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Abstract 

Background  Microbial interactions are fundamental for Earth’s ecosystem functioning and biogeochemical cycling. 
Nevertheless, they are challenging to identify and remain barely known. Omics-based censuses are helpful in predict-
ing microbial interactions through the statistical inference of single (static) association networks. Yet, microbial inter-
actions are dynamic and we have limited knowledge of how they change over time. Here, we investigate the dynam-
ics of microbial associations in a 10-year marine time series in the Mediterranean Sea using an approach inferring 
a time-resolved (temporal) network from a single static network.

Results  A single static network including microbial eukaryotes and bacteria was built using metabarcoding data 
derived from 120 monthly samples. For the decade, we aimed to identify persistent, seasonal, and temporary micro-
bial associations by determining a temporal network that captures the interactome of each individual sample. We 
found that the temporal network appears to follow an annual cycle, collapsing, and reassembling when transiting 
between colder and warmer waters. We observed higher association repeatability in colder than in warmer months. 
Only 16 associations could be validated using observations reported in literature, underlining our knowledge gap 
in marine microbial ecological interactions.

Conclusions  Our results indicate that marine microbial associations follow recurrent temporal dynamics in temper-
ate zones, which need to be accounted for to better understand the functioning of the ocean microbiome. The con-
structed marine temporal network may serve as a resource for testing season-specific microbial interaction hypoth-
eses. The applied approach can be transferred to microbiome studies in other ecosystems.
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Introduction
Microorganisms are the most abundant life forms on 
Earth, being fundamental for global ecosystem func-
tioning [1–3]. The total number of microorganisms on 
the planet is estimated to be ≈ 1012 species [4] and ≈ 
1030 cells [5, 6]. In particular, microorganisms domi-
nate the largest biome, the ocean, which harbors ≈ 
1029 microbial cells [6] accounting for ~ 70% of the total 
marine biomass [7, 8].

Microbial communities are highly dynamic, and 
their composition is determined through a combina-
tion of ecological processes: selection, dispersal, drift, 
and speciation [9]. Selection is a prominent community 
structuring force exerted via multiple abiotic and biotic 
factors [10, 11]. Several studies have addressed the role 
of abiotic factors in structuring microbial communi-
ties. For example, the temperature is one of the main 
factors exerting selection in the ocean microbiome over 
spatiotemporal scales [12–15]. Biotic factors can also 
strongly affect microbial communities [16]. However, 
a mechanistic understanding of how they affect com-
munity structure is currently lacking, as the diversity of 
microbial interactions is barely known [3, 17].

The vast microbial diversity and the fact that most 
microorganisms are still uncultured [18, 19] make it 
impossible to experimentally test all potential interac-
tions between pairs of microbes. However, omics-tech-
nologies allow estimating microbial relative abundances 
over spatiotemporal scales, which permits determining 
statistical associations between taxa. These associations 
can be summarized as a network with nodes represent-
ing microorganisms and edges representing potential 
interactions [20, 21].

As microorganisms are highly interconnected [21], 
association networks provide a general overview of 
the entire microbial system and have been tremen-
dously valuable for generating novel hypotheses about 
putative interactions. In particular, time series have 
allowed identifying potential ecological interactions 
among marine microorganisms [22–28]. For example, 
previous work characterized ecological links between 
marine archaea, bacteria, and eukaryotes [22], includ-
ing links with viruses [24, 26], also investigating within- 
and between ocean-depth relationships [25, 27]. These 
studies not only identified time-dependent associations 
among ecologically important taxa, but also potential 
synergistic or antagonistic relationships, as well as pos-
sible “keystone” species and potential niches [22, 23]. 
Moreover, several studies have reported more associa-
tions among microorganisms than between microor-
ganisms and environmental variables, suggesting the 
importance of biotic relationships in structuring micro-
bial community assemblages [22, 28].

Previous studies have used temporal microbial abun-
dance data to infer static networks summarizing all 
potential associations in space and time. This static 
abstraction assumes that the network topology does not 
change (static) and edges represent persistent associa-
tions assumed as interactions [29]; that is, edges are pre-
sent throughout time and space. This assumption cannot 
represent the reality of most microbial interactions. Thus, 
a single static network usually contains persistent, tem-
porary, and recurring (including seasonal) associations 
that need to be disentangled.

Despite the contribution of static networks to our 
understanding of microbial interactions in the ocean, 
it is necessary to incorporate the temporal dimension. 
Using a time-resolved, i.e., temporal network instead of 
a single static network would allow investigation of the 
dynamic nature of microbial associations and how they 
change over time, whether the change is deterministic 
or stochastic, and how environmental selection influ-
ences network architecture. Addressing these questions 
is fundamental for a better understanding of the dynamic 
interactions that underpin ecosystem function in the 
ocean. Here, we investigated marine microbial associa-
tions through time by determining a temporal network 
from a single static network.

Materials and methods
The Blanes Bay Microbial Observatory (BBMO)
The BBMO is a coastal oligotrophic site in the North-
Western Mediterranean Sea (41◦ 40′ N, 2◦ 48′ E) with-
out major natural disturbances and little anthropogenic 
pressure, except for the construction of a nearby harbor 
between 2010 and 2012 [30, 31]. The seasonal cycle is 
typical for a temperate coastal system [30], and the main 
environmental factors influencing seasonal microbial 
succession have been well studied and are known [12]. 
Shortly, the water column is slightly stratified in summer 
before it destabilizes and mixes with water from offshore 
in late fall, increasing the availability of inorganic nutri-
ents with maximum concentrations in winter, between 
November and March. The high amount of nutrients and 
increasing light induce phytoplankton blooms, mostly in 
late winter-early spring. During summer, inorganic nutri-
ents become limiting, the primary production is minimal, 
and dissolved organic carbon accumulates [30].

