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Abstract 

Background The fungal component of the human gut microbiome, also known as the mycobiome, plays a vital role 
in intestinal ecology and human health. However, the overall structure of the gut mycobiome as well as the inter‑
individual variations in fungal composition remains largely unknown. In this study, we collected a total of 3363 fungal 
sequencing samples from 16 cohorts across three continents, including 572 newly profiled samples from China.

Results We identify and characterize four mycobiome enterotypes using ITS profiling of 3363 samples from 16 
cohorts. These enterotypes exhibit stability across populations and geographical locations and significant cor‑
relation with bacterial enterotypes. Particularly, we notice that fungal enterotypes have a strong age preference, 
where the enterotype dominated by Candida (i.e., Can_type enterotype) is enriched in the elderly population 
and confers an increased risk of multiple diseases associated with a compromised intestinal barrier. In addition, bidi‑
rectional mediation analysis reveals that the fungi‑contributed aerobic respiration pathway associated with the Can_
type enterotype might mediate the association between the compromised intestinal barrier and aging.

Conclusions We show that the human gut mycobiome has stable compositional patterns across individuals and sig‑
nificantly correlates with multiple host factors, such as diseases and host age.
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Background
The human gut microbiome, which consists of multi-
kingdom microbes of prokaryotes, viruses, protists and 
fungi, is essential to human health [1]. Current research 
mainly focuses on the prokaryotic and viral components 
of the gut ecology [2–4]. However, the complicated 
associations of other types of microorganisms, particu-
larly fungi, with human health remain largely unknown. 
Although the fungal community, also known as myco-
biome, comprises less than 1% of the entire human gut 
microbiome [5], they have been shown to be involved 
in disease pathogenesis and to profoundly influence 
the host immune system [6, 7]. For example, Candida 
albicans can cause infections in immunocompromised 
human hosts [8], and alterations of the gut mycobiome 
composition have been reported in multiple human 
diseases [9, 10]. While fine-grained fungal taxonomic 
markers associated with certain phenotypes have been 
reported [9, 11, 12], the overall structure of the gut myc-
obiome and the inter-individual variation in fungal com-
position remain unclear.

Enterotypes, which have been proposed to summarize 
the human gut microbial characteristics, are effective in 
stratifying populations and providing a global overview 
of the inter-individual variations in gut microbial com-
position [13, 14]. Multiple studies have consistently iden-
tified bacterial enterotypes, which are independent of 
the distribution of the hosts’ age, geography, and gender 
[13–16]. Defined based on the prokaryotic compositional 
patterns, enterotypes could enhance understanding of 
human health and facilitate intervention [17]. As an inte-
gral part of the human gut multi-kingdom microbiome, 
fungi share microhabitats with the prokaryotic micro-
biome in the gut through different types of interactions, 
such as mutualism, commensalism, and competition [18]. 
Notably, several fungi-bacteria synergistic interactions 
within the human gut have been reported to be associ-
ated with human diseases. For instance, Hoarau et  al. 
[19] found a positive inter-kingdom correlation between 
Candida tropicalis and two bacterial species, Serra-
tia macesecens and Escherichia coli, in individuals with 
Crohn’s diseases. The physical interactions among these 
three species resulted in the formation of robust biofilms, 
which potentially cause host’s tissue damage and trigger 
specific immune responses [20]. Hence, the interactions 
between fungi and bacteria within the human gut play 
important roles in shaping the ecology of the intestinal 
microbial community [18, 21]. However, the landscape 
of the human gut mycobiome and whether fungal ente-
rotype-like structures exist in the human gut are unclear.

In this study, we collected 3,363 fungal sequencing 
samples from 16 cohorts across Europe, North America, 
and Asia, including 572 newly sequenced samples from 

China. Four fungal enterotypes were identified inde-
pendently of cohorts and geographical regions and were 
closely correlated with bacterial enterotypes. We noticed 
strong effects of host phenotypes (including age and dis-
eases) on the fungal enterotypes. Notably, the Candida 
(Can_type) enterotype, enriched in the elderly popula-
tion, showed a higher prevalence in patients with mul-
tiple diseases, even beyond the age influence, and was 
associated with a severe compromised intestinal barrier. 
Furthermore, a Can_type-enriched aerobic respiration 
pathway mediated the association between the compro-
mised intestinal barrier and aging. Overall, our findings 
elucidated the highly structured nature of the gut myco-
biome and its clinical relevance to human health.

Results
Landscape of human gut mycobiome composition 
and diversity
To characterize the human gut fungal diversity and com-
position, we collected internal transcribed spacer (ITS) 
sequencing data from 15 published projects (Supplemen-
tary Table S1) [12, 22–30]. In addition, we recruited 572 
Chinese participants (Chinese Gut Mycobiome cohort, or 
CHGM) aged from 17 to 89 years old and profiled their 
fecal mycobiome with ITS1 sequencing. In total, 3363 
fecal samples with ITS1- (960 samples; hereafter referred 
to as ‘ITS1-combined’) or ITS2- (2403 samples; hereafter 
referred to as ‘ITS2-combined’) sequencing data from 16 
cohorts covering three continents (Europe, North Amer-
ica, and Asia) were included in our study (Fig. 1a).

The combined dataset (3363 samples) contained a total 
of 1,120 genus-level taxonomic groups, where 354 fungi 
were present in at least 10 samples, and the sequencing 
depth of most cohorts was sufficient to capture the diver-
sity of the gut mycobiome (Figure S2). With sample rar-
efaction analysis, we noticed that the number of detected 
genera in the Germany (Andrea et al. [28]) and Chinese 
(CHGM) populations dramatically increased with an 
increasing number of samples, and the number of fun-
gal genera detected in our CHGM cohort far exceeded 
those of other cohorts (Fig. 1c, Figure S1b). However, the 
observed number of the fungal genera was still consid-
erably below the estimated saturation level, even when 
combining all datasets (Figure S1c), suggesting a require-
ment for a further increase in sample size to character-
ize the comprehensive gut fungal diversity. At the genus 
level, Saccharomyces and Candida were the most abun-
dant genera across all samples, followed by Penicillium 
and Aspergillus (Fig. 1b). These genera are also the most 
common commensal fungi in other human body sites, 
including skin, lung, and oral cavity [31, 32], indicating 
their possible well-balanced symbiotic relationship with 
humans.
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The gut mycobiome composition and the fungal diver-
sity varied significantly across cohorts, which may be 
partially attributed to biological and technical factors 
such as geography and sequencing methods (Fig.  1b–d, 
Figure  S1a–d, Figure  S3–4). Permutational MANOVA 
analysis showed that geographic location could account 
for approximately 3% variance of the gut mycobiome 
composition (p < 0.001, R2 = 0.03, PERMANOVA), and 
different abundance of specific fungal taxa across differ-
ent continents was observed. Specifically, the mycobiome 
of European population was characterized by an expan-
sion of Saccharomyces and Penicillium but depletion of 

Candida, while the mycobiome of populations from Asia 
contained a relatively higher abundance of Candida and 
lower abundance of Saccharomyces. The North Ameri-
can population harbored a relatively higher abundance of 
Candida and lower abundance of Saccharomyces (p < 0.05 
with Wilcoxon rank-sum test; Figure  S1a, Figure  S4). 
Additionally, we noticed variations in fungal diversity 
among geographic sites (p < 0.05 with Kruskal–Wallis 
test; Figure S1d), and found that the European population 
displayed relatively lower fungal diversity compared with 
those from other continents. These results indicated that 
the human gut mycobiome composition is highly variable 

Fig. 1 Composition and diversity of the human gut mycobiome across studies and geographic sites. a Geographic distribution of study 
populations and associated fungal enterotypes, where the datasets are sequenced with either ITS1 or ITS2 barcodes. b Genus‑level gut mycobiome 
composition across the three continents (North America, Europe, and Asia). c Cumulative curves of the number of detected genera according 
to the number of sequenced samples from different study populations. d The distribution of fungal Shannon diversity across study populations. The 
Venn diagram shows the number of fungal genera detected by ITS1‑ and ITS2‑ based amplification. e, The correlation between the Shannon index 
of bacteria and that of fungi in the Zuo et al. [22] cohort, with shaded region representing 95% confidence intervals of the linear regression
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across geographical sites, similar to previous findings in 
the gut bacteriome [33]. Furthermore, a higher diversity 
was observed in ITS1-sequencing based samples com-
pared with the ITS2-sequencing ones (Figure  S1c). We 
found that a significant proportion of fungal taxa (~ 38%) 
were unique to either ITS1 or ITS2, and approximately 
45% of fungal genera were detected by both methods 
(Fig. 1d).

