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Abstract 

Background  Freshwater sediment microbes are crucial decomposers that play a key role in regulating biogeochemical 
cycles and greenhouse gas emissions. They often exhibit a highly ordered structure along depth profiles. This stratification 
not only reflects redox effects but also provides valuable insights into historical transitions, as sediments serve as impor-
tant archives for tracing environmental history. The Anthropocene, a candidate geological epoch, has recently garnered 
significant attention. However, the human impact on sediment zonation under the cover of natural redox niches remains 
poorly understood. Dam construction stands as one of the most far-reaching anthropogenic modifications of aquatic 
ecosystems. Here we attempted to identify the ecological imprint of damming on freshwater sediment microbiome.

Results  We conducted a year-round survey on the sediment profiles of Lake Chaohu, a large shallow lake in China. Through 
depth-discrete shotgun metagenomics, metataxonomics, and geophysiochemical analyses, we unveiled a unique prokary-
otic hierarchy shaped by the interplay of redox regime and historical damming (labeled by the 137Cs peak in AD 1963). Dam-
induced initial differentiation was further amplified by nitrogen and methane metabolism, forming an abrupt transition gov-
erning nitrate–methane metabolic interaction and gaseous methane sequestration depth. Using a random forest algorithm, 
we identified damming-sensitive taxa that possess distinctive metabolic strategies, including energy-saving mechanisms, 
unique motility behavior, and deep-environment preferences. Moreover, null model analysis showed that damming altered 
microbial community assembly, from a selection-oriented deterministic process above to a more stochastic, dispersal-limited 
one below. Temporal investigation unveiled the rapid transition zone as an ecotone, characterized by high species richness, 
low community stability, and emergent stochasticity. Path analysis revealed the observed emergent stochasticity primarily 
came from the high metabolic flexibility, which potentially contributed to both ecological and statistical neutralities.

Conclusions  We delineate a picture in which dam-induced modifications in nutrient availability and sedimenta-
tion rates impact microbial metabolic activities and generate great changes in the community structure, assembly, 
and stability of the freshwater sediment microbiome. These findings reflect profound ecological and biogeochemi-
cal ramifications of human–Earth system interactions and help re-examine the mainstream views on the formation 
of sediment microbial stratification.
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Background
In aquatic habitats, microbial communities in sediments 
play a crucial role in regulating nutrient cycle and energy 
flow ranging from small ponds to the global ocean. Many 
of them are highly structured with depth and exhibit a 
nonuniform turnover, which coincides with geochemi-
cal transition zones (GTZs) [1]. Microbial communities 
exhibit changes that reflect the oxic–anoxic transition 
zone (OATZ) [2], the nitrate–ammonium transition zone 
(NATZ) [3], the nitrate/nitrite-methane transition zone 
(NMTZ) [4, 5], and the most well-known sulfate–meth-
ane transition zone (SMTZ) [6]. Characterizing the burial 
depth of GTZs is important for estimating greenhouse 
gas emissions as well as enhancing the understanding of 
subfloor biogeochemical cycles [7].

A consensus is that these stratifications and orders are 
primarily governed by redox chemistry. Resembling the 
Winogradsky column [8], energy availability drives the 
hierarchy of electron acceptors [9–11]. However, the 
diverse patterns of sediment stratification suggest the 
existence of other potential drivers beyond redox chem-
istry. In marine systems, redox cascades can be disrupted 
by hydrodynamic disturbance [12] or benthic bioturba-
tion [13], or vary with water depth [14], eutrophication, 
and sedimentation rates [7, 11]. In comparison, few stud-
ies have clearly discussed these effects on redox zona-
tion in freshwater sediments. Differences between the 
two systems make it challenging to apply marine-derived 
models to freshwater sediments [15]. Freshwater systems 
typically have lower dissolved sulfate levels, where sulfur 
cycling is considered relatively minor [16]; whether the 
SMTZ well established in marine systems is prevalent in 
freshwater sediments and whether it would be replaced 
by NMTZ remain to be explored. Another difference is 
the degree of human impact: the higher wetted perim-
eter of lakes and closer ties with human activities make 
it a nontrivial factor in shaping freshwater sediment 
structure.

Dam construction, surging in the mid-twentieth cen-
tury, is considered one of the most far-reaching anthro-
pogenic modifications of aquatic ecosystems [17, 18]. 
Unlike episodic sedimentation caused by floods or 
extreme weather, these management strategies could 
induce hidden inherited changes known as legacy effects. 
It may bring priority effects on microbial community 
assemblages and generate alternative successional tra-
jectories during burial [19–21]. Coupled with enhanced 
fertilizer and wastewater inputs, it may also permanently 
alter sediment biogeochemical properties by accelerating 
N/P retention [22]. This shift is likely to result in nitrate 
becoming the primary electron acceptor for anaerobic 
methane oxidation (AOM). However, previous studies 
on the damming impact on lake microbial ecosystems 

have mostly overlooked the vertical response of sediment 
microbiomes, limiting our understanding of stratified 
changes and their relationship with redox cascades.

Understanding community assembly processes and 
stratification formation requires depicting community 
stability patterns. Steep transitions in sediments closely 
fit the ecotone model, wherein species richness often 
tends to peak and the local communities are highly 
dynamic and unstable over time [23, 24]. Community 
stability can be reflected in both the multi-timepoint dis-
similarity and the holistic flexibility of microbes to adapt 
to different environments. The former can be directly 
obtained by temporal investigations; community dynamic 
processes being rhythmic or chaotic, deterministic or 
stochastic, largely depend on the observational time 
scale. The latter can be further manifested as cell chemot-
axis and niche breadth. Chemotaxis, by which cells sense 
chemical gradients and move directionally with prefer-
ence, reflects spatiotemporal heterogeneity of energy 
supply; those living in stable, homogenous environ-
ments harbor fewer methyl-accepting chemotaxis pro-
teins (MCPs) and response regulatory proteins [25, 26]. 
On the other hand, in a niche-based community, higher 
metabolic flexibility indicates broader niche breadth, as 
variations in resource availability select flexible habitat 
generalists rather than niche-restricted specialists [27]. 
To date, the link between stratification and stability in 
sediment microbiomes remains poorly established.

In this study, we ask about the role of anthropogenic 
activities in forming biogeochemical stratification in 
freshwater lake sediments. We attempted to identify 
the legacy effect of dam construction with emphasis 
on (i) microbial taxonomic and functional stratifica-
tion, (ii) the coupling effect with classic redox cascade, 
(iii) community assembly processes, and (iv) commu-
nity stability. We undertook this study with a 1-year 
sampling strategy in Lake Chaohu, a major freshwater 
lake in China (Fig.  1). Chaohu Dam was constructed 
in 1962 which triggered eutrophication in the 1970s 
[28] (see Text S1 for details). We hypothesized (i) dam-
ming would disrupt the regular redox order, leading to 
rapid stratification through changes in energy inputs, 
sedimentation properties, and community assembly 
processes; (ii) the NMTZ would replace the SMTZ 
with N-dependent AOM as the key factor controlling 
upward methane flux, and (iii) significant energy dif-
ferences would occur at the rapid stratification zone 
and enhance local community fluctuations. To test 
these hypotheses, we identified microbial taxonomic 
and functional stratifications with combination of 
shotgun metagenomics and amplicon sequencing 
approaches and proposed a potential past–present 
coupling mechanism for stratification by elucidating 
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the processes of sedimentation and microbial commu-
nity dynamics.