From sampling to microbial relative abundances
We sampled surface water (≈ 1  m depth) monthly 
from January 2004 to December 2013 to determine 
microbial community composition and also meas-
ured ten environmental variables, which were pre-
viously described [13, 30]: water temperature (◦C) 
and salinity (obtained in  situ with a SAIV-AS-SD204 
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Conductivity-Temperature-Depth probe), day-length 
(hours of light), turbidity (Secchi depth in meters), total 
chlorophyll-a concentration (µg/l, fluorometry of acetone 
extracts after 150 ml filtration on GF/F filters [30]), and 
five inorganic nutrients: PO4

3−, NH4
+, NO2

−, NO3
−, and 

SiO2 (µM, determined with an Alliance Evolution II auto-
analyzer [32]).

Sampling of microbial communities, DNA extraction, 
rRNA-gene amplification, sequencing, and bioinformatic 
analyses are explained in detail in [28]. In short, 6 L of 
water were prefiltered through a 200-µm nylon mesh and 
subsequently filtered through another 20-µm nylon mesh 
and separated into nanoplankton (3–20  µm) and pico-
plankton (0.2–3 µm) using a 3-µm and 0.2-µm pore-size 
polycarbonate and Sterivex filters, respectively. Then, the 
DNA was extracted from the filters using a phenol–chlo-
roform protocol [33], which has been modified for puri-
fication with Amicon units (Millipore). We amplified the 
18S rRNA genes (V4 region) with the primers TAReuk-
FWD1 and TAReukREV3 [34], and the 16S rRNA genes 
(V4 region) with Bakt 341F [35] and 806RB [36]. Ampli-
cons were sequenced in a MiSeq platform (2 × 250 bp) at 
RTL Genomics (Lubbock, Texas). Read quality control, 
trimming, and inference of operational taxonomic units 
(OTUs) delineated as amplicon sequence variants (ASVs) 
were done with DADA2 [37], v1.10.1, with the maximum 
number of expected errors set to 2 and 4 for the forward 
and reverse reads, respectively.

Microbial sequence abundance tables were obtained 
for each size fraction for both microbial eukaryotes and 
prokaryotes. Before merging the tables, we subsam-
pled each table to the lowest sequencing depth of 4907 
reads with the rrarefy function from the Vegan R-pack-
age [38], v2.4–2, (see details in [28]). We excluded 29 

nanoplankton samples (March 2004, February 2005, May 
2010–July 2012) due to suboptimal amplicon sequencing. 
In these samples, abundances were estimated using sea-
sonally aware missing value imputation by the weighted 
moving average for time series as implemented in the 
imputeTS R-package, v2.8 [39]. These imputed values did 
not introduce biases in the analyses [28].

Sequence taxonomy was inferred using the naïve 
Bayesian classifier method [40] together with the SILVA 
database [41], v.132, as implemented in DADA2 [37]. 
Additionally, eukaryotic microorganisms were BLASTed 
[42] against the Protist Ribosomal Reference (PR2) data-
base [43], v4.10.0. The PR2 classification was used when 
the taxonomic assignment from SILVA and PR2 disa-
greed. We removed ASVs that were identified as Meta-
zoa, Streptophyta, plastids, mitochondria, and Archaea 
since the 341F-primer is not optimal for recovering this 
domain [44]. Besides, Haptophyta is known to be missed 
by the primer TAReukREV3 [45].

The resulting table contained 2924 ASVs (Table  1A). 
Next, we removed rare ASVs keeping ASVs with 
sequence abundance sums above 100 reads and preva-
lence above 15% of the samples, i.e., we considered taxa 
present in at least 19  months. The resulting table con-
tained 1782 ASVs (Table 1B). An ASV can appear twice, 
in the nanoplankton and picoplankton size fractions. 
However, an ASV may be detected in both size fractions 
due to dislodging cells or particles and filter clogging, 
which can introduce biases in our analysis. To reduce 
these biases, and as done previously [28], we divided the 
abundance sum of the larger by the smaller size fraction 
for each ASV appearing in both size fractions and set the 
picoplankton abundances to zero if the ratio exceeded 2. 
Likewise, we set the nanoplankton abundances to zero 

Table 1  Number and fraction of ASVs and reads (total, bacterial, and eukaryotic) for the sequence abundance tables (A, B, and C), 
the preliminary network with significant edges (D), and the single static network (E) obtained after removing environmentally driven 
edges and edges with association partners appearing more often alone than with the partner. If an ASV appeared in the nano- and 
pico-plankton size fractions, it was counted twice

A raw sequence abundance table, B sequence abundance table without rare ASVs, C sequence abundance table after size-fraction filtering, D preliminary network with 
significant edges, E single static network

Count tables ASVs Reads Eukaryote Eukaryotic reads Bacteria Bacterial reads
  A 2924 2,273,548 1365 1,121,855 1559 1,151,693

  B 1782 2,155,318 1009 1,057,599 773 1,097,719

  C 1709 2,062,866 1007 1,057,263 702 1,005,603

  D 754 1,657,885 306 730,025 448 927,860

  E 709 1,621,959 294 719,558 415 902,401

Fractions ASV Reads Eukaryote Eukaryotic reads Bacteria Bacterial reads
  B/A*100 60.94 94.80 73.92 94.27 49.58 95.31

  C/A*100 58.45 90.73 73.77 94.24 45.03 87.32

  D/C*100 44.12 80.37 30.39 69.05 69.05 92.27

  E/C*100 41.49 78.63 29.20 68.06 59.12 89.74
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if the ratio was below 0.5. This operation removed two 
eukaryotic ASVs and 41 bacterial ASVs from the nano-
plankton, and 30 bacterial ASVs from the picoplankton 
(Table  1C). The resulting abundance table was used for 
network inference.