The gut mycobiome, compared with the paired bac-
teriome, demonstrated a significantly lower Shannon 
diversity yet higher between-individual dissimilarity 
(p < 0.05 with Wilcoxon rank-sum test; Figure S1e). This 
observation is in line with previous studies showing that, 
in comparison with the gut bacteriome, the gut mycobi-
ome is less diverse but more individual-specific [24, 34]. 
In addition, we found a positive but weak correlation 
between the pairwise dissimilarities of fungal and bacte-
rial communities across studies that had matched myco-
biome and bacteriome datasets (p < 1e − 08, Spearman’s 
r: 0.12–0.16; Figure S1f ), as well as a significant positive 
correlation between the alpha-diversity indices of the two 
communities (p < 5.5e − 05, Spearman’s r = 0.39; Fig.  1e; 
Supplementary Table S3). These results suggest the pos-
sible mutualistic interactions between the two kingdoms 
within the gut.

Enterotypes of the human gut mycobiome
To investigate the overall structural and compositional 
patterns of the human gut mycobiome, we stratified the 
genus-level fungal compositions of the 3363 samples into 
distinct groups, i.e., enterotypes (“Materials and meth-
ods” section). The clustering analysis revealed that both 
ITS1- and ITS2-combined datasets formed four distinct 
clusters (Fig.  2a, b, Figure  S5a), and the clustering was 
also performed at different taxonomic levels with simi-
lar results, e.g., the enterotypes at the family level were 
highly concordant with those at the genus level (adjusted 
rand index > 0.5, Figure S5e; see Supplementary Note), the 
optimal clustering number could change at other taxo-
nomic levels (Figure S4f ). We further repeated enterotype 
analysis on randomly down-sampled datasets to evaluate 
the effect of removing samples from datasets on the over-
all clustering behavior. The enterotype clustering results 
remained unchanged even after removing half of the 
samples (Figure S5b, c; see Supplementary Note), further 
demonstrating the robustness of the fungal enterotype 
clusters. Three of these fungal enterotypes were found in 
both ITS1- and ITS2-sequencing datasets, where Saccha-
romyces (mainly species S. cerevisiae), Candida (mainly 
species C. albicans), and Aspergillus were the most 
abundant genera, respectively (Figure  S6a). Therefore, 
we defined the Saccharomyces-dominated enterotype as 
Sacc_type, and the Candida- and Aspergillus-dominated 

enterotypes as Can_type and Asp_type, respectively. In 
addition to these three enterotypes, we also observed a 
fourth enterotype in both ITS1 and ITS2 (Fig. 2a). How-
ever, the fourth enterotype in ITS1 was dominated by an 
unclassified Ascomycota phylum (Ascomycota.sp, present 
in 15.1% of ITS1 samples), while in ITS2 it was driven by 
an unclassified Saccharomycetales order (Saccharomy-
cetales.sp, present in 5.5% of ITS2 samples). Such a dif-
ference observed for the fourth enterotype between ITS1 
and ITS2 can be attributed to different amplicon-targeted 
regions by ITS1 and ITS2 [35], and we found that Asco-
mycota.sp and Saccharomycetales.sp were enriched in 
ITS1- and ITS2-sequencing datasets (p < 0.05 with Wil-
coxon rank-sum test, Figure  S7), respectively. Hierar-
chical clustering on the combined datasets (ITS1 and 
ITS2) shows that these two enterotypes can be grouped 
together, suggesting that these two enterotypes had simi-
lar structures (Figure  S5d). Thus, we defined the fourth 
enterotype as Asc_type hereinafter.

We further confirmed the robustness of the entero-
types by performing a cross-dataset validation analysis 
between the ITS1- and ITS2-combined datasets with a 
LASSO logistic regression model (“Materials and meth-
ods” section). In the first instance, the model’s high pre-
diction accuracy (Fig. 2b, Figure S8) supported the fungal 
enterotypes’ robustness. We also obtained a good perfor-
mance of cross-validation in the absence of these ente-
rotypes’ driver genera, revealing the enterotypes’ ability 
to characterize the overall fungal community structure 
independent of the main driver genera (Fig.  2b, Fig-
ure  S8). Moreover, the consistent enrichment trends of 
enterotype-specific fungal genera indicated that fungal 
enterotypes from different cohorts had a similar pattern 
of fungal compositions (Fig. 2c).

We then examined the geographical and ecological 
characterizations of the fungal enterotypes. Among the 
different populations, we found that the Can_type ente-
rotype was less common in European populations (ITS1: 
p = 4.67e-14, odds ratio: 0.20; ITS2: p = 3.92e − 09, odds 
ratio: 0.44; Fisher’s exact test), while the Sacc_type ente-
rotype was relatively rare in populations from North 
America (ITS1: p < 2.2e − 16, odds ratio: 0.04; ITS2: 
p = 1.8e − 02, odds ratio: 0.67; Fisher’s exact test). This dif-
ference might be partially attributed to the significantly 
decreased abundance of Candida in European popula-
tions and that of Saccharomyces in North American 
populations (p < 0.05 with Wilcoxon rank-sum test; Fig-
ure S1a). Furthermore, we observed that both the Sacc_
type and Can_type had the lowest diversity (p < 0.05 with 
Wilcoxon rank-sum test; Figure  S6b), and a strong and 
inverse correlation between the fungal alpha diversity 
indices and abundances of their respective driver genera 
(p < 2.2e − 16, Pearson’s r <  − 0.3).
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In addition, we explored the relationship between 
the fungal and bacterial enterotypes using paired ITS1 
for fungal profiling and metagenomics data for bacte-
rial profiling, as both data types were available for the 
CHGM cohort (see “Materials and methods” section). 
Four bacterial enterotypes, which were identified follow-
ing the same procedure as that of the fungal enterotypes 
with genus-level metagenomics data (Figure  S9), were 
respectively dominated by Bacteroides (20.2% and 37.4% 
abundances in two bacterial enterotypes, annotated as 

prok_bac_E1 and prok_bac_E2, respectively), Prevotella 
(42.5% abundance in the prok_bac_E3 enterotype; par-
ticularly species P. copri) and Enterobacteriaceae (34.9% 
abundance in the prok_bac_E4). Such observations were 
in line with those previously reported in Asian popula-
tions [15, 36]. In addition, we observed a significant cor-
relation between the fungal and bacterial enterotypes 
(p = 9.6e = 03, χ2 = 21.8, chi-squared test; Fig.  2d). For 
example, the Can_type fungal enterotype was enriched 
in the prok_bac_E1 enterotype (p = 3.6e − 03, odds ratio: 