Methods
Study site and sampling procedures
Consistent with previous chronological studies of 
Chaohu sediments [28, 29], the sampling site was set in 
the central part of western Chaohu (31° 37′ 23″ N, 117° 

22′ 21″ E, Fig. 1A), where the lake is more eutrophic and 
away from the nearshore hydraulic disturbance zone. 
We sampled bimonthly from August 2014 to July 2015, 
which provided seasonal snapshots for the sediment pro-
file (Fig. 1B–C). On June 2 2019, we performed additional 
sampling for gaseous methane estimation. Sediment 
cores were collected using a gravity corer outfitted with 
a clear polycarbonate tube (inner diameter of 8.2  cm, 

Fig. 1  Sampling site and strategy. A Location of the sampling site and map of the Chaohu Basin, China. B Present physicochemical 
parameters of each sediment interval were determined in situ on cores without destroying the connectivity between layers. C Schematic plot 
of the spatiotemporal sampling strategy
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length of 60  cm). Considering the destructive nature of 
sediment sampling, we controlled the spatial sampling-
site bias within a 100  m-distance for seasonal samples. 
An excision of a 1-cm-thick margin section was applied 
for each 5-cm-interval subsample to avoid sidewall con-
tamination and minimize margin effects. Samples were 
debris-trimmed and zoobenthos-removed and then 
transferred into a clean sealed sample bag and briefly 
homogenized by manual manipulation. These homog-
enized samples were frozen in liquid nitrogen and stored 
at − 80 °C for subsequent analysis.

Environmental parameters
The physicochemical properties of the sediments were 
measured immediately after lifting sediment cores off 
the water surface to maintain the integrity of the core 
structure (Fig.  1B). In  situ sediment temperature was 
obtained using an electric thermometer. Volumetric 
water content ( Moi(v) ) and conductivity (Cond) were 
measured via a portable soil moisture and EC sensor 
(TR-6D, Shunkeda, Beijing, China). Redox potential 
(ORP) and pH were measured using Unisense redox 
(metal tip, standard hydrogen potential) and pH micro-
electrodes (Unisense, Aarhus, Denmark). In the labora-
tory, total organic carbon (TOC) was determined using 
an organic carbon analyzer (Multi N/C 2100 TOC, 
Analytik AG, Jena, Germany) after pretreating samples 
with 1  mol−1 HCl to remove inorganic carbon. Sedi-
ment grain size was analyzed by a laser diffraction par-
ticle size analyzer (LS 13320, Beckman Coulter, USA, 
measuring range: 0.017 ~ 2000  μm). We calculated the 
median diameter (D50) and mean grain size (MGS) to 
represent the particle size characteristics. We identified 
the texture class of the sediments according to the soil 
textural triangle [30].

Sediment interstitial space feature and methane 
accumulation
In sediments, methane (CH4) supersaturation occurs 
and forms bubbles. Previous studies have shown that 
CH4 acts as the main component of sediment gas space 
[31–33]. Based on this, we used the gas space as a 
proxy for the CH4 accumulation degree (ebullitive CH4 
flux). The gas space volume percent ( VP(a) ) was cal-
culated based on the measured volumetric and mass 
water contents at each specific depth, which is rigor-
ously physics-oriented [32]. In brief, the total inter-
stitial space volume percent (TIS) consists of the gas 
space volume percent VP(a) and the volumetric water 
content Moi(v):

The physical meaning of volumetric water content is as 
follows:

where V(w) is the volume of the pore water, V(s) is the  
volume of the solid particles, V(a) is the volume of the gas 
space, and V(T ) represents the total volume of the sediment 
layer sample.

Measured through the drying method in lab, the mass 
water content Moi(m) is calculated as:

where M(w) is the mass of the sediment water, M(s) is the 
mass of solids, and M(T ) is the total mass of the sediment 
layer sample.

As described in our previous study [32], the layered gas 
space volume percent VP(a) was calculated as follows:

where ρ(w) is the pore water density measured by the 
weighing method and ρ(w&s) represents for the density of 
mixed sediment measured by the submerged method.

Data collection on chronology and eutrophication history
Sediment dating data were updated by interpolation and 
extension based on the age-depth model established in 
[29, 34] (site C4), which was calculated by 210Pbex dat-
ing for sedimentation rate and 137Cs activity analysis 
for absolute age using the constant rate of supply (CRS) 
model [28, 35]. Coincidentally, the 1963 bomb test peak 
exactly labeled the depth of the 1962 damming event. In 
the subsequent analysis, we coded the establishment of 
the Chaohu Dam as a dummy variable (i.e., 1 or 0). Data 
on the past epilimnetic total phosphorus (TP) concentra-
tions estimated by diatom-inferred TP (DI-TP) collected 
from [28] were used to quantify the long-term trend of 
the eutrophication degree of Chaohu Lake. The DI-TP 
was calculated using sedimentary fossil diatom assem-
blages with a DI-TP transfer function model developed 
from a set of 45 lakes in the middle and lower reaches of 
the Yangtze River [36]. Furthermore, available data on 
the percentage of diatoms estimated by sedimentary pig-
ments (PDESP) from [34] were used for comparison and 
verification.

(1)TIS = Moi(v) + VP(a)

(2)Moi(v) =
V(w)

V(T )

=
V(w)

V(s) + V(w) + V(a)

(3)Moi(m) =
M(w)

M(T )

=
M(w)

M(s) +M(w)

(4)VP(a) = 1−
Moi(v) · ρ(w)

Moi(m) · ρ(w&s)
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Nucleic acid extraction, sequencing, and bioinformatic 
analysis
Nucleic acid extraction
DNA extraction from sediment samples was performed 
using the PowerSoil® DNA Isolation Kit (MoBio Labo-
ratories Inc., Carlsbad, USA) following the manufac-
turer’s Alternative PowerSoil Protocol for RNA and DNA 
from Low Biomass Soil. The DNA quality was assessed 
by ratios of 260 nm/280 nm and 260 nm/230 nm using a 
NanoDrop spectrophotometer (ND-2000, Thermo Scien-
tific, USA). The DNA extraction protocol applied to fur-
ther amplicon and metagenomic sequencing.

16S rRNA gene amplicon sequencing
PCR amplification was performed with the primer pair 
515F (5′-GTG​YCA​GCMGCC​GCG​GTAA-3′) and 926R 
(5′-CCG​YCA​ATTYMTTT​RAG​TTT-3′) targeting the 
SSU V4-V5 region, which targets both bacterial and 
archaeal domains [37, 38]. High-throughput sequenc-
ing was performed using the Illumina HiSeq2500 plat-
form (2 × 250 paired ends, Illumina, San Diego, USA) at 
Biomarker Technologies Corporation, Beijing, China. 
We prepared two sample treatments before amplicon 
sequence processing: one kept individual samples sepa-
rate (i.e., the 57 sediment subsamples), and the other 
combined seasonal samples by pooling raw sequenc-
ing data of temporal samples of the same depth, which 
consisted of eleven depth-related samples. The merged 
samples were set to identify general vertical patterns 
without seasonal variation (see Fig.  1 and Table S1). 
Details of PCR amplification and amplicon sequence 
processing are available in Text S2. Overall, the average 
effective sequence number was 73668 ± 619 (mean ± SD), 
CV = 0.84% for seasonal individual samples, and 
390759 ± 56565, CV = 14% for seasonal merged samples. 
To minimize the bias of sequencing depth, each sample 
set’s OTU table was rarefied to the lowest number among 
samples as a standard number of sequences.