From sequence abundances to the single static network
First, we constructed a preliminary network using the 
tool eLSA [46, 47], as done in [28, 48], including default 
normalization and z-score transformation, using median 
and median absolute deviation. Although we are aware 
of time-delayed interactions, we considered our 1-month 
sampling interval too large for inferring time-delayed 
associations with a solid ecological basis and focused 
on contemporary interactions between co-occurring 
microorganisms. Using 2000 iterations, we estimated p 
values with a mixed approach that performs a random 
permutation test of a co-occurrence if the comparison’s 
theoretical p values are below 0.05. The Bonferroni false 
discovery rate (q) was calculated based on the p values 
using the p.adjust function from the stats R-package [49]. 
We used the 0.001 significance threshold for the p and q 
values, as suggested in other studies [20]. We refrained 
from using an association strength threshold since it may 
not be appropriate to differentiate between true interac-
tions and environmentally-driven associations [48]. Fur-
thermore, changing thresholds have been shown to lead 
to different network properties [50]. The preliminary net-
work contained 754 nodes and 29,820 edges (24,458, 82% 
positive, and 5362, 18% negative).

Second, for environmentally driven edge detection, we 
applied EnDED [48], combining the methods interac-
tion information (with a 0.05 significance threshold and 
10,000 iterations) and data processing inequality. We 
inserted artificial edges connecting each node to each 
environmental parameter. We identified and removed 
3315 (11.12%) edges that were environmentally driven; 
26,505 edges (23,405, 88.3% positive, and 3100, 11.7% 
negative) remained (Supplementary Tables 3 and 4).

Third, we determined the Jaccard index, J  , for each 
microorganisms pair associated through an edge, in 
order to remove associations between microorganisms 
that have a low co-occurrence. Let Si be the set of sam-
ples in which both microorganisms are present (sequence 
abundance above zero), and Su be the set of samples in 
which one or both microorganisms are present. Then, we 
can calculate the Jaccard index as the fraction of samples 
in which both appear (intersection) from the number of 
samples in which at least one appears (union): J = Si/Su . 
We chose J > 0.5 as in previous work [48], which 
removed 9879 edges and kept 16,626 edges (16,481, 
99.1% positive and 145, 0.9% negative). We removed iso-
lated nodes, i.e., nodes without an associated partner in 

the network. The number and fraction of retained reads 
are listed in Table 1. The resulting network is our single 
static network.

From the single static network to the temporal network
We determined the temporal network comprising 120 
sample-specific (monthly) subnetworks through the 
three conditions indicated below and visualized in Fig. 1. 
The subnetworks are derived from the single static net-
work and contain a node subset and an edge subset of the 
static network. Let e be an association between micro-
organisms A and B, with association duration d = (t1, t2), 
i.e., the association starts at time point t1 and ends at t2. 
Then, considering month m, the association e is present 
in the monthly subnetwork Nm, if: 

1.	 e is an association in the single static network
2.	 The microorganisms A and B are present within 

month m
3.	 m is within the duration of association, i.e., 

t1 ≤ m ≤ t2.

With the second condition, we assumed that an asso-
ciation was present in a month if both microorganisms 
were present, i.e., the microbial abundances were non-
zero for that month. However, we cannot assume that 
microbial co-occurrence is a sufficient condition for a 
microbial interaction because different mechanisms 
influence species and interactions, and the environmen-
tal filtering of species and interactions can differ [51]. 
Using only the species occurrence assumption would 
increase association prevalence. To lower this bias, we 
also required that the association was present in the 
static network, first condition, and within the association 
duration, third condition, both inferred by eLSA [46, 47]. 
Lastly, we removed isolated nodes from each monthly 
subnetwork.

Network analysis
We computed global network metrics to characterize the 
single static network and each monthly subnetwork using 
the igraph R-package [52]. Some metrics tend to be more 
correlated than others implying redundancy between 
them, grouping them into four groups [53]. Thus, we 
selected one metric from each group: edge density, aver-
age path length, transitivity, and assortativity based on 
node degree. In addition, we also computed the average 
strength of positive associations between microorganisms 
using the mean, and assortativity based on the nomi-
nal classification of nodes into bacteria and eukaryotes. 
Assortativity (bacteria vs. eukaryotes) is positive if bac-
teria tend to connect with bacteria and eukaryotes tend 
to connect with eukaryotes. It is negative if bacteria tend 
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to connect to eukaryotes and vice versa. We also quan-
tified associations by calculating their prevalence as the 
fraction of monthly subnetworks in which the association 
was present for all 10 years (recurrence) and monthly. We 
visualized highly prevalent associations with the circlize 
R-package [54]. We tested our hypotheses of environ-
mental factors influencing network topology by calculat-
ing the Spearman correlations between global network 
metrics and environmental data. We used Holm’s multi-
ple test correction to adjust p values [55], with the func-
tion corr.test in the psych R-package [56]. We used Gephi 
[57], v.0.9.2, and the Fruchterman Reingold Layout [58] 
for network visualizations.