Fig. 2 The enterotypes of the human gut mycobiome. a Clustering results of fungal enterotypes on ITS1 and ITS2 datasets and visualized 
by principal coordinate analysis (PCoA), and the most abundant genera within each enterotype is shown. The between‑sample distances 
within each cluster compared to the median distance between clusters (black line) are shown at the bottom right of each panel. The bar height 
is the median distance, and the whiskers represent the 25th and 75th quantiles. b A four‑enterotype classifier trained on the ITS2‑sequencing 
datasets was applied to predict enterotypes in the ITS1‑sequencing datasets, and the corresponding Area Under the Receiver Operating 
Characteristic Curve (AUC) values were presented. “Without drivers” refers to excluding the driver genera Candida, Saccharomyces, Aspergillus, 
Saccharomycetales sp. and Ascomycota sp. when training the classifiers. c The concordance of enterotype‑associated fungal genera and enrichment 
trends across different cohorts, and log(FC) denotes the log‑transformed fold change of the average relative abundance of the genera 
within respective enterotypes relative to that of others. The taxa name with a placeholder means that it could not be confidently assigned 
to a known taxonomic group. Asterisks represent the statistical significance of the multiple testing corrected one‑sided Wilcoxon rank‑sum 
tests (*adjusted p < 0.05, **adjusted p < 0.01, ***adjusted p < 0.001). d The correlations between fungal enterotypes and bacterial enterotypes 
in the CHGM cohort. The color reflects the O/E ratio (the ratio of observed count to expected count), and asterisks represent the statistical 
significance of Fisher’s exact test for each pair of comparison: *p < 0.05, **p < 0.01
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2.41, Fisher’s exact test), and depleted in the prok_bac_
E3 enterotype (p = 0.024, odds ratio: 0.49, Fisher’s exact 
test). We also observed that the Asp_type enterotype 
showed a trend to be enriched in the bacterial entero-
types prok_bac_E2, while the Asc_type enterotype was 
enriched in the prok_bac_E4 (p = 0.05, odds ratio = 1.56, 
Fisher’s exact test). Together with the consistent results 
from other studies (p = 3.4e − 07, χ2 = 40.6, chi-squared 
test; Figure  S10), such evidence suggested a significant 
correlation between fungal and bacterial communities.

Age has a large effect on fungal enterotypes
We then explored the associations between the fun-
gal enterotypes and the hosts’ basic characteristics, 

including age, gender and BMI. We noticed that age 
could significantly explain the inter-individual variation 
of the human gut mycobiome and strongly affected the 
fungal enterotypes in three of four cohorts with avail-
able age metadata, including the CHGM cohort, Limon 
et  al. [12], and Zuo et  al. [22] (p < 0.05, R2 0.04–0.15, 
PERMANOVA; Fig.  3a, Supplementary Table  S4). The 
small age effect on the fungal enterotypes in the other 
two cohorts (Gao et al. [23] and Limon et al. [12]) was 
likely due to their small sample size (only 31 samples in 
Gao et al. [23] cohort) or the monotonous composition 
of fungal enterotypes (72% of samples assigned to Asc_
type enterotype in Limon et al. cohort [12]). As shown 
in Fig.  3a, Can_type (38.8%) and Asc_type (34.0%) 

Fig. 3 Age distribution and the gut aging indices of fungal enterotypes. a Age distribution of fungal enterotypes in two cohorts from China 
with p values from Wilcoxon rank‑sum test p values shown for the age difference between enterotypes (left two panels). The right panel 
shows the proportion of fungal enterotypes in young (18–30 years), middle (31–60 years), and old (> –60 years) age groups from these two 
cohorts, respectively, with asterisks showing the statistical significance of multiple testing corrected Fisher’s exact test (*adjusted p < 0.05, ** 
adjusted p < 0.01, *** adjusted p < 0.001). b The age‑associated fungal genera with p values < 0.05 determined by multivariate linear regression 
with adjustment of gender and cohort, where the red bar represents a positive correlation while the blue one represents a negative one. c The 
correlation between the gut aging index (GAI) and age after the LOESS smoothing for each fungal enterotype on four cohorts with available age 
data (CHGM cohort, Gao et al. [23], Limon et al. [12], and Zuo et al. [22]). Sacc_type: p = 2.1e − 03, Pearson’s r = 0.30; Can_type: p = 8.4e − 10, Pearson’s 
r = 0.45; Asp_type: p < 3.0e − 06, Pearson’s r = 0.36; Asc_type: p = 1.3e − 02, Pearson’s r = 0.27. d The distribution of GAI across fungal enterotypes 
in different cohorts. Wilcoxon rank‑sum test p values are displayed above the boxplots
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were significantly enriched in the elderly participants 
(age > 60  years), while Sacc_type (37.3%) and Asp_
type (44.9%) were significantly enriched in the young 
participants (age < 30  years; p < 0.05, odds ratio > 1, 
Fisher’s exact test). Additionally, a significant inverse 
correlation between fungal Shannon diversity and 
chronological age was observed (p = 3.34e − 08, Pear-
son’s r =  − 0.19). Moreover, a multivariate linear regres-
sion analysis of 531 healthy participants from these four 
cohorts identified 21 age-associated fungal genera by 
adjusting for the potential confounding effects of gen-
der and cohort (Fig.  3b; “Materials and methods” sec-
tion). Notably, nine age-associated fungal genera were 
observed to have a different abundance distribution 
among the three fungal enterotypes (Supplementary 
Table  S5). Among these genera, Candida, one driver 
genera of the Can_type, had a positive association with 
age (p = 4.0e − 06, β =  4.0e − 03), while two other gen-
era, Saccharomyces (p = 1.6e − 06, β =   − 3.5e − 03) and 
Aspergillus (p = 1.3e − 05, β =   − 1.9e − 03), showed an 
inverse trend. This observation was consistent with the 
age distribution trends of their respective fungal ente-
rotypes (Fig. 3a). Hence, we suspected that the associa-
tion of fungal enterotypes with age is at least partially 
driven by their respective dominant fungal genera. No 
significant association of fungal enterotypes with BMI 
or gender was found in any cohort (Supplementary 
Table S4).

To further demonstrate the association between 
the fungal enterotypes and age in other cohorts with-
out available age metadata, we calculated a gut aging 
index (GAI) for each sample based on the 21 age-
associated fungal genera. The GAI was defined by 
quantifying the balance between age-positive and age-
negative associated fungal taxa similar to the idea of 
defining the gut microbiome health index (GMHI) 
[37], where higher GAI scores indicate a higher level 
of intestinal aging (“Materials and methods” section). 
According to our results, the GAI showed a strong 
correlation with the age of participants within each 
enterotype (Sacc_type: p = 2.1e − 03, Pearson’s r = 0.30; 
Can_type: p = 8.4e − 10, Pearson’s r = 0.45; Asp_type: 
p < 3.0e − 06, Pearson’s r = 0.36; Asc_type: p = 1.3e − 02, 
Pearson’s r = 0.27; Fig.  3c). Of note, participants of 
the Can_type and Asc_type enterotypes had consist-
ently higher GAI scores throughout their lifespan, 
while those of the Sacc_type and Asp_type had rela-
tively lower GAI scores (Fig. 3c). Similar results found 
in healthy subjects of other cohorts without available 
age metadata further validated the significant associa-
tions of GAI scores with fungal enterotypes (Fig. 3d). 
Consequently, participants of the Can_type entero-
type, containing more age-positive related fungi than 

age-negative ones, tended to have a higher intestinal 
age, while the physiological condition of the Sacc_type 
enterotype exhibited a younger state (Fig. 3c, d). Addi-
tionally, the distribution of GAI scores in participants 
with different bacterial enterotypes became another 
piece of evidence to support correlations between 
fungal and bacterial enterotypes. For example, par-
ticipants of the prok_E3_bac enterotype (enriched in 
Sacc_type) had the lowest GAI scores similar to those 
of the Sacc_type (p < 0.05 with Wilcoxon rank-sum 
test; Figure  S11d). A correlation between the East-
ern Cooperative Oncology Group (ECOG) scores, a 
metric used to evaluate the functional status of can-
cer patients, and the GAI scores was observed within 
the CHGM cohort (p = 0.04, Pearson’s r = 0.17; Fig-
ure  S11c). Furthermore, higher GAI scores, as we 
observed in patients with intestinal dysbiosis com-
pared to their paired controls, might indicate the 
occurrence of aging-related pathological changes in 
the intestine (p < 0.05 with Wilcoxon rank-sum test; 
Figure S11e; Supplementary Note).