Metagenomic sequencing and assembly
We further performed metagenomic sequencing for the 
upper nine sediment layer samples (0 ~ 45 cm) to obtain 
a reliable functional profile. The quality and quantity of 
the extracted DNA were examined using a Qubit dsDNA 
HS Assay Kit on a Qubit 3.0 Fluorometer (Life Tech-
nologies, Carlsbad, CA, USA) and electrophoresis on a 
1% agarose gel, respectively. Paired-end libraries (insert 
size, ~ 350  bp) were prepared using a VAHTS Universal 
Plus DNA Library Prep Kit for Illumina (Vazyme Bio-
tech). The library was sequenced on an Illumina NovaSeq 
6000 platform (Biomarker Technologies Co., Ltd., Bei-
jing, China) using the PE150 mode. Adaptor removal 
and low-quality sequence filtering were conducted 

in Trimmomatic v0.33. In detail, reads with a quality 
score < 20 over a sliding window size of 50 bp or with a 
sequence length < 100 bp were filtered. The average num-
ber of clean reads we obtained was 21.3 M (~ 6.5 G clean 
data base) per sample (Table S2). The high-quality short 
reads were de novo assembled using MEGAHIT which 
makes use of succinct de Bruijn graphs [39]. Assembly 
quality was assessed using QUAST v2.3 [40]. Contigs 
with lengths greater than 300  bp were selected as the 
final assembly result for further gene annotation. The 
contig number, contig length statistics, and mapped ratio 
are listed in Table S3.

Gene annotation and functional prediction
The open reading frames (ORFs) from each assembled 
contig were predicted using MetaGeneMark v3.26 [41] 
with default parameters. The prediction statistics are 
available in Table S4. All predicted genes with a 95% 
sequence identity (90% coverage) were clustered using 
MMseqs2 [42] to remove sequence redundancy. Func-
tional annotations of representative sequences of nonre-
dundant gene catalogs were performed against the NCBI 
nonredundant protein database (NR) and the Kyoto 
Encyclopedia of Genes and Genomes database (KEGG) 
with an e-value cutoff of 1e−5 using DIAMOND [43]; 
a manually curated integrative database NCycDB was 
also used for metagenomic profiling of nitrogen cycling 
genes [44] (Table S5-S11). As complementary to shotgun 
metagenomics, the 16S rRNA gene sequences provided 
extra functional prediction via PICRUSt [45] and the 
FAPROTAX database (Functional Annotation of Prokar-
yotic Taxa) [46]; the former was used to estimate the total 
gene content relevant to S/N/CH4 metabolism based on 
available sequenced genomes, while the latter was used 
to estimate the potential of fermentation based on exper-
imental evidence (Table S12).

Community statistics
We performed principal coordinates analyses (PCoA) 
based on binary Jaccard (presence–absence) and Bray–
Curtis (abundance-weighted) dissimilarities to depict 
both taxonomic and abundance-based variations in 
community composition. Permutational multivariate 
analysis of variance (PERMANOVA) was applied using 
the R package vegan to test the hypothesis that depth 
dominates the distribution of prokaryotes. The seasonal 
fluctuation of microbial community at each depth was 
measured as the multiple-timepoint Bray–Curtis dissimi-
larity using the function beta.multi.abund in the R pack-
age betapart [47, 48]. Unweighted pair-group method 
with arithmetic means (UPGMA) clustering based on 
Bray–Curtis distance was performed to identify sediment 
layering properties. The layering significance was tested 
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by analysis of similarities (ANOSIM). To visualize the 
microbial community transition patterns, we conducted 
an OTU-sample bipartite network analysis in Cytoscape 
with an edge-weighted spring-embedded layout using a 
seasonally merged OTU abundance matrix. Before that, 
a base-10 logarithmic conversion was applied, and the 
OTUs with log10-transformed abundance less than 1 
were filtered. To map the effect of environmental factors 
in energy metabolism, we computed Pearson’s correla-
tions within environmental data and Mantel correlations 
between community features and environmental data 
based on merged samples using the R package ggcor [49]. 
We also performed detrended correspondence analysis 
(DCA) and redundancy analysis (RDA) in vegan to visu-
alize and test the specific influences of each environmen-
tal factor on abundant microbial taxa.

Random‑forest identification of damming‑sensitive taxa
We applied the random forest (RF) algorithm to help 
identify the damming-sensitive phyla (DSPs) and classes 
(DSCs), the key components that distinguish between the 
two sediment layers divided by the damming line mapped 
in the sediment profile. We first performed a supervised 
classification, i.e., given the classification strategy, the 57 
sediment samples were divided into the pre-damming 
group and the post-damming group; 54 observed phyla 
(or 134 observed classes) were viewed as characteristic 
variables for classification. We used the mean decrease 
Gini (MDG) to evaluate variable importance. The higher 
the MDG is, the more critical the corresponding feature. 
Specifically, we constructed 100 RF replicates (each with 
1000 trees for DSP or 2000 trees for DSC) using the R 
package randomForest [50] and pooled them using the 
function combine to obtain a robust importance rank-
ing. Then, we computed the optimal breakpoints based 
on linear regression models via the function breakpoints 
implemented in the R package strucchange [51] to iden-
tify the DSP/DSCs that respond most strongly to the 
legacy effect. Classification accuracy was assessed using 
the out-of-bag (OOB) error rate. In addition, we also 
performed unsupervised RF clustering without prior 
classification information to verify the plausibility of the 
damming-line classification strategy.

Quantifying microbial community assembly processes
To evaluate community assembly processes, we first 
performed variation partition analysis (VPA) using the 
function varpart in vegan [52]. This approach estimates 
the contribution of measured deterministic factors to 
the metacommunity assembly process and the impor-
tance of past events in altering the present environment. 
We classified all environmental variables into what we 
term “present parameters,” “sedimentary features,” and 

“historical parameters” (see details in Text S3). In each 
group, a stepwise model selection algorithm was applied 
to streamline the variable subset. These explanatory data 
frames were Hellinger transformed. We interpreted the 
unexplained fraction as stochastic composition.