Test of network construction tool
We have used eLSA to estimate the duration of an 
association, which we used as the third condition (m 
is within the duration of association, i.e., t1 ≤ m ≤ t2) to 
infer the sample-specific subnetworks. Other meth-
ods may perform better on compositional data such 
as ours [59] (although this is not necessarily the case; 
see [60]). Therefore, we tested another network con-
struction approach (FlashWeave [61]) for comparative 
purposes. FlashWeave performed better than eLSA 

in some benchmark tests run by other authors, while 
eLSA performed better than FlashWeave in other 
tests [61]. FlashWeave can handle sparse datasets tak-
ing zeros into account and avoiding spurious correla-
tions between ASVs that share many zeros. However, 
it neglects the temporal variation. To control data 
compositionality [59], we applied a centered-log-ratio 
transformation separately to the bacterial and eukar-
yotic read abundance tables before merging them. 
Then, we inferred a network using FlashWeave [61], 
selecting the options “heterogeneous” and “sensitive.” 
We have run analyses including the environmental 
data (10 variables; see above). The resulting network 
had 932 nodes and 1440 edges. Next, we determined 
a temporal network using conditions (1) and (2) but 
not (3) since the temporal duration is not estimated 
by FlashWeave. FlashWeave results are used hereaf-
ter to compare against eLSA, although eLSA is kept 
as the main network construction tool in our work, 
given that it allows determination of the duration of 
the associations and there is no evidence suggesting a 
poor performance of this tool. Thus, unless specified 
otherwise, we refer to the static and temporal network 
determined by eLSA.

Fig. 1  Estimating a temporal network from a single static network via subnetworks. A A complete network would contain all possible associations 
(edges) between microorganism (nodes). B The single static network inferred with the network construction tool eLSA and the applied filtering 
strategy considering association significance, the removal of environmentally driven associations, and associations whose partners appeared 
in more samples together than alone, i.e., Jaccard index being above 0.5. An association having to be present in the single static network is the first 
out of the three conditions for an association to be present in a monthly subnetwork. C In order to determine monthly subnetworks, we established 
two further conditions for each edge. First, both microorganisms need to be present in the sample taken in the specific month. Second, the month 
lays within the time window of the association inferred through the network construction tool. Here, 3 months are indicated as an example. D 
Example of monthly subnetworks for the 3 months. The colored nodes correspond to the abundances depicted in C 
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Cyanobacteria
Our dataset contained 19 cyanobacterial ASVs, which 
all appeared in the nano-, and nine in the picoplankton. 
We blasted the sequences against the Cyanorak data-
base [62], v.2. against the nucleotide database containing 
all Synechococcus and Prochlorococcus RNAs with the 
option e value 1.0e − 5. We found 2812 sequences com-
prising 95 different ecotypes (considering name, clade, 
and subclade), with 93.84–100% identity. A total of 11 
BBMO ASVs obtained 63 hits with 100% identity, and 
within these 63 reference sequences, there were 34 dif-
ferent ecotypes. Most matching sequences were found 
for Synechococcus ASV_1. While Synechococcus ASV_5 
had only two 100% hits, they did not 100% match ASV_1 
(Supplementary Table 5). Finding Synechococcus in both 
size fractions was against expectations, as this genus is 
part of the pico-plankton. Yet, they have been observed 
in fractions above 3 µm at BBMO [63]. Recovering Syn-
echococcus ASVs from the nanoplankton may be due to 
cell aggregation, particle attachment, clogging of filters, 
or being prey to larger microorganisms. Synechococcus 
could be also picked up in the 3-µm filters during cell 
division.

Validated associations
As a general rule, the validation of associations tends to 
be limited as both true interactions and microorganisms 
that do not interact with each other are poorly known. 
As done in [48], we determined true genus-genus inter-
actions as those known in the literature, which are com-
piled within the Protist Interaction Database, PIDA [17]. 
On October 15th 2019, PIDA contained 2448 interac-
tions. Although our dataset contains protists and bacte-
ria, we could not evaluate bacterial  interactions through 
PIDA, as these are not considered in the database. The 
ambiguity in taxonomic classification and the large num-
ber of edges challenged the validation. We validated asso-
ciations between microbial eukaryotes via exact string 
matching as done previously [48].

Results
Extracting a temporal network from a single static 
association network
From 10  years of monthly samples from the Blanes Bay 
Microbial Observatory (BBMO) in the Mediterranean 
Sea [30], we computed sequence abundances for 488 bac-
teria and 1005 microbial eukaryotes from two organismal 
size-fractions: picoplankton (0.2–3  µm) and nanoplank-
ton (3–20 µm). We removed Archaea since they are not 
very abundant in the BBMO surface and primers were 
not optimal to quantify them. We inferred amplicon 
sequence variants (ASVs) using the 16S and 18S rRNA-
gene. After filtering the initial ASV table for sequence 

abundance and shared taxa among size fractions, we kept 
285 and 417 bacterial and 526 and 481 eukaryotic ASVs 
in the pico- and nanoplankton size fractions, respectively. 
We found 214 bacterial ASVs that appeared in both size 
fractions, but only two eukaryotic ASVs: a Cryotheco-
monas (Cercozoa) and a dinoflagellate (Alveolate).

