chambers (Fig. S2c). These results sug-
gest that climate warming will reduce the microbial 
diversity of a lizard’s environment, but will increase the 
abundance of some bacteria.

Dynamics of lizard gut microbiota under a warming 
climate
To explore the dynamic changes of lizard gut microbial 
communities in a warming climate, we performed diver-
sity and composition analyses of bacteria in lizard feces. 
The alpha diversity of lizard gut microbiota decreased 
in the 2-month warming climate group compared to 
the present climate group (P = 3.36 × 10−2, Fig.  1a, Sup-
plementary results), but increased in the 13-month 
(P = 2.26 × 10−2, Fig.  1b, Supplementary results) and 
27-month warming climate groups (P = 2.26 × 10−4, 
Fig.  1c, Supplementary results). The beta diversity of 
lizard gut microbiota differed significantly between pre-
sent and warming climate groups at 2 months (P = 0.001, 
Fig.  1d) and 27  months (P = 0.002, Fig.  1f ), but not at 
13 months (P = 0.152, Fig. 1e). Therefore, the diversity of 
gut microbiota decreased with short-term climate warm-
ing but increased over long-term climate warming.

Fig. 1  Effects of climate warming on gut microbiota of lizards. P represents present climate. W represents warming climate. The significance 
of warming effects was evaluated by a two-sided Wilcoxon rank sum test. The significance of non-metric multidimensional scaling (NMDS) analysis 
was evaluated by PERMANOVA with 1000 permutations. a–c The alpha diversity index (observed features) of lizard gut microbiota at 2 months 
(a), 13 months (b), and 27 months (c). d–f NMDS plot based on unweighted UniFrac distances of lizard gut microbiota at 2 months (d), 13 months 
(e), and 27 months (f). g The functional profiles of gut microbiota identified by PICRUSt2 using KEGG database in the 27-month group of lizards. h 
Biomarkers of discriminative bacteria identified by LEfSe analysis (LDA score ≥ 3.2) in the 27-month group of lizards

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Identifying crucial bacteria in response to climate warming
To determine the physiological changes in lizards and 
identify the crucial bacteria present in response to cli-
mate warming, we performed functional prediction, 
LEfSe analysis, and time series analysis of gut bacte-
ria. The results of differential KEGG metabolic pathway 
analysis (Fig. 1g and Fig. S3a, c) found that two metabolic 
pathways were significantly up-regulated in the warming 
group at 2  months, but down-regulated at 27  months. 
These two pathways are chloroalkane and chloroalk-
ene degradation pathways and linoleic acid metabolism. 
By contrast, another nine metabolic pathways were sig-
nificantly down-regulated in the warming group at 
2 months, but upregulated at 27 months. These pathways 
include mRNA surveillance, N − Glycan biosynthesis, 
retinol metabolism, protein digestion, and absorption, 
biosynthesis of siderophore group nonribosomal pep-
tides, lipopolysaccharide biosynthesis, amoebiasis, citrate 
cycle and peroxisome (Table S5). Most of these pathways 
are involved in immune-related biological functions [46–
48], suggesting that gut microbiota activated the immune 
capacity of lizards in response to long-term warming.

LEfSe analyses indicated that the phyla Bacteroidota 
(P = 0.006), class Bacteroidia (P = 0.006), order Bacteroi-
dales (P = 0.007), family Bacteroidaceae (P = 0.01), and 
genus Bacteroides (P = 0.01) increased significantly in 
the warming climate group at 27  months (Fig.  1h and 
Table S4). In addition, the time series analysis also con-
firmed that Bacteroides strongly responded to warming 
(Fig.  S3e, f ), and the relative abundance of Bacteroides 
was significantly higher in the warming climate group 
than the present climate group at 27  months (P = 0.01, 
Fig. S5e and f ). These analyses indicate that Bacteroides 
play an important role in the immune response of lizards 
to climate warming.

Climate warming alters the immune capacity of lizards
To elucidate the effects of climate warming on the 
immune capacity of lizards, we compared between-group 
differences in the morphology of intestinal mucosa, 
serum antibacterial activity, and the expression of immu-
nity-related genes. Climate warming did not damage the 
intestinal barrier (Fig. 2a), with no effect on the height of 
the intestinal villus (P = 0.574, Fig.  2b) or the thickness 
of intestinal mucosa (P = 0.645, Fig.  2c). Serum antibac-
terial activity was significantly higher in the warming 
climate group than the present climate group when 
exposed to Escherichia coli (P = 0.031, Fig.  2d) or Aero-
monas hydrophila (P = 0.036, Fig.  2e). Moreover, com-
pared with those from the present climate group, lizards 
from the warming climate group showed significantly 
higher expression levels of immunity-related genes, 
including MYD88 (P = 0.015, Fig.  2f ), TNFα (P = 0.015, 