Because there may be important unmeasured variables 
that influence community assembly, we used null model 
analysis based on phylogenetic information to infer 
underlying ecological processes. MNTD (mean nearest 
taxon distance) and βMNTD (i.e., between-assemblage 
analogs of MNTD) were calculated using mntd and 
comdistnt in the R package picante v1.8 [53]. Measur-
ing standard deviations of observed MNTD/βMNTD 
from mean MNTD/βMNTD in the null model in which 
taxa are randomized (999 randomizations) across the 
tips of phylogenetic trees, NTI (nearest taxon index), 
and βNTI were calculated using picante and R code [54] 
to quantify the deviation from pure stochastic ecologi-
cal processes governing local community structure and 
dynamics. The fraction of pairwise comparisons with 
significant βNTI values (|βNTI|> 2) indicates the influ-
ence of selection, while nonsignificant results (|βNTI|< 2) 
indicate stochastic processes [55]. To evaluate differences 
in the processes of community assembly across depths, 
we computed the pairwise comparisons of βNTI values 
between adjacent layers within each sediment column 
section. We then partitioned stochastic processes into 
dispersal limitation (i.e., low rates of dispersal leading 
to dissimilar community structure), homogenizing dis-
persal (i.e., high rates of dispersal leading to community 
homogenization), and ecological drift (i.e., undominated 
processes of birth, depth, and reproduction) by calculat-
ing the Bray–Curtis-based Raup–Crick metric (RCbray) 
by comparing empirically observed Bray–Curtis (BCobs) 
to simulated Bray–Curtis (BCnull) under 9999 randomi-
zations [54]. As such, the relative contributions of each 
ecological process in the assembly of communities under 
different categories (full system including all samples 
and the two-layer system clustered by UPGMA) were 
quantified based on the following rules: the fraction 
of all pairwise comparisons with |βNTI|> 2 was taken 
as an estimate for the influence of selection, |βNTI|< 2 
and RCbray > 0.95 as dispersal limitation, |βNTI|< 2 and 
RCbray <  − 0.95 as homogenizing dispersal, and |βNTI|< 2 
with |RCbray|< 0.95 as ecological drift (the undominated 
fraction). The selection process was further divided into 
homogeneous (βNΤI <  − 2) and heterogeneous (βNΤI > 2) 
types.

Once the metacommunity of the full system was proven 
deterministically assembled, the Levin’s niche theory [56] 
was applied to estimate each local community’s emergent 
niche property. Mean niche breadth Bi of a local commu-
nity at a specific depth was calculated as follows:
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where Bj is the Levin’s measure of the niche breadth of 
OTU j across the metacommunity, Qij represents the rel-
ative abundance of OTU j in the local community i , Pij is 
the percentage of the OTU j in environment i to the total 
abundance of OTU j across the metacommunity, S is the 
total number of OTUs, and N is the total number of local 
communities.

Interpreting emergent stochasticity via path modeling
We quantitively constructed the causality between his-
torical damming and emergent stochasticity using partial 
least squares path modeling (PLS-PM) in the R package 
plspm [57]. Our modeling assumptions are (i) temporal 
environmental variations and spatial energy difference 
would be responsible for local community fluctuation 
and emergent stochasticity of community assemblage; 
(ii) historical damming and eutrophication would largely 
explain the spatial energy difference and strengthen the 
polarization of the oxic, nutrient-rich surface and the 
anoxic, barren deep sediments; (iii) compared to those 
with progressive changes, such layering property would 
narrow the metacommunity’s mean niche breadth (MNB) 
by shortening the spatial scale of community turnover, 
but the local MNB in the rapid transition zone would be 
larger where the generalists with high metabolic plastic-
ity are selected; the larger the MNB, the more emergent 
stochasticity can be locally observed.

In measurement models, we set the legacy effect and 
environmental fluctuation as the two exogenous variables 

(5)
Bi =

S
j=1

Qij · Bj

Bj = 1/
N
i=1

P2
ij

mutually independent. The latent variable “legacy effect” 
was constructed by Damming, (1− PDESP) , and DI-TP 
in a formative way; similarly, the variable “environmen-
tal fluctuation” was formed by coefficients of variation of 
seasonal moisture ( CVmoi ) and temperature ( CVtemp ) in 
each sediment layer (Fig. S11). Differently, “Energy dif-
ference” was set as an endogenous latent variable meas-
ured in a reflective way by chemotaxis and the difference 
between neighboring layers of both redox potential and 
TOC. “Community fluctuaton,” “mean niche breadth,” 
and “emergent stochasticity” were set as endogenous 
manifest variables measured by multiple-timepoint dis-
similarity, MNB, and (10− βNTImerged) , respectively.

Results
Sediment dating, limnological information, and gaseous 
methane sequestration
Sediment cores with the effective depth of 55  cm had 
a maximum age of ~ 306  years (Fig.  2 and Fig. S1). The 
age-depth model placed the 137Cs peak, a synchro-
nous sign of the Chaohu Dam construction, at a depth 
of 21.4  cm within the fifth layer. The average deposi-
tion rate in the upper 21  cm ( rupper = 0.41cm/year ) 
rose over twofold compared to the pre-damming con-
dition ( r lower = 0.13cm/year ). Diatom stratigraphic 
data showed a marked transition since damming with 
a succession of diatom-cyanobacteria in 1966 [34] and 
elevated nutrient loading in the 1970s [28]. Accord-
ingly, we termed the 21.4-cm-depth (or the fifth layer) 
the damming-labeled horizon (DH), and the fourth and 
fifth layers the historical transition zone (HTZ) that 
included both damming and eutrophication, hereinafter. 

Fig. 2  Vertical profiles of key environmental parameters in relation to sediment depth and age. Values with error bars are means (± 1 SEM) from six 
seasonal snapshots. SWC saturated (mass) water content ( Moi(m) ), TIS total interstitial space volume percent, Temp sediment temperature, ORP 
redox potential compared to the standard hydrogen electrode (SHE), Cond conductivity, TOC total organic carbon, PDESP percentage of diatoms 
estimated by sedimentary pigments, DI-TP diatom-inferred total phosphorus, D50 particle median diameter, MGS mean grain size. Gray circles 
represent the existence of methane bubbles with gas volume ( VP(a) , %) labeled by the number aside. The dotted line labels the damming event
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With redox potential decreasing rapidly in the first two 
layers, the sediment color changed from brown to char-
coal gray, indicating a Fe3+/Fe2+ transition in the top 
10  cm. Sediment texture also shifted between the first 
two layers, from the silt loam of the top layer ( MGSL1 
= 22.38  μm) to the deeper silty clay loam ( MGSL2∼L11 
= 11.20 ± 1.02  μm). Decoupled with the sediment grain 
size, sediment total interstitial space volume (TIS) 
dropped in HTZ and stabilized at approximately 60% in 
deep. Interestingly, bubble formation hinting methane 
oversaturation occurred only below DH that contributed 
to the “local TIS”. This patten indicated that dam build-
ing has the potential to affect greenhouse gas emissions 
by influencing the depth of gaseous methane sequestra-
tion in sediment.

Vertical organization of sediment microbial community
The sediment profiles displayed a well-organized struc-
ture wherein dam construction made a sharp transition 
nested within a progressive turnover (Fig.  3). Species 
abundance difference rather than taxonomic turno-
ver accounted for the high beta diversity (Fig. S2). The 
discrete stratification was quantitatively validated by 
UPGMA (Fig.  3A) and unsupervised RF clustering (Fig. 
S5). The PCoA plot (Fig. 3C) further depicted the distinct 
shift, while the size of the 95% confidence ellipse, repre-
senting seasonal fluctuation, exhibited a spindle-shaped 
distribution patten with a peak at the fourth layer. This 
indicated a seasonally variable community within the 
sharp transition zone. Notably, the OTU particles in 
the topological network (Fig. 3E) displayed an “interfer-
ence” pattern resembling a “two-wave superposition,” 
suggesting the segregation of the metacommunity into 
opposing factions. This polarization corresponded to the 
stratification at DH, signifying the contrast between the 
oxygen-rich, nutrient-abundant surface and the anoxic, 
nutrient-poor deep sediments. Moreover, the local com-
munities surrounding DH exhibited higher species rich-
ness (Fig. 3A) and a greater overlap of species (i.e., higher 
connection degree, Fig.  3E), indicating an ecotonal 
environment.