We used 1709 ASVs to infer a preliminary association 
network with the tool eLSA [46, 47]. Next, we removed 
environmentally driven edges with EnDED [48]. We only 
considered edges involving partners that co-occurred 
more than half of the times together than alone (see the 
“Methods” section and Fig. 1A-B). Our filtering strategy 
removed a higher fraction of negative than positive edges 
(see the “Methods” section and Supplementary Table 1). 
The resulting network is our single static network con-
necting 709 nodes via 16,626 edges (16,481 edges, 99.1%, 
positive and 145, 0.9% negative).

Next, we developed an approach to determine a tempo-
ral network. Building upon the single static network, we 
determined 120 sample-specific (monthly) subnetworks 
(see the “Methods” section for details). These monthly 
subnetworks represent the 120 months of the time series 
and together comprise the temporal network. Each 
monthly subnetwork contains a subset of the nodes and a 
subset of the edges of the single static network. We used 
the ASV abundances indicating the presence (ASV abun-
dance > 0) or absence (ASV abundance = 0) as well as the 
estimated start and duration of associations inferred with 
the network construction tool eLSA [46, 47] for deter-
mining which nodes and edges are present each month 
(Fig. 1, see the “Methods” section).

The single static network metrics differed from most 
monthly subnetworks
Since each monthly subnetwork was derived from 
the single static network, they were smaller, contain-
ing between 141 (August 2005) and 571 (January 2012) 
nodes, median ≈354 (Fig.  2A), and between 560 (April 
2006) and 15,704 (January 2012) edges, median ≈6052 
(Fig.  2B). For further characterization, we computed 
six global network metrics (Fig.  2C and Methods). The 
results indicated that the single static network differed 
from most monthly subnetworks, and it also differed 
from the average. In general, the single static network 
was less connected (edge density) and more clustered 
(transitivity) with higher distances between nodes (aver-
age path length) and stronger associations (average posi-
tive association score) than most monthly subnetworks 
(Fig. 2C). In addition, the single static network was usu-
ally more assortative according to the node degree but 
less assortative according to the domain (bacteria vs. 
eukaryote) than most monthly subnetworks (Fig.  2C). 
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High assortativity indicates that nodes tend to connect to 
nodes of a similar degree and domain.

Monthly subnetworks display seasonal behavior 
with yearly periodicity
Over the analyzed decade, the network became more 
connected and clustered in colder months, with stronger 
associations and shorter distances between nodes 

(Fig.  2C, Supplementary Figures  1 and 2). Most global 
network metrics indicated seasonal behavior with yearly 
periodicity (Fig. 2C). For instance, edge density, average 
positive association score, and transitivity were high-
est at the beginning and end of each year, while average 
path length and assortativity (bacteria vs. eukaryotes) 
were highest in the middle of each year. Assortativity 
(degree), in contrast to other metrics, usually had two 

Fig. 2  Global (sub)network metrics. A Number of ASVs (counting an ASV twice if it appears in both size fractions) for each of the 120 months of 
the Blanes Bay Microbial Observatory time series. There are 1709 ASVs of which 709 ASVs are connected in the static network. In black, we show 
the number of nodes connected in the temporal network, and in red, the number of nodes that are isolated in the temporal network, i.e., they are 
connected in the static network and have a sequence abundance above zero for that month (“non-zero”). In dark gray, we show the number of ASVs 
that are non-zero in a given month but were not connected in the static and subsequently temporal network. In light gray, we show the number of  
ASVs with zero-abundance in a given month. The sum of connected and isolated nodes and non-zero ASVs represents each month’s richness (i.e., 
number of ASVs). B By comparing the edges of two consecutive months, i.e., two consecutive monthly subnetworks, we indicate the number of 
edges that have been lost (red), preserved (black), and those that are gained (blue), compared to the previous month. C Six selected global network 
metrics for each sample-specific subnetwork of the temporal network. The colored line indicates the corresponding metric for the static network
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peaks per year corresponding to April–May, and Novem-
ber (Fig. 2C). Some metrics (number of nodes and edges, 
and average path length) presented similar seasonal 
behavior with yearly periodicity in the temporal network 
determined from the single static FlashWeave network 
(Supplementary Figure  3). However, edge density and 
transitivity displayed patterns contrary to those observed 
in the temporal network determined from the single 
static eLSA network.

We found mainly temperature and day length, and to 
a lesser extent nutrient concentrations (mainly SiO2, 
NO3

− and NO2
−, being PO4

3−less relevant), and total 
chlorophyll-a concentration to affect network topolo-
gies as indicated by correlation analyses (Supplementary 
Figure  2). For example, edge density was highest and 
temperature lowest in January–March. Then, edge den-
sity dropped as temperature increased. April–June dis-
played edge densities slightly above or similar to those 
in the warmest months July–September, while October–
December had similar or slightly lower edge densities 
than the coldest months January–March. Edge density 
vs. hours of light (day length) indicated a yearly recurrent 
circular pattern for September–April (Supplementary 
Figure  1). Yet, May–August were not part of the circu-
lar pattern. May–August had the highest day length and 
their corresponding networks low edge density (Supple-
mentary Figure 1).