Fig.  2g), IL-1β (P = 0.010, Fig.  2h), TRIF (P = 0.021, 
Fig. 2i) and IFNβ (P = 0.005, Fig. 2j). We then measured 
the concentration of six SCFAs produced by gut micro-
biota that affect the immune function of lizards. The total 
concentration of SCFAs was significantly higher in the 
warming climate group than the present climate group 
(P = 0.010, Table  S7), as shown in acetate (P = 0.020), 
butyrate (P = 0.020), propionate (P = 0.020), isobutyrate 
(P = 0.015), and valerate (P = 0.001), but not in isovalerate 
(P = 0.104) (Fig. 2k, l). In total, these results show that the 
warming climate treatment enhanced the immune capa-
bility of lizards.

Gut microbiota increased the immune capacity of lizards
To verify the role of gut microbiota in mediating the 
immune response of lizards, we transplanted fecal 
microbiota from present or warming climate lizards 
(27  months) to bacteria-restricted lizards, respectively 
(Fig.  3a). The alpha diversity of gut microbiota was sig-
nificantly higher in lizards that received fecal microbiota 
from warming-climate donors than from present-climate 
donors (P = 0.007, Fig. 3b and Table S3). For beta diver-
sity, the gut microbiota communities showed a signifi-
cantly different composition between the two groups 
(P = 0.001, Fig. 3c). LEfSe methods showed that the rela-
tive abundance of the genus Bacteroides (P = 0.027) and 
family Bacteroidaceae (P = 0.027) were significantly 
higher in the FMT warming group compared with the 
FMT present group (Fig. 3d and Table S4). These results 
correspond with the predominant differential bacteria 
observed in the donor lizards.

Lizards received fecal microbiota from warming-climate 
donors showed no significant difference in the length of 
intestinal villus (P = 0.645, Fig.  3f ) or in the thickness of 
intestinal mucosa (P = 0.563, Fig.  3g) compared to those 
from present-climate donors. Importantly, however, liz-
ards that received fecal microbiota from warming-climate 
donors had significantly higher antibacterial activity 
(P = 0.027, Fig. 3h; P = 0.021, Fig. 3i) and higher expression 
of immune-associated genes including MYD88 (P = 0.038, 
Fig. 3j), TNFα (P = 0.021, Fig. 3k), IL-1β (P = 0.021, Fig. 3l), 
TRIF (P = 0.015, Fig.  3m), and IFNβ (P = 0.010, Fig.  3n), 
as well as higher concentrations of SCFAs (P = 0.004, 
Fig.  3o, p and Table  S7), including acetate (P = 0.005), 
butyrate (P = 0.015), propionate (P = 0.003), isobutyrate 
(P = 0.0006), isovalerate (P = 0.001), and valerate (P = 0.05). 
These data verify that immune response activation in liz-
ards is mediated by gut microbiota.

Bacteroides alters the expression of IFN‑β
To establish the specific contribution of the genus Bacte-
roides to the immune response of lizards, we analyzed the 
colonization of B. fragilis in the gut of lizards to quantify 
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IFN-β expression levels using qRT-PCR among four seg-
ments of the intestine. The IFN-β expression in lizards 
colonized by B. fragilis was significantly increased in the 

cecum (P = 0.001, Fig. 3q), but not in other segments of 
the intestine. These data verify that Bacteroides increases 
IFN-β expression in the cecum of the lizard gut.

Fig. 2  Long-term warming enhances immune capacity and concentrations of SCFAs in lizards. P represents present climate. W represents warming 
climate. The significance of warming effects was evaluated by a two-sided Wilcoxon rank sum test. NS non-significant; * P < 0.05; **P < 0.01; 
***P < 0.001. a Tissue sections of the ileal mucosa in the 27-month group of lizards. b, c The ileal villus height and mucosal thickness in the 27-month 
group of lizards. d, e Antibacterial activity of serum against Escherichia coli and Aeromonas hydrophila in the 27-month group of lizards. f–j The 
expression of MYD88, TNFα, IL-1β, TRIF, and IFNβ in the intestines of the 27-month group of lizards. k, l The concentrations of six short-chain fatty 
acids (SCFAs) in lizard fecal
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Discussion
The interaction between host and gut microbiota is 
expected to shape the physiological performance and 
fitness of ectotherms under global climate change. Here 
we found that the diversity of gut microbes in a desert 
lizard decreased over short-term (2  months) exposure 
to climate warming, but increased over relatively long-
term (13 and 27  months) exposure to climate warming. 
In turn, this enhanced the immune capacity of host liz-
ards by activating the expression of intestinal immune-
related genes. Our study thus verifies the hypothesis that 
alterations in the gut microbiota of lizards in a warming 
climate may enhance their immunity.