Functional variations across fungal enterotypes
To characterize the bioactive potential of the fungal 
enterotypes, we annotated fungi-contributed pathways 
based on the paired shotgun metagenomics data in 
the CHGM cohort (“Materials and methods” section). 
In total, we identified 388 biological pathways in the 
cohort, among which 48 were contributed by fungi 
alone, and 104 were contributed by both bacteria and 
fungi (fungi-contributed pathways hereafter). Func-
tional richness (the observed number of fungi-contrib-
uted pathways) did not vary among fungal or bacterial 
enterotypes (Figure  S6c). However, we identified a 
total of 31 fungi-contributed pathways whose distribu-
tion varied across enterotypes (adjusted p < 0.05 with 
Wilcoxon rank-sum test; Supplementary Table  S6). 
Furthermore, the relative abundances of these path-
ways were also significantly correlated with those of 14 
fungal genera (adjusted p < 0.05, Pearson’s correlation; 
Fig.  4a; Supplementary Table  S6). An overrepresenta-
tion of pathways related to carbohydrate degradation 
in the Asc_type enterotype was observed, suggesting 
a possible increase in saccharolytic and proteolytic 
potential (Fig.  4a). Notably, most of the Sacc_type 
enriched pathways were positively associated with the 
relative abundance of Saccharomyces (Fig.  4a), which 
implies the essential roles of genus Saccharomyces in 
these biological pathways. Two pathways involved in 
heme biosynthesis (PWY-5920 and HEME-BIOSYN-
THESIS-II) were enriched in the Can_type entero-
type and associated with the its dominant genera, i.e., 
Candida.
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We next investigated the associations between these 
enterotype-associated pathways with host proper-
ties. We observed a significant positive correlation 
between the relative abundance of the Can_type-asso-
ciated pathway PWY-7279 (aerobic respiration) and 
subject age (adjusted p = 2.0e − 23, Pearson’s r = 0.45; 
Fig.  4b), consistent with the previous observation that 
the elderly population contained a higher abundance 
of pathways involved in microbial respiration [38, 39]. 
One of the previously detected age-positively related 
genera, Paracremonium, was also shown to be asso-
ciated with aerobic respiration pathways (adjusted 
p = 2.0e − 04, Pearson’s r = 0.26; Fig. 3b, Fig. 4a). Moreo-
ver, we found a significant positive correlation between 
host BMI and PWY-2723, a trehalose degradation path-
way (adjusted p = 5.9e − 04, Pearson’s r = 0.29; Fig.  4c), 
which might explain the slightly higher BMI levels 
in participants with the Asc_type enterotype (Fig-
ure  S11f ). The Asc_type enterotype, where PWY-2723 
was enriched, had a similar enrichment of biological 
pathways related to energy metabolism (Fig. 4a). Thus, 
the functional differences observed across fungal enter-
otypes can partly explain the host phenotype variations 
among fungal enterotypes.

Can_type enterotype is prevalent in disease populations
We further examined the clinical relevance of the fungal 
enterotypes by assessing their associations with human 
diseases. By comparing the fungal enterotype struc-
tures of healthy participants with those of patients while 
adjusting for age, we found that the Can_type enterotype 
was significantly more prevalent in patients of diseases 
such as type 2 diabetes, clostridium difficile infection, 
alcoholic hepatitis, and Alzheimer’s disease (Fig.  5a, 
p < 0.05, odds ratio > 1, Fisher’s exact test). Although 
there was no significant correlation between fungal ente-
rotypes and other human diseases, we observed similar 
trends of a higher prevalence of the Can_type enterotype 
in the patients of these diseases (Fig. 5a, odds ratio > 1). 
In contrast, the other two enterotypes (i.e., the Sacc_
type and the Asp_type) were mainly enriched in healthy 
participants (Fig.  5a; odds ratio < 1), except that the 
Sacc_type was enriched in two viral infectious diseases 
(H1N1 and COVID-19; Fig. 5a). To further quantify the 
disease associations across fungal enterotypes, we calcu-
lated a Gut Microbiome Health Index (GMHI) as previ-
ously described [37], and a higher GMHI value indicates 
a healthier status. Consistent with our expectations, the 
participants of the Can_type enterotype were more likely 

Fig. 4 Metabolic pathways associated with fungal enterotypes. a The fungal pathways enriched in different fungal enterotypes (bottom) 
and associated fungal genera (top). Log(FC) denotes log‑transformed fold change of the average relative abundance of the pathway 
within respective fungal enterotypes relative to that of the others. Asterisks denote the statistical significance of multiple testing corrected Pearson 
correlation tests (top) and multiple testing corrected Wilcoxon rank‑sum tests (bottom): *adjusted p < 0.05, **adjusted p < 0.01, ***adjusted p < 0.001. 
Stars mark the metabolic pathways involved in carbohydrate degradation. b The relationship between the fungi‑contributed pathway PWY‑7279 
and age. c The relationship between the fungi‑contributed pathway PWY‑2723 and BMI
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to have the lowest GMHI value (Fig. 5b), while those of 
the Asp_type and Sacc_type enterotypes were more 
likely to have higher GMHI values. Thus, in addition to 
its association with higher intestinal aging, the Can_type 
enterotype might also be related to a higher disease risk.

To explore the potential molecular mechanism contrib-
uting to the association of the Can_type enterotype with 
disease risk, we examined the intestinal barrier function 
as indicated by human DNA contents (HDCs) in the 
CHGM cohort (“Materials and methods” section). HDC 
acts as an indicator of the compromised intestinal barrier. 
Previous studies show a significant elevation in HDCs 
among patients with several intestinal diseases [40]. We 
found that HDCs were significantly higher in the feces of 
participants of the Can_type and the Asc_type entero-
types than those of the Sacc_type and the Asp_type ente-
rotypes (p < 0.05 with Wilcoxon rank-sum test; Fig.  5c). 