Next, we quantified how many edges were preserved 
(kept), lost, and gained (new) in consecutive months. 
We found the highest loss of edges in April, pointing to 
a network collapse. The overall number of edges (pre-
served and gained) was lowest during April–September 
and increased towards the end of each year (Fig. 2B). The 
number of associations changed over time in a yearly 
recurring pattern with few associations being preserved 
when transitioning from colder to warmer waters. We 
observed a steep network change when transiting from 
colder to warmer months, reflecting a large reorganiza-
tion. In turn, the network change from warmer to colder 
months was less abrupt. Thus, network change between 
cold and warm waters was not symmetrical over the 
studied decade at the BBMO.

We defined summer and winter as in [28] and com-
pared both seasons between consecutive years in terms 
of preserved, gained, and lost associations and ASVs. We 
observed higher repeatability in edges (Supplementary 
Figure 4) and ASVs (results not shown) in colder than in 
warmer months, indicating higher predictability during 
low-temperature seasons.

Potential core associations
A single static network can comprise permanent, sea-
sonal, and temporary associations. By comparing 

monthly subnetworks, we identified edges that remain 
(preserved), appear (gained), or disappear (lost) over 
time (Fig.  2B). Intuitively, we would classify permanent 
associations through 100% recurrence. However, no asso-
ciation fulfilled the 100% criteria. Most associations had 
a low recurrence, with three-quarters of the associations 
present in no more than 38% (total 46) of the monthly 
subnetworks. The average association prevalence was 
similar across taxonomic ranks (Supplementary Fig-
ure 5). Considering the 100 most prevalent associations, 
which appeared in 71.7–98.3% (total 86–118) of the 
monthly subnetworks, 87 were associations among bac-
teria (Supplementary Table 2).

Although the temporal recurrence of associations over 
the 10  years was low, we found high recurrence in cor-
responding months from different years. We quantified 
the fraction of subnetworks in which each association 
appeared (Supplementary Figure  6). We observed the 
highest prevalence from December to March, and the 
lowest prevalence from June to August (Supplemen-
tary Figure  6). For each month, we taxonomically char-
acterized prevalent associations appearing in at least 
nine out of the ten monthly subnetworks (e.g., 9 out of 
10 Januarys; Fig. 3). We found a larger number of preva-
lent associations in colder waters compared to warmer 
waters, with Alphaproteobacteria dominating these 
associations, especially in April and May (Fig.  3). The 
Alphaproteobacteria ASVs featuring highly prevalent 
associations belonged to Pelagibacter ubique (SAR11 
Clades Ia & II), Rhodobacteraceae, Amylibacter, Puni-
ceispirillales (SAR116), Ascidiaceihabitans, Planktoma-
rina, Parvibaculales (OCS116), and Kiloniella. Between 
April and May, we noticed a large increase in the fraction 
of associations including Cyanobacteria or Bacteroidetes 
as association partners. While Cyanobacteria associa-
tions were a small fraction during November–April, they 
had a dominant role from May to October along with 
Bacteroidetes and Alphaproteobacteria associations 
(Fig.  3). Overall, this underlines the dynamic nature of 
associations over the year, pointing to recurring annual 
associations that may be essential for ecosystem function.

Dynamic associations within main taxonomic groups: 
the case of Cyanobacteria
Our results indicated that associations are dynamic 
within specific taxonomic groups. Therefore, we inves-
tigated their behavior in Cyanobacteria given the 
importance of this group as primary producers in the 
ocean. We found 661 associations for Synechococ-
cus, Prochlorococcus, and Cyanobium ASVs (Fig.  4 and 
Supplementary Figure  7). Most associations between 
cyanobacterial ASVs were positive (63 of 65), and only a 
Synechococcus (referred to as bn_ASV_5) was negatively 
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associated (association score − 0.5) with other Synecho-
coccus (bn_ASV_1 and bn_ASV_25), which, in turn, 
were positively associated (association score 0.8). While 
bn_ASV_5 appeared mainly in colder months, the other 
two appeared mainly in warmer months (Supplementary 
Figure 7). All Cyanobacteria had more associations with 
other bacteria (in total 433) than with eukaryotes (in total 
163).

Within the temporal network, the fraction of Cyano-
bacteria associations was highest in April–Octo-
ber (Fig.  4A), which are the months with the largest 
cyanobacterial abundances (Supplementary Figure 7), 
and the fewest edges in the entire temporal network 
(Fig.  2B), for example, in the year 2011 (Fig.  4B). We 
found that cyanobacterial ASVs, although being evo-
lutionarily related, behaved differently in terms of 

Fig. 3  Associations with a monthly prevalence of at least 90%. Bacteria and microbial eukaryotes are separated and ordered alphabetically. We 
provide in parentheses the number of associations that appeared in at least nine out of ten monthly subnetworks
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the number of associations over time, and associa-
tion partners (Supplementary Figure 7). For example, 
Synechococcus bn_ASV_5 had fewer partners than 
bn_ASV_1 according to numbers of associations, but 
more according to taxonomic variety (Supplementary 
Figure 7). Only a tiny fraction of Prochlorococcus (e.g., 
bp_ASV_18) association partners were other Cyano-
bacteria, which contrasted with Synechococcus and 
Cyanobium (Supplementary Figure  7). Moreover, we 
observed that Cyanobium (bn_ASV_20) connected 
to one Deltaproteobacteria (SAR324) ASV during 
the first 8  years, but the association disappeared in 
the last 2 years. In particular, the inferred association 
duration was 101 months, starting in March 2004 and 
ending in July 2012. After summer 2012, the Deltapro-
teobacteria ASV was not detected except a few reads 
in November and December 2012 and 2013. This 
Cyanobacteria example may also illustrate the dynam-
ics of associations within other main taxonomic 
groups.