Short‑ and long‑term responses of lizard gut microbiota 
to climate warming
Our experiments indicate that climate warming affects 
the diversity, structure, and stability of the gut microbiota 
in reptiles. Exposure to a warming climate decreased the 
alpha diversity of lizard gut microbiota over 2  months, 
which is consistent with the findings for Zootoca vivipara 
[14], but inconsistent with the findings for Anolis aple-
tophallu [49]. The pattern of reduced diversity of host 
microbiota under experimental warming was also found 
among mammals, amphibians, and birds [50, 51]. This 
likely reflects the negative effects of extreme tempera-
tures on physiological functions of the host [52], and 
explains how species with low microbiome diversity may 
become more vulnerable to global warming [53–56]. 
Indeed, our study is the first to demonstrate that expo-
sure to a warming climate increases the diversity of lizard 
gut microbiota over relatively long-term time periods (13 
and 27 months). Our findings suggest that we should pay 
more attention to the effects of long-term climate warm-
ing on gut microbiota.

Long-term climate warming has concurrent impacts 
on both the environmental microbiome and the lizards’ 
gut microbiota. The diversity of environmental bacteria 
decreases under long-term warming climates, which in 
nature could also be induced by extreme high tempera-
tures or drought [57, 58]. Meanwhile, the diversity of 

the lizard gut microbiota showed a decrease in the short 
term and an increase in the long term, suggesting an 
adaptation of the lizard’s gut microbiota to warming con-
ditions. This adaptation could help lizards enhance their 
resilience to environmental changes, such as an increase 
in pathogenic bacteria (Massilia and Cellulomonas) in 
the environment [59–64]. This implies that a warming 
climate harbors a high risk of increased environmental 
pathogenic bacteria, and high gut microbial diversity may 
help hosts maintain physiological performance and sur-
vive harsh climatic conditions [51]. Our results suggest 
that increased diversity of gut microbiota is probably an 
adaptive response to climate change over relatively long-
term periods.

Gut microbes modulate lizard immunity in response 
to climate warming
Heat stress may hamper gut health, including impair-
ment of intestinal development, gut barrier dysfunction, 
and improper immune responses [65, 66]. Symbiotic 
bacteria may help alleviate these negative effects of heat 
stress because they can act as a biochemical barrier to 
maintain the functional integrity of the intestinal bar-
rier [67, 68]. Our study demonstrates that gut microbes 
may modulate the immune capacity of lizards exposed 
to both short- and long-term climate warming. Over 
short-term warming (2  months), the relative abundance 
of gut microbes in the genera Desulfovibrio and Rose-
buria increased (Fig.  S5a and b), and likely played an 
important role in intestinal inflammatory processes [69, 
70]. Additionally, the functional genes of the gut micro-
biota participated in the immunity regulation of lizards, 
including cyanoamino acid metabolism and staphylococ-
cus aureus infection pathways  that are associated with 
the immune system and bacterial infections [71], were 
significantly up-regulated in warming climate lizards 
(Fig.  S3a). Interestingly, some pathways involved in the 
immune response were down-regulated over short-term 
warming but up-regulated over long-term warming. For 
example, the intestinal mucosa maintains the integrity 
of the intestinal barrier and health by absorbing retinoic 

Fig. 3  Fecal microbiota transplantation (FMT) alters immune capacity and concentrations of SCFAs in lizards. FP represents FMT 
of the present climate. FW represents FMT of the warming climate. C indicates “Control”, CB indicates “Colonized by B. fragilis”. The significance 
of between-treatment comparisons was evaluated by a two-sided Wilcoxon rank sum test. The significance of NMDS analysis was evaluated 
by PERMANOVA with 1000 permutations. NS non-significant; *P < 0.05; **P < 0.01; ***P < 0.001. a Design of fecal microbiota transplantation (FMT) 
experiments. b The alpha diversity index (observed features) of FMT lizards. c NMDS plot based on unweighted UniFrac distances of FMT lizards. d 
Biomarkers of discriminative bacteria identified by LEfSe analysis (LDA score ≥ 3.2) in the FMT lizards. e Tissue sections of the ileal mucosa in the FMT 
lizards. f, g The ileal villus height and mucosal thickness of FMT lizards. h, i Antibacterial activity of serum against Escherichia coli and Aeromonas 
hydrophila in FMT lizards. j–n The expression of MYD88, TNFα, IL-1β, TRIF, and IFNβ in the intestine of FMT lizards. o, p The concentrations of six 
short-chain fatty acids (SCFAs) in lizard fecal. q The expression of IFN-β in jejunum, ileum, cecum, and colon after the colonization of B. fragilis 
in lizard gut

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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acid produced by retinol metabolism [72]. As the pri-
mary defense mechanism, the intestinal mucosal barrier 
is constituted by mucins that require linkage via the gly-
cosylation of proteoglycans, with N-glycans as a crucial 
component of this process [73]. In addition, lipopolysac-
charide (LPS) in the intestine induces the innate immune 
response by binding to the Toll-like receptor 4 (TLR4)-
MD-2 complex through Lipopolysaccharide Binding Pro-
tein (LBP), thereby protecting the intestinal tract from 
infections [48]. The upregulation of retinol metabolism, 
N−Glycan biosynthesis, and lipopolysaccharide biosyn-
thesis under long-term warming can sustain a healthy 
intestinal barrier and induce innate immunity in lizards. 
These functions suggest that gut microbe modulation in 
response to long-term warming may play an important 
role in the immune response of lizards.