This finding was consistent with the GAI scores of these 
enterotypes (Fig. 3c). Therefore, the compromised intes-
tinal barrier might help to explain the increased disease 
risk in participants of the Can_type. In addition, we also 
observed significant correlations between the HDCs and 
the two fungi-contributed pathways involved in aerobic 
respiration (adjusted p < 0.05, spearman’s r > 0.3; Fig.  5d, 
e). These results strongly indicate significant relation-
ships among the compromised intestinal barrier (hence 
the increased HDC), gut aging, and the fungal entero-
types’ distribution and bioactive potential. Furthermore, 
we employed bidirectional mediation analysis, a statisti-
cal technique that enables the investigation of recipro-
cal relationships between two variables and a mediator 
variable, to see whether the aerobic respiration pathway 
can serve as a mediator for the impact of aging on the 
intestinal barrier. As shown in Fig. 5f, we found that the 

Fig. 5 Associations between fungal enterotypes and human diseases. a Enrichment of the fungal enterotypes in human diseases compared 
to the control group after age was controlled; the odds ratios (OR) and p values of the Fisher’s exact test are shown. AUD: alcohol use disorder; T2D: 
type 2 diabetes; CDI: clostridium difficile infection; ALHP: alcoholic hepatitis; CD: Crohn’s disease; IBS: irritable bowel syndrome; COVID‑19: coronavirus 
disease 2019; AD: Alzheimer’s disease. b, c Violin plots showing median and quartiles of gut microbiome health index (GMHI) (b) and human DNA 
contents (HDCs) (c) across fungal enterotypes in the CHGM cohort, where Wilcoxon rank‑sum test p values are displayed above the boxplots. d, e 
Correlations between the HDCs (Y‑axis) and the relative abundance of two pathways related to aerobic respiration (X‑axis), namely PWY‑7279 (d) 
and PWY‑7279 (e). The shaded region denotes the 95% confidence interval of the linear regression. f Mediation linkages among the chronological 
age, pathway PWY‑7279, and HDCs. pmediation was estimated through a bidirectional mediation analysis with 1000 bootstraps
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increased age might contribute to the HDC elevation by 
affecting the abundance of the aerobic respiration path-
way (69%, pmediation < 1e − 04; Fig.  5f ), which means the 
increased level of aerobic respiration significantly medi-
ated the relationship between the age and compromised 
gut barrier.

Discussion
We have uncovered noteworthy associations among age, 
fungal enterotypes, and disease risk. Fungal diversity 
decreased with increasing age, a similar trend observed 
for the gut prokaryotic microbiome as reported in previ-
ous studies [39, 41]. A reduction in diversity is generally 
indicative of intestinal dysbiosis, while gut ecosystems 
with high species diversity might be more resistant to 
external environment interferences [37, 42]. Consistent 
with these findings, the Can_type enterotype associated 
with a higher disease risk, displayed the lowest fungal 
diversity, rendering it more vulnerable to the external 
perturbations. Thus, the age-related decline in diversity 
might reflect a progressive loss of homeostasis in the 
gut ecosystem. Additionally, non-healthy participants 
exhibited elevated GAI scores, suggesting the potential 
involvement of age-related fungal genera in pathogen-
esis. These findings support the previous conclusion on 
the overlap between aging-related and disease-related 
deterioration in the gut microbiome [43]. The shared 
mycobiome alterations might be partially attributable to 
aging-associated disorders such as frailty and cognitive 
decline. In addition to the aging-associated pathologi-
cal changes, the dietary habits, lifestyle, and administra-
tion of antibiotics, which can significantly affect our gut 
microbiome [44, 45], also vary during different stages of 
human life [46]. Thus, age is associated with a combina-
tion of multiple factors, which, in turn, affect fungal ente-
rotypes. Given the occurrence of age-related changes 
in both the human gut mycobiome and bacteriome, we 
recommend combining both for future research into the 
underlying mechanisms of the gut microbiomes during 
the aging process.

The inter-kingdom interactions between the mycobi-
ome and bacteriome are often observed in the human 
gut, which may mediate the observed relationship 
between fungal enterotypes and host physiology. For 
instance, the increased inflammation associated with 
the Candida enterotype (Can_type) could be partially 
mediated by mutualistic interactions between Candida 
spp and various bacterial pathogens, such as Escherichia 
coli and Clostridium difficile. Specifically, the virulence 
factors produced by Candida spp could enhance host 
susceptibility to the proliferation of these bacterial patho-
gens, which are known to trigger intestinal inflammation 
via the production of toxins [19, 47–49]. Additionally, 

the Sacc_type enterotype, characterized by an over-
abundance of S. cerevisiae, exhibited enhanced intesti-
nal barrier function. S. cerevisiae has a protective effect 
on intestinal barrier integrity [50]. Although the exact 
mechanism of this effect is not yet fully understood, one 
possibility is that S. cerevisiae could promote the growth 
of several lactic acids bacteria, e.g., Lactococcus lactis, 
which in turn produce lactic acids that augment mucin 
production and strengthen intestinal tight junction integ-
rity [51, 52]. Considering the bidirectional interaction 
between fungi and bacteria, as well as their symbiotic 
relationship with the human host, a more refined popu-
lation stratification considering both fungal and bacte-
rial communities might be more effective for disease 
diagnosis.

The functional differences arising from fungal taxo-
nomic variations among fungal enterotypes may provide 
an alternative explanation for observed host pheno-
type variations across these enterotypes. Notably, two 
pathways involved in heme biosynthesis (PWY-5920 
and HEME-BIOSYNTHESIS-II) enriched in the Can_
type enterotype (Fig.  4a) could potentially have nega-
tive impacts on the host. Heme is a key iron source for 
pathogenic bacteria and has been linked to a higher risk 
of colorectal cancer (CRC) due to its potential to damage 
the intestinal mucosa [53, 54]. Interestingly, age-related 
changes were manifested by the increased metabolic 
pathways involved in microbial respiration, which were 
also found to be enriched in the Can_type enterotype. 
One possible explanation is that the higher oxygen level 
caused by inflammation related to aging promotes aero-
bic respiration in the gut microbiome [55]. Moreover, 
participants of the Asc_type enterotype with higher BMI 
levels had enriched biological pathways related to energy 
metabolism, which is consistent with previous findings 
that the microbiota of obese individuals has an increased 
capacity for energy harvest [56]. Therefore, the observed 
functional differences across fungal enterotypes are 
likely to have important implications for host phenotype 
variations.

We also noticed several limitations of our study. Firstly, 
the presence of the fungi detected in the stool samples 
does not necessarily indicate their long-term coloni-
zation in the gut as many of the detected fungi are also 
commonly found in the food and oral cavities. One lon-
gitudinal study of 42 individuals argued that fungi are 
transient in the human gut and do not colonize in the 
gut for long periods of time [57], but another large-scale 
study had contrary conclusion and identified several 
core fungal taxa that were stable over time [58]. To bet-
ter unveil the colonization of fungi in the gut, profiling of 
active fungal community by ITS cDNA analysis is needed 
in future work. Secondly, the interactions between the 
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bacteria and fungi were not explored here. The landscape 
of multi-kingdom interactions can provide insights into 
the mechanisms underlying the gut mycobiome structure 
and its association with host physiological conditions. 
Finally, we explored the functions of gut fungi based on 
the metagenomics data. However, the metagenomics 
data is dominated by bacteria, which leads to the under-
representation of functional profiling of gut mycobiome. 
Fungi-enriched metagenomics sequencing can be helpful 
to infer the complete functional profiling of the mycobi-
ome in the future.

Conclusions
In this study, we characterized the human gut fungal 
community structures with a broad spectrum of ITS 
sequencing samples from 16 cohorts across 11 coun-
tries worldwide, including 572 newly ITS-profiled and 
metagenomically sequenced samples from China. We 
confirmed the existence of four fungal enterotypes that 
varied in taxonomic and functional compositions. These 
enterotypes showed close associations with both age and 
diseases, with the Candida-dominated enterotype being 
particularly enriched in the elderly population and asso-
ciated with multiple human diseases accompanied by a 
compromised intestinal barrier. Bidirectional mediation 
analysis further revealed that the Can_type-associated 
fungi-contributed aerobic respiration pathway could 
mediate the association between aging and the compro-
mised intestinal barrier. These findings reveal both the 
biological and clinical significance of fungal enterotypes 
and offer a new perspective on host-microbe interactions.