As the most abundant taxa, Gammaproteobacteria 
and Bathyarchaeia were the representative classes of 
the surface and deep communities, respectively (Fig. 3B 
and Fig. S6). We further identified the damming-sen-
sitive taxa that displayed an evident shift at the depth 
labeled by the damming event (Fig. 3D). The supervised 
RF classifier identified Bathyarchaeota, Spirochaetes, 
and Patescibacteria as the damming-sensitive phyla 
(DSPs) and identified Dehalococcoidia, Bathyarchaeia, 
Marine Benthic Group A (MBG-A), Spirochaetia, and 
Holophagae as the damming-sensitive classes (DSCs) 
with good classification accuracy (see Fig. S3 and S4). 

Except for Holophagae (Acidobacteria), the rest of the 
DSPs/DSCs were all deep adaptors that exhibited a 
sharp (bottom-up) decline at DH.

Biogeochemical zones, energy difference, and community 
stability
We characterized GTZs based on the profile of micro-
bial metabolic potential predicted by metagenomic and 
16S rRNA gene sequencing (Fig.  4A and Table S5-S10). 
To characterize the process of anaerobic methane oxi-
dation coupled to denitrification (N-damo), the typi-
cal N-damo bacteria phylum NC10 was selected as an 
indicator [58–61]. Generally, the relative abundance of 
sulfur and nitrogen metabolic genes shared a similar fad-
ing tendency with two rapid drops in the top 10 cm and 
around the DH, while methane metabolism had a reverse 
trend. We then defined GTZs accordingly: the top 10 cm 
of sediment was defined as an OATZ in which redox 
potential monotonically decreased (see ORP in Fig.  2) 
and the relative abundance of N-damo approached zero; 
the 10 ~ 15 cmblf (cm below lake floor) right below the 
OATZ was characterized as a NATZ where a hotspot for 
ongoing anaerobic ammonium oxidation (anammox) was 
observed, indicating a transition of dominant N species 
from nitrate to ammonium [3]; sediment below DH was 
defined as a methanogenetic zone (MGZ) where metha-
notrophs decreased whereas fermentation and methano-
genesis quickly increased (Fig.  4Ab, and Fig. S7). It was 
consistent with the pattern of gaseous CH4 accumula-
tion in Fig.  2. In HTZ (15 ~ 25 cmblf ), both sulfate and 
nitrite/nitrate reduction potentials dropped rapidly, the 
former occurred at approximately 15 cmblf while the lat-
ter at the DH. The replacement between methanogen-
esis and nitrate/nitrite reduction at the DH indicated 
the system’s preference for NMTZ rather than SMTZ. 
Active AOM coupled to denitrification was confirmed 
by the pronounced peak of N-damo right above the DH. 
Interestingly, the ratio of assimilatory/dissimilatory sul-
fate reduction (ASR/DSR) exhibited a quadratic distri-
bution with minimum value in HTZ (Fig. 4Ba and Table 
S8), supporting the occurrence of AOM coupled to (dis-
similatory) sulfate reduction because the DSR’s efficiency 
in accepting electrons is much higher than that of ASR 
[62]. In addition, the ratio of ammonia-oxidizing archaea 
and bacteria (AOA/AOB) and the ratio of denitrifica-
tion and dissimilatory nitrate reduction to ammonium 
(DEN/DNRA) also showed significant differences at DH 
(Fig. 4Bb-c).

Obviously, historical damming heavily influenced 
the vertical biogeochemical zonation via affecting 
microbial energy metabolism, especially the methane 
and nitrogen metabolism (Fig.  4C). High correlations 
between historical (PDESP/DI-TP/Damming) and 
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present parameters (TIS/TOC/Cond) reflected that 
damming and eutrophication have caused permanent 
changes in current sediment physicochemical traits 
(Fig. 4C and Fig. 5A). Throughout the sediment system, 
TIS, TOC, and Cond rather than ORP became the three 
most relevant contemporary environmental variables 
on which strong legacy effects were shed by damming 
and eutrophication.

Spatiotemporal heterogeneity of energy supply 
and prokaryotic active dispersal ability were fur-
ther reflected by chemotaxis (Fig.  4Ad, Text S4, and 
Table S11). Metagenomic data showed that the rela-
tive abundance of chemotaxis genes peaked in NATZ 
and NMTZ, and remained low below DH, indicating a 
large energy tension within HTZ and a more homoge-
neous, infertile environment below DH. This chemo-
taxis pattern also reflected microbial flexibility in 

Fig. 3  Vertical organization of sediment microbial community. A Overview on sediment layering structure, including alpha diversity shifts 
along sediment depth and clustering analysis. Orange line stands for the richness of Chao1 ( 

S ∈ [1745, 2180]
 ) and blue line for Pielou’s 

evenness ( E ∈ [0.76, 0.86] ). UPGMA divided eleven spatial samples into two main clusters (R = 0.974, P = 0.002): the upper four layers 
and the lower seven layers, coinciding with the historical damming event. B Composition of dominant classes (the top 20) in different depth 
layers. C Principal coordinates analysis (PCoA) based on Bray–Curtis dissimilarities of OTUs illustrating continuous changes among bacterial 
communities grouped by depth. The size of 95% confidence circles shows within-group dissimilarities that represent seasonal fluctuation. D 
Identification of damming-sensitive phyla (DSP) and classes (DSC) in sediment based on random forest classification. The mean decrease 
in Gini value identifies the most reliable and relevant predictors (phyla/classes) to perform classifications. E Emergent stratification 
via bipartite network analysis with eleven seasonally merged samples. The node color shifting from yellow toward dark purple indicates 
a higher OTU-sample connection degree counting from 1 to 11. The grayscale of lines is indicative of the OTU richness in one sample
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environmental adaptation. Interestingly, the pattern 
of seasonal community fluctuation, also illustrated by 
the size of the 95% confidence ellipse in the PCoA plot 
(Fig. 3C), was in sync with the pattern of chemotaxis, 

indicating a more variable local community in HTZ 
over time. Both the multi-timepoint dissimilarity and 
microbial chemotaxis served as indicators of commu-
nity stability.