Validating associations using known ecological 
interactions
We checked how many potential interactions could be val-
idated using a database of observed ecological interactions 
(PIDA; [17]). In total, 16 associations (out of 16,626) in the 
temporal network were validated by PIDA (Supplementary 
Table 6). These 16 associations describe six unique interac-
tions between seven taxa (at the genus level). For instance, 
the reoccurring association between a diatom from genus 
Thalassiosira and a Flavobacteriia starts mainly around 
October and often ends around March (Supplementary 
Figure 8). In contrast, the reoccurring association between 
a dinoflagellate from genus Gyrodinium and one from Het-
erocapsa appears for a shorter time and during the sum-
mer months (Supplementary Figure 8).

Discussion
Previous work identified yearly recurrence of microbial 
community composition at the BBMO [13, 28, 64], and 
similarly at the nearby Bay of Banyuls [14], both in the 

Fig. 4  Cyanobacteria associations. A Fraction of edges in the temporal network containing at least one Cyanobacteria ASV. B Location 
of Cyanobacteria associations in the temporal network and the single static network. Here, we show, as an example, selected months of year 2011. 
The number and fraction of cyanobacterial edges and total number of edges are listed below each monthly subnetwork and the single static 
network
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North-West Mediterranean Sea and in other temperate 
sites around the world [12, 65]. We focused here in the 
connectivity of microorganisms, and how they organize 
themselves from a network perspective. In general, the 
measured global network metrics (edge density, transitiv-
ity, and average path length) are within the range reported 
in previous studies [22–25, 66–68] (Table 2). Contrary to 
early studies reporting biological networks generally being 
disassortative (negative assortativity based on degree) [69], 
our single static network and the monthly subnetworks 
were assortative. Microorganisms had more and stronger 
connections and a tighter clustering in colder than in 
warmer waters. To some extent, this might reflect species 
richness, which has been shown for the resident microor-
ganisms to increase during the colder months at BBMO 
using the same dataset [28]. However, the exact effect of 
richness on ecological interactions among microorgan-
isms needs further analysis. Seasonal bacterial freshwater 
networks [67] also showed higher clustering in fall and 
winter than in spring and summer, but, in contrast to our 
results, networks were most extensive in summer and 
smallest in winter. In agreement with our results, Chaf-
fron et al. [68] reported higher association strength, edge 
density, and transitivity in cold polar regions compared to 
other warmer regions of the global ocean. Cold waters in 
the Mediterranean Sea are milder than polar waters. How-
ever, together, these results suggest that either microor-
ganisms interact more in colder environments or that their 
recurrence is higher due to higher environmental selec-
tion exerted by low temperatures. Additionally, limited 
resources (mainly nutrients) in summer or in the tropical 
and subtropical open ocean may prevent the establishment 
of several microbial interactions. In any case, temperature 
is likely not the only driver of network architecture [68].

The effects of environmental variables on network met-
rics are unclear [70], yet, our approach allowed us to 
identify potential environmental drivers of network archi-
tecture. Correlation analyses pointed to variables that have 
been found to influence microbial abundances in the ocean. 
For instance, our results indicated that temperature and day 
length, key variables driving microbial assemblages in sea-
sonal time series [12–14], and to a lesser extent inorganic 
nutrients, were the main factors influencing global network 
metrics. It also agrees with earlier works indicating that 
phosphorus and nitrogen are the primary limiting nutrients 
in the Western Mediterranean Sea [71, 72]. Altogether, our 
correlation analysis is a step forward towards elucidating 
the effects of environmental variables on network metrics. 
However, we did not consider several other variables that 
could affect network architecture (e.g., organic matter).

Our preliminary network (significant associations 
derived with eLSA) contained 18% negative edges com-
pared to 0.9% in the single static network (after filtering). 

Thus, our filtering strategy removed proportionally more 
negative edges. Associations may represent positive or 
negative interactions, but they can also indicate high 
niche overlap (positive association) or divergent niches 
(negative association) between microorganisms [73]. We 
hypothesize that most of the removed negative edges 
represented associations between microorganisms from 
divergent niches, most likely corresponding to colder or 
warmer months.

We found more highly prevalent associations within 
specific months than when considering all 10  years of 
data. Furthermore, our results indicate a potentially low 
number of core interactions and a vast number of non-
core ones. Usually, core microorganisms are defined 
based on sequence abundances, as those microorgan-
isms (or taxonomical groups) appearing in all samples or 
habitats being under investigation [74]. Shade and Han-
delsman [74] suggested that other parameters, includ-
ing connectivity, should create a more complex portrait 
of the core microbiome and advance our understanding 
of the role of key microorganisms and functions within 
and across ecosystems [74]. Using a temporal network, 
we identified core associations based on recurrence, 
which contributes to our understanding of key inter-
actions underpinning microbial ecosystem functions. 
Considering associations within each month, we found 
more highly prevalent associations in colder than in 
warmer months. Our results indicate microbial connec-
tivity is more repeatable (indicating higher predictabil-
ity) in colder than in warmer waters. On the one hand, 
the microbial community in colder waters being more 
recurrent [13] may explain our observations indicating 
a more robust connectivity during this period. Alterna-
tively, it may be the stronger connectivity what leads to 
more similar communities in colder waters at the BBMO. 
Last but not least, the interplay of both species dynamics 
and interactions may determine community turnover in 
the studied ecosystem. From a technical viewpoint, our 
monthly sampling strategy and/or the overall single static 
network may have not been able to detect interactions 
appearing solely in summer resulting in smaller monthly 
subnetworks. For instance, previous work on freshwater 
lakes constructed season-specific networks and found 
more associations in summer than in winter [67].