Materials and methods
Data collection
We downloaded ITS sequencing data of fecal samples 
from public databases including National Center for Bio-
technology Information (NCBI) sequence read archive 
(SRA) and China National GeneBank database (CNG-
Bdb). Samples with read number fewer than 10,000 were 
discarded. Due to the instability and large difference 
in the human gut mycobiome of infants, we excluded 
samples from infants. Metadata including demograph-
ics (e.g., age, gender, BMI, country) and human disease 
phenotypes were also retrieved from corresponding pub-
lications or databases. As a result, we collected a total of 
2791 public samples from 11 countries covering multiple 
human disease phenotypes including clostridium difficile 
infection (CDI), alcohol use disorder (AUD), coronavirus 
disease 2019 (COVID-19), type 2 diabetes (T2D), irrita-
ble bowel syndrome (IBS), alcoholic hepatitis (ALHP), 
Crohn’s disease (CD), and melanoma. The details for 
each project including the number of samples, country, 

associated disease phenotype and used amplicon targets 
were listed in Supplementary Table S1.

We additionally collected human fecal samples from 
newly recruited 572 Chinese volunteers (CHGM cohort) 
with age ranging from 18 to 89 years old, where the fecal 
mycobiome was profiled with ITS1 amplification. Of 
these samples, 74 were collected from subjects with Alz-
heimer’s disease (AD) enrolled in Shanghai Sixth People’s 
Hospital, whereas others were obtained from healthy vol-
unteers recruited in Wuhan, Shanghai, and Zhengzhou. 
Subjects who take antibiotics, antifungals or probiotics 
up to 1 month prior to sample collection were excluded 
from this study. The study protocol was approved by the 
Human Ethics Committee of the School of Life Science of 
Fudan University (No. BE1940) and the Ethics Commit-
tee of the Tongji Medical College of Huazhong University 
of Science. All subjects provided informed consent before 
participation and were asked to complete question-
naires. In total, the combined dataset consisted of 3363 
samples from 16 cohorts and covered 11 countries from 
three continents, including Europe (615 samples), North 
America (344 samples) and Asia (2404 samples); among 
which, the fungal compositions of six and nine cohorts 
were determined by ITS1- (960 samples) and ITS2- (2403 
samples) sequencing.

DNA extraction from fecal samples
After sample collection, the fecal samples from the 
CHGM cohort were immediately stored on dry ice and 
transported to a refrigerator at – 80 ℃ within 5 h. Total 
DNA was extracted from fecal samples using semi-auto-
mated DNeasy PowerSoil HTP 96 Kit (Qiagen, 12,955–4) 
according to manufacturer’s instructions. The purified 
DNAs were quality-checked by 1% agarose gel, and DNA 
concentration and purity were determined with Nan-
oDrop 2000 UV–vis spectrophotometer (Thermo Scien-
tific, Wilmingtom, USA).

ITS sequencing and procession
The mycobiome of CHGM cohort was profiled by the 
sequencing of Internal Transcribed Spacer (ITS), and 
the ITS1 hypervariable region was amplified with primer 
pairs ITS1F (5′-CTT GGT CAT TTA GAG GAA GTAA-
3′) and ITS2R (5′-GCT GCG TTC TTC ATC GAT GC-3′) 
[59] by an BI GeneAmp® 9700 PCR thermocycler (ABI, 
CA, USA). The PCR amplification was conducted as fol-
lows: initial denaturation at 95  ℃ for 3  min, followed 
by 27  cycles of denaturing at 95 ℃ for 30  s, annealing 
at 55 ℃ for 30 s, elongation at 72 ℃ for 45 s and a final 
extension at 72 ℃ for 10 min. The PCR mixtures (20 μL 
total value) contained 4 μL of 5 × FastPfu buffer, 2 μL of 
2.5 mM dNTPs, 0.8 μL of each primer (5 μM concentra-
tion), 0.4  μL of FastPfu DNA Polymerase and 10  ng of 
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template DNA. The PCR products were extracted from 
2% agarose gel and purified using the AxyPrep DNA Gel 
Extraction Kit (Axygen Biosciences, Union City, CA, 
USA) according to manufacturer’s instructions, and fur-
ther quantified using Quantus™ Fluorometer (Promega, 
USA). Purified amplicons were pooled and paired-end 
sequenced on Illumina MiSeq PE300 platform (Illumina, 
San Diego, USA) according to the standard protocols 
by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, 
China).

The raw ITS reads were first demultiplexed, qual-
ity-filtered by fastp version 0.20.0 [60] and merged by 
FLASH version 1.2.7 [61] with the following criteria: (i) 
the 300 bp reads were truncated at any site with an aver-
age quality score < 20 over a 50-bp sliding window, and 
the truncated reads shorter than 50  bp were discarded; 
(ii) only overlapping sequences longer than 10  bp were 
assembled according to their overlapped sequence, and 
the maximum mismatch ratio of overlap region is 0.2. 
QIIME2 (version 2019.7) was used for the downstream 
analysis [62]. The quality-filtered ITS reads were then 
denoised and clustered into amplicon sequence variants 
(ASVs) using DADA2 [63], and chimeric sequences were 
identified and removed. Then the Naïve Bayes classifier 
trained on the UNITE reference database [64] was used 
for taxonomy assignment of individual ASVs. α - and β
-diversity analysis was conducted on samples at the sam-
pling depth of 10,000 by utilizing the R packages “vegan” 
(version 2.5–7) [65] and “phyloseq” (version 1.34.0) [66]. 
α-diversity was estimated by the Shannon index (even-
ness and richness of community within a sample), Simp-
son index (a qualitive measure of community diversity 
that accounts for both the number and the abundance of 
features), Faith’s phylogenetic diversity (or Faith’s PD; a 
qualitative measure of community diversity that incorpo-
rates both the phylogenetic relationship and abundance 
of the observed features) and richness (observed number 
of features). The fungal genera presented in less than 10 
samples were excluded from downstream analysis.

Metagenomics sequencing and processing
The fecal bacterial microbiome of CHGM cohort was 
profiled by whole-genome shotgun sequencing with Illu-
mina HiSeq 2000 platform (Novogen, Beijing, China). 
DNA libraries were prepared as described previously 
[67]. The raw sequencing reads were quality-filtered 
using fastp version 0.20.0, followed by the use of Bow-
tie2 [68] to remove host-derived reads by mapping to 
the human reference genome (hg38). Quantitative profil-
ing of the taxonomic composition of the microbial com-
munities was performed via MetaPhlAn2 [69]. Profiling 
of microbial pathways was performed with HUMAnN2 
v2.8.1 [70] by mapping reads to Uniref90 [71] and 

MetaCyc [72] reference databases. Both the abundance 
output of MetaPhlAn2 and HUMAnN2 were normal-
ized into the relative abundance. We extracted the meta-
bolic pathways of gut fungi for downstream analysis. The 
metabolic pathways or bacterial species presented in less 
than 10 samples were excluded from downstream analy-
sis. To estimate the percentage of human DNA contents 
(HDCs) within CHGM cohort, we aligned the clean reads 
to the human reference genome with bowtie2, and the 
HDCs was calculated as the percentage of mapped reads 
to the total number of clean reads.