Fig. 4  Vertical biogeochemical zonation according to patterns of energy metabolism. Total S/N/CH4 metabolic abundances with seasonal 
variations (Aa) were predicted with 16S rRNA genes; specific function modules and chemotaxis (Ab–d) were predicted by metagenomic data 
annotated with KEGG and NCycDB. Sulfate reduction (R2 = 0.975, df = 5) and nitrification (R2 = 0.854, df = 6) were fitted with exponential model 
of plateau followed by one phase decay. Methanotrophy (R2 = 0.983, df = 4), methanogenesis (R2 = 0.999, df = 4), and nitrate reduction (R2 = 0.998, 
df = 4) were fitted piecewise with a linear model followed by exponential one-phase decay/association. Least squares fit was used for all these 
nonlinear models. Relative abundance of the NC10 class (Ac) serves as proxy for the intensity of N-damo, the nitrate/nitrite-dependent anaerobic 
methane oxidation. Black dots in plot Ac represent the median value of the seasonal samples labeled by gray dots. OATZ oxic–anoxic transition 
zone, NATZ nitrate–ammonium transition zone, SMTZ sulfate–methane transition zone, NMTZ nitrate/nitrite–methane transition zone, MGZ 
methanogenetic zone. B Several ratio indexes relevant to S/N-cycling metabolism. ASR/DSR ratio of assimilatory/dissimilatory sulfate reduction 
(quadratic fitting). AOA/AOB ratio of ammonia-oxidizing archaea and bacteria reflected by archaeal/bacterial amoABC genes (Mann–Whitney test 
with P = 0.016*, normality test failed), Denitrification/DNRA ratio of denitrification and dissimilatory nitrate reduction to ammonium (unpaired t test 
with P = 0.0003***, Shapiro–Wilk normality test passed). C Environmental drivers of energy metabolism. Line color represents Mantel’s p and line 
width represents Mantel’s r. Red “X” means no significance for Pearson’s correlation
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Deterministic processes govern metacommunity dynamics
Variation partition analysis (VPA) showed that the meas-
ured contemporary, historical, and sedimentary vari-
ables jointly explained the basic microbial community 
variations (explained variation = 90.8%, Fig. 5A), indicat-
ing a deterministic nature of community assembly pro-
cesses and most of the drivers had been found. The high 
co-explained variance percentage (71.5%) implied the 
historical context dependency of the current environ-
ment. The null model further validated the determinism 
as inferred from VPA. For the full system, heterogene-
ous selection dominated the assembly of the sediment 
metacommunity and dispersal limitation came next at 
15% (Fig.  5B and Fig. S9A). Communities of seasonal 
snapshots and merged samples were all significantly phy-
logenetically locally clustered, which provided strong 
evidence of environmental filtering (NTI > 2, Fig. S8). 
In addition, a positive relationship formed in the plot of 
pairwise phylo-betadiversity versus spatial distance (Fig. 
S9B), indicating a distance decay of phylogenetic similar-
ity. Given the depth dependence of environmental vari-
ables, environmental selection acts as an overwhelming 
factor on phylogenetic turnover rather than geographical 
isolation [63].

In the context of niche construction, we observed a 
robust parabolic pattern of MNB across depth (Fig.  6 
and Fig. S10). The peak position showed that commu-
nities at intermediate depth harbored more generalists 
with higher metabolic flexibility, while those close to the 
two relative extremes harbored more specialists. It cor-
responded to the OTU connection degree pattern in the 
bipartite network (Fig.  3E), hinting at a more inclusive 
ecotonal environment where the fertile upper layers and 
the low-energy deep sediments met.

Assembly stratification and temporal emergent 
stochasticity at the damming horizon
We performed pairwise comparisons between adjacent 
layers to show differences in the process of community 
assembly across depth. Intriguingly, two sample treat-
ments (snapshots vs. seasonally merged) exhibited dis-
tinct βNTI patterns (Fig. 5C). The snapshot (individual) 
sample set displayed a pronounced shift at DH, from 
heterogeneous-selection-oriented deterministic com-
munity assembly (βNTI > 2) to a more stochastic one 

(|βNTI|< 2 except the bottom layer). Dispersal limita-
tion accounted for a relatively high proportion especially 
below DH where it tripled in proportion (Fig.  5B). We 
sketched a potential mechanism by which GTZs overlap 
with historical damming is not a coincidence: damming 
has profoundly changed the assembly processes of sedi-
ment microbial communities by enhancing selection and 
reducing dispersal limitation (Fig. 7A).

In contrast, adjacent seasonally merged sample pairs 
exhibited a distinct pattern of U-quadratic distribution 
pattern (R2 = 0.717, Fig.  5C) in which the two opposite 
extremes showed significant deterministic processes, 
while the local communities around the rapid transi-
tion were more stochastically assembled. The over-time 
emergent stochasticity potentially echoed the high OTU 
connection degree and MNB at DH, as well as the high 
chemotaxis and community fluctuation in HTZ. PLS-
PM revealed their causal relationships (Fig. 7B and Table 
S13). First, the energy difference pattern (reflected by 
chemotaxis, ΔTOC, and ΔORP) was largely contributed by 
historical damming. Second, the spatial energy differ-
ence and seasonal environmental fluctuation (formed 
by CVmoi and CVtemp , Fig. S11) jointly accounted for the 
community fluctuation pattern over time; comparatively, 
the energy difference had more explanatory power. Third, 
the negative correlation between the legacy effect and 
MNB as well as the positive correlation between MNB 
and emergent stochasticity well confirmed our hypoth-
eses that the sediment polarization induced by damming 
would shorten the regional MNB but widen the local 
MNB at DH, which explained the emergent stochasticity 
there (see also in the section “Methods”).

Discussion
Although there is a long-standing interest in sedi-
ment zonation, anthropogenic activity is a critical yet 
widely overlooked determinant of sediment structure 
in freshwater lakes. Here we provide multifaceted 
evidence that historical dam construction dramati-
cally influences sediment microbial stratification in 
taxonomic diversity, energy metabolism, and commu-
nity assembly processes. As a result, the redox hier-
archy of GTZs is altered with NMTZ controlling the 
burial depth of gaseous methane. Moreover, tempo-
ral investigations enable us to observe the emergent 

Fig. 5  Quantitative estimates of the microbial community assembly process across sediment depths. A Variance partition analysis (VPA) revealing 
the relative contributions of contemporary, historical, and sedimentary parameters to the whole sediment community variations (Hellinger 
transformed). B Different ecological processes in assembly of microbial communities before and after damming. C Different patterns of βNTI 
between neighboring layers across sediment using the data of individual samples and seasonally merged samples. A quadratic model was applied 
for eleven merged samples. The upper and lower whiskers of each box correspondingly denote the minimum and maximum values. Median, 
mean values, and outliers are shown by the midline, plus dot, and black dot, respectively. The area between βNTI =  + 2 and − 2 denotes stochastic 
assembly

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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stochasticity around the damming horizon, behind 
which lurks the impact of stratification on community 
stability and metabolic flexibility. Our findings provide 
a novel perspective on the formation mechanism and 
ecological properties of sediment stratification in fresh-
water systems.

Formation mechanism of stratification at DH: metabolic 
differentiation
Primarily, historical damming triggers the initial differen-
tiation at DH. The initial differentiation lies in the mat-
ter/energy input and the geophysical properties. Dam 
construction can significantly enhance sedimentation 

Fig. 6  Patterns of mean Levin’s niche breadth index of local communities across depths in different months fitted by second-order polynomial 
model based on ordinary least squares regression. The unit of MNB is layer(s) ( MNB ∈ [0, 11] ). A higher MNB value indicates that the community 
harbors more generalist taxa that are more uniformly distributed across environments, while low value indicates that the community harbors more 
specialists that favor specific environments