Our results on immunity-related gene expression 
demonstrate that gut microbiota may enhance the 
immune capacity of lizards through the following path-
ways: first, bacterial components such as LPS produced 
by gut bacteria activate the MYD88 and TRIF pathways 
through pathogen-associated molecular patterns [74]. 
Then, MYD88 initiates a signaling cascade that increases 
the expression of TNFα and IL-1β, which activates the 
lizard’s immune response [75–77]. Meanwhile, TRIF 
mediates the increased expression of IFN-β, which pre-
vents excessive immune responses and enhances resist-
ance to viral infections [21, 74]. We suggest that the gut 
microbiota modulation of lizard immunity increases the 
immune capacity of lizards as shown by the increased 
antibacterial activity of the serum. Additionally, due 
to the protection of the host intestinal barrier by gut 
microbes, the intestinal tissue of lizards was not dam-
aged by long-term warming (Fig.  2a–c). Moreover, we 
found no decline in the survival of lizards after exposure 
to 27  months of warming compared to the survival of 
lizards in the present climate group (Fig. S6). However, 
the effects of climate warming have led to decreased 
survival of some species [78]. Thus, the higher survival 
rate of lizards from the climate warming treatment in 
our study could be attributable to enhanced immunity 
mediated by gut microbiota modulation, because ani-
mals with a stronger immune response are more likely 
to survive [79–81].

Identifying the role of specific bacteria in mediating 
physiological functions is critical for predicting general 
host health under climate warming [51, 82]. We found 
that the abundance of gut microbes from phyla Bacteroi-
dota to genus Bacteroides increased significantly in liz-
ards under warming-climate conditions. Previous studies 
have verified that certain species of Bacteroides are often 

beneficial to intestinal immunity and homeostasis, and 
therefore host health [83–85]. More specifically, Bacte-
roides glycolipids can activate colonic dendritic cells to 
secrete IFN-β through TLR4-TRIF, thereby enhancing 
host resistance to viral infection [21]. Because the genus 
Bacteroides contains many bacterial species, we were 
unable to grow every strain for testing on wild lizards. 
However, our experimental colonization of B. fragilis in 
the gut of lizards demonstrated that Bacteroides signifi-
cantly enhanced the expression of IFN-β in the cecum, 
and therefore in turn, probably enhanced the overall 
immune capacity of lizards. Although we have verified 
the role of Bacteroides in enhancing host immunity, the 
signaling pathway by which Bacteroides enhances lizard 
immunity remains elusive and deserves further study.

SCFAs can impact the host’s immune response by 
influencing immune cell activity, maintaining the integ-
rity of the intestinal barrier, and regulating inflamma-
tory responses [86]. We also found other genera of gut 
microbes which may enhance the immune capacity of 
lizards. For example, the abundance of Eisenbergiella 
increased in the warming climate of lizards. Increased 
abundance of Eisenbergiella in the gut could be linked 
to an elevated production of SCFAs that are involved in 
anti-inflammatory gene regulation processes and pro-
mote the intestinal immune response [87, 88]. Corre-
spondingly, the concentration of SCFAs did increase in 
the warming climate of lizards. Therefore, our results 
show that Bacteroides play a dominant role in modulat-
ing the immune capacity of lizards and that other bacte-
ria may also be involved in host immune regulation.

Conclusions
We found that the diversity of gut microbiota in a 
desert lizard decreased over short-term warming, but 
increased over long-term warming. The increased diver-
sity of gut microbiota is likely an adaptive response to 
climate warming, which enhances the immune capacity 
of lizards facing increased risk of pathogenic bacteria. 
Our study mainly focused on the role of Bacteroides in 
enhancing the immune capacity of lizards; however, the 
role of other bacteria (e.g., Eisenbergiella) in modulating 
host physiology and behavior provides ample opportu-
nity for future studies. Current research on how sym-
bionts respond to climate change is limited, although 
increasing evidence suggests that host-microbe interac-
tions may be critical in helping animals adapt to climate 
change. Our study highlights how microbial symbionts 
can facilitate host health and survival under climate 
warming and are thus important for predicting host 
persistence in the face of global warming.
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