16S rRNA sequencing data processing
The 16S rRNA sequencing data available for four cohorts 
including Lemoinne et al. [27], Vitali et al. [73], Prochaz-
kova et al. [30], and Zuo et al. [22] were downloaded from 
NCBI SRA. Raw 16S reads were quality filtered, clus-
tered into ASVs and taxonomic annotated using QIIME2 
(version 2019.7) as described above. The taxonomies of 
ASVs were annotated by using the SILVA database [74]. 
α - and β-diversity analysis was conducted on samples 
at the sampling depth of 25,000. The bacterial genera 
presented in less than 10 samples were excluded from 
consideration.

Fungal enterotype clustering
The fecal samples of ITS1 and ITS2 amplification were 
separately clustered into fungal enterotypes by using a 
partitioning around medoid (PAM) clustering method 
[75] as those previously described for bacterial enterotype 
discovery [13, 14]. Briefly, the samples were grouped into 
clusters with partitioning around medoid (PAM) based on 
the between-sample Bray–Curtis distance calculated at 
genus-level, where three other widely used distance matri-
ces including Jaccard, Kulcxynski, and Jensen-Shannon dis-
tance (JSD) were also considered to validate the robustness 
of fungal enterotypes (Figure S4a). The optimal number of 
clusters was determined by the silhouette index. The driver 
genera of each enterotype was determined as the genus 
with the highest relative abundance in the enterotype.

We further validated the structural similarity of fungal 
enterotypes obtained separately from ITS1 and ITS2-
combined fungal datasets. Specifically, we performed 
cross-dataset validation between ITS1 and ITS2 data-
sets with one dataset used for training a LASSO logistic 
regression model [76] to predict the fungal enterotype 
in the other dataset. To determine whether the fungal 
enterotypes can reflect the overall community structure 
and not only the difference of the driver genera, we fur-
ther removed driver genera, Candida, Saccharomyces, 
Aspergillus, Saccharomyces sp and Ascomycota sp from 
the data and re-performed cross-validation as described 
above.
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Gut aging index
We calculated the gut aging index (GAI) by using the 
relative abundance of 21 age-associated gut fungal gen-
era. Subjects with diseases or age below 18 years old were 
excluded from this analysis. To identify age-associated 
fungi, we adopted a multivariate linear regression analy-
sis on 531 healthy subjects with age ranging from 18 to 
90 years from four cohorts (i.e., the CHGM cohort, Gao 
et al. [23], Limon et al. [12], and Zuo et al. [22]) to exam-
ine the associations between age and the relative abun-
dance of fungal genera with the adjustment of gender 
and cohort. The fungal genera associated with a p val-
ues < 0.05 in the linear regression test were considered 
as “age-associated”. We grouped these age-associated gut 
fungal genera into two sets MP and MN , where MP was 
the set of fungal genera positively associated with age 
and vice versa for MN . We then coupled these two fungal 
genera sets with a computational procedure (see below) 
to define a gut aging index (GAI) for a mycobiome sam-
ple. The GAI of sample i is defined as.

where RMP,i denotes the richness of MP (or the number 
of present fungal genera of MP in sample i) in sample i, 
|MP | is the size of set MP (or the overall number of fun-
gal genera in MP ), xj,i denotes the relative abundance of 
fungi j in sample i and the same for RMN ,i and |MN | . The 
calculation of GAI considered both the richness and the 
relative abundance of age-associated gut fungal genera 
to quantify the balance between MP and MN . Due to the 
difference between the set sizes of MP and MN , we calcu-
lated the proportion of the present fungi of these two sets 
for each sample ( RMP

|MP |
 and RMN

|MN |
 ) instead of the richness 

RMP and RMN . As such, a higher GAI or GAI > 0 indicates 
that a more age-positive related fungal profile rather than 
an age-negative related fungal profile in one sample, and 
thus suggests a higher intestinal aging degree.

Statistical analysis
All statistical analysis were conducted using R ver-
sion 4.0.5 within RStudio and all figures were visual-
ized by using “ggplot2” package version 3.3.5 [77]. The 
quantification of the variance explained by factors (e.g., 
continent, amplicon target) was calculated using the 
permutational multivariate analysis of variance (PER-
MANOVA, permutations = 999, distance = “bray”) as 
implemented by the “adonis” function in the R package 
“vegan”. Correlation between the α-diversity and chron-
ological age was assessed with Spearman’s correlation. 
Comparisons of enterotype characteristics (e.g., diver-
sity), host phenotypes (e.g., BMI, age, gender, disease) 