Fig. 7  A Hypothesized mechanism of microbial community stratification. The damming in 1963 accelerated lake eutrophication and sedimentation 
rate, altering sediment nutrient composition and increasing energy input. This changed the metabolic type, order, intensity, and chemotaxis 
of sediment microorganisms, shortening the natural sediment profile transition process. On the other hand, accelerated sedimentation rate, 
enhanced sediment biodegradation rate, and gaseous metabolites jointly imposed the interstitial space, which further affected the negative 
dispersal of sediment microbes. As a result, the relative proportion of dispersal and selection shifted and resulted in community stratification. OM 
organic matters. B Partial least squares path modeling (PLS-PM) quantitatively depicting the cause-effect mechanisms underlying the emergent 
stochasticity at the sharp transition zone revealed by the time-merged data. Red and blue arrows represent significant (* P < 0.05 and ** P < 0.01) 
positive and negative paths, respectively; paths with no significance (ns, P > 0.05) are labeled in gray. The arrow width reflects the path coefficient 
value (the number near the path). The goodness-of-fit (GoF) shows a good prediction power of the model that is of 71%. Specific assessment 
indexes of both measurements (Cronbach’s alpha, loadings, etc.) and structural models (R2, redundancy, etc.) are listed in Table S13
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and trap nutrients in reservoirs by increasing hydrau-
lic residence time and reducing flow velocity [22]. In 
Chaohu Lake, dam construction brought a twofold 
increase in sedimentation rate and induced eutrophica-
tion in that TN/TP rapidly increased and the organic 
carbon burial rate doubled [64]. Meanwhile, dam opera-
tions modify substrate characteristics [65]. We observed 
a rise in sediment porosity after damming but no obvi-
ous change in grain size (Fig. 2), indicating the effect of 
the elevated sedimentation rate on the looseness of the 
stacked structure rather than on particle size. This may 
be one of the geophysical points that distinguish natural 
burial processes and those with exogenous contingency 
(damming). Notably, the differentiation was nested in the 
process of sediment aging that never broke the continuity 
of the natural, slow-rolling transition of oxygen, energy, 
and porosity.

While enhanced burial rate and lake trophic level 
widen the gap of microbial nutrient availability, the ini-
tial difference is further amplified by microbial metabolic 
activities (Fig. 7A). Below DH, relatively low initial nutri-
ent concentration coupled with natural energy depletion 
with burial results in the exhaustion of available electron 
acceptors. It weakens anaerobic methane oxidation and 
enhances fermentation (Fig. 4A and Fig. S7). Fermenters 
produce methanogenic precursors (e.g., hydrogen and 
acetate) and push forward the reaction of methanogen-
esis which lacks consumers, thus accelerating methane 
accumulation, leading to methane boiling and upward 
diffusion. When the gas reaches up to DH where avail-
able external electron acceptors (e.g., nitrate/nitrite and 
sulfate) are ample, anaerobic methane oxidation coupled 
with denitrification and dissimilatory sulfate reduction 
rapidly consumes methane, forming a convergence bar-
rier and intensifying metabolic niche differentiation. This 
damming-adjusted metabolic cascade facilitates meth-
ane sequestration (Fig.  2). Although the gaseous CH4 
emission magnitude of dammed, eutrophic reservoirs 
has been reported an order larger than that of natural 
oligotrophic reservoirs [66], how such a sediment meth-
ane sequestration mode would affect the greenhouse gas 
emission progress (delayed release or permanent seques-
trated) deserves further investigation.

Intriguingly, disobeying the order of free energy yield 
in the Redox Tower, the niche of N-dependent metha-
notrophs penetrated deeper than that of S-dependent 
methanotrophs. This can be explained by N excess: the 
metabolic potential of N was much higher than that of 
S across the observed profile; anthropogenic N input 
and accelerated sedimentation rate after damming  
further intensified the tendency. When sufficient 
nitrates coexisted with sulfate, they would be consumed 

preferentially as more efficient electron acceptors; con-
sequently, the upward methane flux was controlled by 
the downward diffusion of nitrate/nitrite instead of sul-
fate. Analogous to the prevalence of SMTZ in S-domi-
nated marine systems, N-AOM and NMTZ may prevail 
in both waterbody [5, 67] and sediment [4, 68] profiles 
of N-dominated freshwater systems. However, since 
the first discovery of N-damo in 2006 [59] and the evi-
dence of N-damo as the major methane sink in stable 
freshwater environments in 2014 [4, 69], the concept 
“NMTZ” has not been well established in freshwater 
sediments; this study is among the first few ones to add 
NMTZ into the GTZ system of freshwater sediments 
(especially those in the eutrophic state).

Regarding dissimilatory nitrate reduction pro-
cesses, the niche segregation of denitrifiers and 
DNRA bacteria is an important metabolic differen-
tiation at DH (Fig.  4Bc and Table S5  ). The competi-
tion for nitrate between DNRA and denitrification 
has always been a hot issue. Our observation sup-
ports the mainstream view that it is closely related 
to the ratio of available electron donor (i.e., degra-
dable carbon) and electron acceptor (i.e., nitrate) 
[70, 71] as well as the O2 status [72, 73]. The propor-
tion of denitrification (nitrate → nitrogen) above 
DH is significantly higher because microaerophilic 
denitrifiers are favored under high nitrate (low C/
NO3

− ratio) and low-O2-supply conditions; anaero-
bic DNRA (nitrate → ammonia) predominates below 
DH because DNRA is favored by nitrate attenuation 
(high C/NO3

− ratio) and a rigorously anoxic environ-
ment. From the view of electron-transport efficiency, 
three more electrons are transferred during DNRA 
(NO3

−  + 10H+  + 8e−  → NH4
+  + 3H2O) than denitri-

fication (2NO3
−  + 12H+  + 10e−  → N2 + 6H2O) so that 

a more reductive condition with high ratio of electron 
donor to acceptor is more prone to favor DNRA [70, 
73]. In fact, it is also a natural selection of N equilib-
rium: denitrification relieves N excess above DH by 
converting NO3

− to gaseous N2, while DNRA retains N 
below DH by converting easily eluviated nitrate–anions 
into easily adsorbed ammonium ions. Interestingly, this 
strategy converges the difference in N amount between 
the upper and lower layers but enhances the difference 
in redox potential. Below DH, excessive carbon sub-
strates would activate fermentative bacteria [74, 75]; 
fermentative DNRA yields a large number of reduction 
products that make the environment more reductive; 
strong reductive conditions in turn benefit to DNRA, 
and one of the products, acetate (nonfermentable sub-
strate), can be further utilized as an electron donor by 
respiratory DNRA [76].
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Formation mechanism of stratification at DH: taxonomic 
differentiation
Metabolic differentiation is further reflected by micro-
bial taxonomy in diverse ways. The most intuitive is 
the niche differentiation of bacteria and archaea (see 
the bacteria–archaea proportion in Table S4, the repre-
sentative classes and DSCs [Bathyachaeia and MBG-A] 
in Fig. 3B and D, and the AOA/AOB ratio in Fig. 4Bb). 
With deep-branching phylogeny and specific niche 
adaptation to deep, anoxic subsurface environments, 
it is not surprising that archaea exhibit such a sudden 
decline [15]. For the structuring lineage Bathyarchaeota 
(formerly known as the Miscellaneous Crenarchaeotal 
Group, MCG), the capabilities of encoding mcr genes 
[77] and utilizing recalcitrant organic matter [78, 79] are 
their representative metabolic characteristics to inhabit 
below DH where methanogenesis and slow degrada-
tion of refractory organics predominate. Likewise, the 
No.1 DSC Dehalococcoidia (Chloroflexi) prefer deep 
sediments for their metabolic characteristic of rigorously 
anaerobic organohalide respiration. Their niche prefer-
ence for deep environment has also been reported in 
Lake Stechlin [15], Lake Baikal [80], deep sediments of 
ridge flank environments [81], and bottom waters of an 
Arctic lake [82].

Legacy effect on the No.3 DSP Patescibacteria results 
from another metabolic strategy: to be a minimal-
ist. They have ultrasmall cell sizes and ultrasimplified 
genomes (~ 1 Mbp). By streamlining nonessential func-
tions such as flagellar assembly and stress response 
systems, they do not invest in motility and chemot-
axis, and thus cannot adapt well to the upper sediment 
environment with high heterogeneity and perturba-
tion, but adapt well to nutrient-limiting deep sedi-
ments by effectively reducing energy consumption 
[83]. In this context, the phylum Patescibacteria is on 
behalf of those who contribute to the low chemotaxis 
pattern below DH (Fig.  5). In contrast, the No.2 DSP 
Spirochaetes are motile, but in a unique way via the 
helical shape of their cells and the polar positioning 
of their axial filaments, which help them easily move 
through deep clay sediments where the high viscosity 
and small TIS block the movement of most flagellated 
microbes [84]. Chemotactic responses supported by 
such a unique motile strategy make Spirochaetes more 
competitive in nutrient-poor environments. Besides, 
they generate ATP during starvation by metaboliz-
ing endogenous RNA to survive in environments with 
extremely low energy [85].

Overall, these damming-sensitive taxa potentially indi-
cate the ecological consequences of dam construction. 
Their unique adaptive strategies provide insights into 
community polarization and the alterations induced by 

damming, including changes in sediment porosity, nutri-
ent availability, and redox condition. Their presence also 
supports the analogy between sediment stratification and 
an ecotone, where species transitions play a distinguish-
ing role.

Formation mechanism of stratification at DH: community 
assembly processes
Consistent with studies in other subsurface systems 
[55, 86, 87], deterministic processes dominated the 
microbial community assembly at the full-sediment-
system scale. Specifically, individual samples showed 
that sediments buried after damming exhibited deter-
ministic assembly, whereas the below-DH system was 
more stochasticly assembled where dispersal limitation 
governs ~ 30% turnover (Fig.  5B and C). On the one 
hand, dam construction and subsequent eutrophica-
tion enhance energy inputs and environmental hetero-
geneity; sufficient energy fuels microorganisms while 
sophisticated element cycling and complex substrate 
composition drive them to move actively (i.e., enhanc-
ing chemotaxis, Fig. 4 Ad). In contrast, sediments below 
DH harbor a relatively stable and barren deep biosphere 
where cell maintenance and survival (e.g., dormancy) 
predominates over cell synthesis, reproduction, and 
motility [15, 88–90], accounting for the high proportion 
of dispersal limitation.

On the other hand, sediment porosity has been consid-
ered another key driver of bacterial community assembly 
in hyporheic zones [54, 86, 91]. Highly permeable sedi-
ments (~ 4% mud) are considered associated with high 
levels of homogenizing dispersal, while fine-grained 
(~ 90% mud) texture restricts vertical water exchange and 
imposes dispersal limitation and selection [54]. Our sedi-
ment system can be categorized as the fine-grained group 
(Fig.  2); however, the accelerated burial rate after dam-
ming significantly enlarged the sediment interstitial space 
which provided channels to promote both active and 
passive dispersal of microorganisms. Comparatively, the 
lower TIS below DH probably accounts for the dispersal 
limitation and thus the stochasticity there. In brief, spa-
tial variations of sediment interstitial space and nutrient 
induced by anthropogenic activities co-explain the layer-
ing pattern of community assembly processes, which in 
turn permanently impose the community stratification at 
DH (Fig. 7A).

Sediment zonation acting as an ecotone: community 
stability, metabolic flexibility, and emergent stochasticity
The concept of an “ecotone”, traditionally applied to 
macroecological systems, finds relevance in describ-
ing sediment microbial stratification. The sharp transi-
tion observed in sediment microbial metacommunities 
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exhibits several characteristics of an ecotone [23]: (i) a 
distinct line marked by damming, indicating a relatively 
abrupt change, (ii) shifts in microbial metabolism as key 
indicators, (iii) shifts of species, represented by dam-
ming-sensitive taxa, as a signal of differentiation, (iv) the 
“ecotone effect” manifested by increased richness com-
pared to neighboring habitats, and (v) high metabolic 
flexibility and temporal heterogeneity within the ecotone, 
corresponding to the patterns of chemotaxis, mean niche 
breadth, and seasonal fluctuation. Thus, while it is not a 
term typically used to describe microbial communities, 
it can still be applicable in describing sediment micro-
bial stratification. By exploring microbial ecotones, we 
broaden our understanding beyond macro-scale systems.

It seems a general rule in macroecology that ecotonal 
communities are unstable and easily predisposed to 
observational scaling effects due to spatiotemporal vari-
ability [23]. Our results well support this viewpoint that 
two sample treatments (snapshots vs. seasonally merged) 
exhibit distinct community assembly patterns along the 
sediment profile which echoes the community stabil-
ity pattern. It has been proven from the perspective of 
complex system dynamics that high richness and strong 
species interactions directly contribute to persistent 
community oscillation [92–94] and in turn this oscilla-
tion maintains species diversity [95]. Here we observed 
higher species richness (Fig.  3A) and more coupled 
metabolism and co-metabolism at DH (Fig.  4), which 
indicated enhanced species interactions. In this context, 
the emergent stochasticity and instability at DH probably 
derive from the ecological network’s intrinsic property 
rather than environmental stochastic fluctuation.

On the other hand, dam construction has formed a new 
energy hotspot providing larger energy tension and acting 
as an attractor that greatly improves microbial metabolic 
flexibility by enhancing cell chemotaxis and recruiting 
more habitat generalists in HTZ (i.e., high MNB). High 
metabolic plasticity contributes to emergent stochastic-
ity probably via ecological or/and statistical neutralities. 
It may directly enhance individuals’ neutral processes 
such as random dispersal, as microbes invest more in 
motility with the increase of energy and environmen-
tal heterogeneity. Emergent stochasticity may also come 
from the macroscopic perception of numerous independ-
ent deterministic events that are coarse-grained when 
scaling up, which brings statistical neutrality. Seasonal 
directional migration is one of these cases. A previous 
study reported that magnetotactic bacteria can migrate 
vertically in response to temperature fluctuations in lake 
sediments [96]. Microbes might migrate to warmer deep 
sediments in winter and to surfaces in summer, which is 
likely a universal yet overlooked hibernation strategy for 
those motile non-sporulating prokaryotes. Particularly, 

anthropogenic damming facilitates this strategy at the 
rapid transition zone by increasing energy tension and 
providing a low-energy, less competitive but warmer 
environment for microbial hibernation, thus facilitating 
the emergent stochasticity over time. Relevant contents 
remain to be further verified on finer spatiotemporal 
scales. In short, high community flexibility potentially 
leads to both ecological and statistical neutralities, result-
ing in the emergence of stochasticity.

Conclusions
In-depth exploration of the anthropogenic pressure on 
the freshwater sedimentary biosphere is critical for bet-
ter understanding the general mechanism of sediment 
biosphere formation. This study illustrates a unique 
sediment stratification pattern where historical dam 
construction significantly changes the redox order and 
microbial community structure, stability, and assembly 
process. We also emphasize that the nitrate–methane 
transition can be strengthened by such historical dam-
ming events, which play an important role in controlling 
methane sequestration depth. Although further stud-
ies are required to extend these findings in other aquatic 
sediments, it is probable that anthropogenic modifica-
tion is a universal key factor shaping sediment microbial 
zonation and altering community assembly processes 
since sophisticated natural selection will not neglect any 
subtle change.
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