GAI = log10
RMP,i

|MP | j∈MP

xj,i/
RMN ,i

|MN | j∈MN

xj,i ,

and health related index (e.g., HDCs, GAI, and GMHI) 
across fungal enterotypes were performed using Fisher’s 
exact test or chi-square test for categorical variables and 
Wilcoxon rank-sum tests for continuous variables. The 
pathways enriched in each enterotype were determined 
by using a Wilcoxon-rank-sum test, where the other 
three enterotypes were combined into a single group. The 
bi-directional mediation analysis was performed using 
the “mediate” function within the R package “mediation” 
(version 4.5.0) [78] with 1000 bootstrap sampling times 
to infer the causal role of the aging in contributing to the 
compromised intestinal barrier through the fungi-con-
tributed aerobic respiration pathway. For analysis regard-
ing multiple comparisons, the Benjamini–Hochberg false 
discovery rate (adjusted p) [79] was employed to correct 
for multiple testing. The results with adjusted p < 0.05 
were considered significant without statement specially.
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Additional file 1: Figure S1. Composition and diversity of the human gut 
mycobiome across studies and geographic sites. a, The distribution of four 
highly abundant fungal taxa across three continents. b, The distribution of 
the number of total reads per sample across study populations. c, 
Cumulative curves of the number of detected genera according to the 
number of sequenced samples for different amplicon targets. d, The 
distribution of fungal Shannon diversity across study continents. e, 
Comparison of the Shannon diversity (left) and Bray‑Curtis pairwise 
dissimilarities (right) of bacteriome (16S) and mycobiome (ITS) at genus 
level. f, The correlation between fungal Bray‑Curtis distance (FBCD) and 
bacterial Bray‑Curtis distance (BBCD), where the Bray‑Curtis distance is 
calculated between two samples. The shaded gray region represents 95% 
confidence intervals of the linear regression. In boxplots, boxes span from 
the first to the third quantiles and black horizontal lines represent the 
median, with whiskers extending 1.5 times the interquartile range (IQR). p 
values of two‑sided Mann‑Whitney U‑test are shown. Figure S2. 
Cumulative curves of the number of detected genera (fungal richness) 
according to the number of sequenced reads from different study 
populations. Figure S3. Principal Coordinate Analysis (PCoA) plot of 
fungal community composition based on Bray‑Curtis dissimilarity index. 
Each point represents a sample and is colored by their dataset (a), 
continent (b) and Phenotype (c). Figure S4. Composition of the human 
mycobiome across continents with the removal of the dataset of Limon 
(2019). a, Genus‑level gut mycobiome composition across the three 
continents (North America, Europe, and Asia). b, The distribution of four 
highly abundant fungal taxa across three continents. c, The composition 
of fungal enterotypes across continents in ITS1‑ and ITS2‑combined 
datasets, respectively. To avoid the bias introduced by the dataset of 
Limon (2019) from North America (the dataset is missing the Sacc_type 
enterotype), we re‑examined the mycobiome composition across 
different continents after removing the dataset of the Limon (2019). 
Figure S5. The robustness of fungal enterotype clustering. a, The optimal 
clustering number calculated within each distance‑matrix determined by 
Silhouette score. b, The optimal cluster number under varying sampling 
sizes as determined by Silhouette score for ITS‑ and ITS2‑sequencing 
datasets, respectively. c, The effect of removing samples from the datasets 
on the overall clustering behavior for ITS1‑ and ITS2‑sequencing datasets, 
respectively. We repeated 100 times with different random samples 
removed in each iteration. The re‑clustering results indicated that the 
enterotypes generally clustered stably with various sample size and less 
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than 10% of samples were wrongly categorized even when half of the 
samples were removed. d, Hierarchical clustering on the combined ITS1 
and ITS2 datasets. e, Clustering results of fungal enterotypes on ITS1 and 
ITS2‑ combined datasets visualized by Principal coordinate analysis based 
on Family and Order levels. The adjusted rand index (ARI) values 
measuring the similarity between the enterotype clustering results at the 
family‑ or order‑level against that at the genus‑level are shown. e, The 
optimal clustering number determined by Silhouette score at different 
taxonomic levels. Partitioning around medoid (PAM) clustering was 
employed based on the between‑sample Bray Curtis distance. Figure S6. 
Characteristics of fungal enterotypes. a, Abundance of the main 
contributors of each fungal enterotype within ITS1‑ (top) and ITS2‑com‑
bined datasets (bottom). b, The distribution of fungal diversity across 
fungal enterotypes within ITS1‑ (top) and ITS2‑combined datasets 
(bottom) as measured by common alpha‑diversity indices. c, The 
distribution of functional richness across fungal enterotypes within the 
CHGM cohort. In boxplots, boxes span from the first to the third quantiles 
and black horizontal lines represent the median, with whiskers extending 
1.5 times the interquartile range (IQR). p values of two‑sided Mann‑Whit‑
ney U‑test are shown. Figure S7. The distribution of the unclassified 
Ascomycota phylum (Ascomycota.sp) and the unclassified Saccharomyc-
etales order (Saccharomycetales.sp) in ITS1 and ITS2 sequencing datasets. 
In boxplots, boxes span from the first to the third quantiles and black 
horizontal lines represent the median, with whiskers extending 1.5 times 
the interquartile range (IQR). p values of two‑sided Mann‑Whitney U‑test 
are shown. Figure S8. Robust classification of fungal enterotypes across 
datasets. a‑c, The 5‑fold cross‑validation results of four‑enterotype classifier 
on ITS1‑sequencing dataset (a), ITS2‑sequencing dataset (b) and ITS1‑ and 
ITS2‑combined datasets (c), separately. d‑e, The cross‑dataset validation 
performance of four‑enterotype classifier between ITS1 and ITS2‑sequenc‑
ing datasets. “Without drivers” refers to excluding the driver genera 
Candida, Saccharomyces, Aspergillus, Saccharomycetales.sp, and Ascomy-
cota.sp when training the classifiers. “Average” refers to the micro‑averag‑
ing ROC curve. Figure S9. Bacterial enterotype clustering results for the 
CHGM metagenomics dataset. a‑b, The optimal clustering number 
calculated within each distance‑matrix determined by Silhouette score (a) 
and CH‑index (b). c, Abundance of the main contributors of each bacterial 
enterotype within each bacterial enterotype. Figure S10. The inter‑king‑
dom interactions between bacterial and fungal communities. a, The 
correlations between fungal enterotypes and bacterial enterotypes in 
cohorts with paired 16S sequencing data. The color reflects the O/E ratio 
(the ratio of observed count to expected count), and asterisks represent 
the statistical significance of Fisher’s exact test for each pair of comparison: 
*p < 0.05, **p < 0.01. b, The distribution of Bacteroides and Prevotella across 
four fungal enterotypes. In boxplots, boxes span from the first to the third 
quantiles and black horizontal lines represent the median, with whiskers 
extending 1.5 times the interquartile range (IQR). p values of two‑sided 
Mann‑Whitney U‑test are shown. Figure S11. The impacts of host 
phenotypes on the human gut mycobiome. a, Enterotype clustering 
results on randomly down‑sampled datasets (sampled by age group) with 
50 repetitions. The left panel shows the optimal cluster number calculated 
within each distance‑matric using Silhouette score for each, and the inner 
panel of which shows the adjusted rand score (ARI) compared to the 
original enterotype clusters for each repetition. The right panel shows the 
distribution of age across re‑clustered enterotypes on down‑sampled 
datasets. b, The relationship between Shannon diversity index and age for 
each fungal enterotype with shaded region representing 95% confidence 
intervals of the linear regression. c, The correlation between gut aging 
index (GAI) and Eastern Cooperative Oncology Group (ECOG) score with 
shaded region representing 95% confidence intervals of the linear 
regression. d, The distribution of GAI across bacterial enterotypes (E1_bac, 
E2_bac, E3_bac and E4_bac). e, The distribution of gut aging index (GAI) 
between non‑healthy (Case) and healthy (Control) subjects. f, The 
distribution of BMI values across fungal enterotypes. g, The distribution of 
Shannon diversity of the human gut mycobiome between non‑healthy 
(Case) and healthy (Control) subjects. h, The distribution of bacterial 
Shannon diversity between non‑healthy (AD) and healthy (Control) 
subjects in the CHGM cohort from China. AUD: alcohol use disorder; T2D: 
type 2 diabetes; CDI: clostridium difficile infection; IBS: irritable bowel 
syndrome; COVID‑19: coronavirus disease 2019; AD: Alzheimer’s disease. In 

boxplots, boxes span from the first to the third quantiles and black 
horizontal lines represent the median, with whiskers extending 1.5 times 
the interquartile range (IQR). p values of two‑sided Mann‑Whitney U‑test 
are shown. Figure S12. Enterotype clustering results on healthy 
individuals a., Clustering results of fungal enterotypes on ITS1‑ and 
ITS2‑sequencing healthy datasets and visualized by principal coordinate 
analysis (PCoA). b., The optimal cluster number under varying sampling 
sizes as determined by Silhouette score for ITS1‑ and ITS2‑sequencing 
healthy datasets, respectively. c., The effect of removing samples from the 
healthy datasets on the overall clustering behavior for ITS1‑ and 
ITS2‑sequencing healthy datasets. We repeated 100 times with different 
random samples removed in each iteration. The re‑clustering results 
indicated that the enterotypes generally clustered stably with various 
sample size and less than 10% of samples were wrongly categorized even 
when half of the samples were removed. Supplementary Table S1. 
Statistic summary of study populations. Supplementary Table S2. The 
effect size of different factors on fungal community using permutational 
MANOVA. Supplementary Table S3. Associations between gut fungal 
and bacterial alpha diversity indices, where Spearman’s coefficient and 
corresponded p‑values were shown in table. Results of Vitali et al (2021) are 
not shown given its small sample size to calculate correlation. Supple-
mentary Table S4. The effect size of metadata variables in human gut 
mycobiome variation within each cohort measured by “envfit” function 
within the R package “vegan” (*p < 0.05, **p < 0.01, ***p < 0.001). 
Supplementary Table S5. 21 age‑associated fungal genera (p‑value < 
0.05). The p‑values of association between these genera and fungal 
enterotype are also shown. The p‑values are determined by the multiple 
linear regression with adjusted for gender and study. Supplementary 
Table S6. 31 fungal enterotype‑associated metabolic pathways. The 
p‑values are determined by the Wilcoxon‑Rank Sum test, and the 
Benjamini‑Hochberg false discovery rate (adjusted p) is employed to 
correct for multiple testing. Log(FC) denotes the log‑transformed fold 
change of the pathway within respective fungal enterotype relative to 
other three enterotypes. Supplementary note. The robustness of fungal 
enterotype clustering results.
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