Several network-based analyses have been used to par-
ticularly study Cyanobacteria associations. For exam-
ple, in the southern Californian coast, Chow et  al. [24] 
identified 44 potential relationships of 12 Cyanobacteria 
(Prochlorococcus and Synechococcus) with two potential 
eukaryote grazers (a ciliate and a dinoflagellate), 39 to 
other bacteria, and three between Cyanobacteria, which 
were all positive. Similarly, all cyanobacterial ASVs in 
our study connected primarily to other bacterial ASVs 



Page 12 of 16Deutschmann et al. Microbiome           (2023) 11:83 

Ta
bl

e 
2 

G
lo

ba
l n

et
w

or
k 

m
et

ric
s 

of
 p

re
vi

ou
sl

y 
de

sc
rib

ed
 m

ic
ro

bi
al

 a
ss

oc
ia

tio
n 

ne
tw

or
ks

Lo
ca

tio
n 

an
d 

de
pt

h
Ed

ge
 d

en
si

ty
Tr

an
si

tiv
it

y
Av

er
ag

e 
pa

th
 le

ng
th

Sa
m

pl
in

g
D

om
ai

ns
N

ot
es

Re
fe

re
nc

e

SP
O

T 
(o

ff 
th

e 
so

ut
he

rn
 

Ca
lif

or
ni

a 
co

as
t)

; d
ee

p 
ch

lo
ro

ph
yl

l m
ax

im
um

0.
04

0.
26

3.
05

M
on

th
ly

. A
ug

us
t 2

00
0–

M
ar

ch
 2

00
4

A
rc

ha
ea

, b
ac

te
ria

, 
an

d 
eu

ka
ry

ot
es

Ed
ge

 d
en

si
ty

 fo
r m

ic
ro

-
bi

al
 n

et
w

or
k 

in
cl

ud
-

in
g 

en
vi

ro
nm

en
ta

l f
ac

to
rs

. 
Tr

an
si

tiv
ity

 a
nd

 a
ve

ra
ge

 
pa

th
 le

ng
th

 fo
r m

ic
ro

bi
al

 
ne

tw
or

k

[2
2]

SP
O

T;
 s

ur
fa

ce
 o

ce
an

 
an

d 
de

ep
 c

hl
or

op
hy

ll 
m

ax
im

um

0.
14

0.
33

1.
94

M
on

th
ly

. A
ug

us
t 2

00
0–

Ja
nu

ar
y 

20
11

Fr
ee

-li
vi

ng
 b

ac
te

ria
 

an
d 

pi
co

eu
ka

ry
ot

es
M

et
ric

s 
fro

m
 s

ur
fa

ce
 la

ye
r 

ne
tw

or
k

[2
3]

SP
O

T;
 s

ur
fa

ce
0.

02
0.

24
M

on
th

ly
. M

ar
ch

 2
00

8–
Ja

nu
ar

y 
20

11
Fr

ee
-li

vi
ng

 e
uk

ar
yo

te
s 

(0
.7

–2
0 

µm
), 

ba
ct

er
ia

 
(0

.2
2–

1 
µm

) a
nd

 v
iru

se
s 

(3
0 

kD
a–

0.
22

 µ
m

)

[2
4]

SP
O

T;
 fi

ve
 d

ep
th

s 
(5

 m
—

su
rf

ac
e,

 th
e 

de
ep

 
ch

lo
ro

ph
yl

l m
ax

im
um

 
la

ye
r, 

15
0 

m
, 5

00
 m

 a
nd

 
89

0 
m

—
ju

st
 a

bo
ve

 th
e 

se
a 

flo
or

)

0.
04

0.
28

2.
07

M
on

th
ly

. A
ug

us
t 2

00
3–

Ja
nu

ar
y 

20
11

Fr
ee

-li
vi

ng
 b

ac
te

ria
M

et
ric

s 
fo

r a
 5

-m
 la

ye
r 

ne
tw

or
k

[2
5]

52
 s

am
pl

es
 fr

om
 fr

es
hw

a-
te

r l
ak

es
 in

 C
hi

na
; s

ur
fa

ce
(0

.0
23

) W
:0

.0
33

, 
Sp

:0
.0

32
, S

:0
.0

36
, 

F:
0.

02
9

(0
.4

72
) W

:0
.5

18
, 

Sp
:0

.4
80

, S
:0

.4
75

, 
F:

0.
57

3

(4
.8

4)
 W

:2
.1

6,
 S

p:
5.

03
 

S:
7.

26
, F

:3
.0

4
Sp

at
ia

l
Ba

ct
er

ia
M

et
ric

s 
fo

r (
w

ho
le

 
ne

tw
or

k)
 a

nd
 s

ea
so

na
l 

ne
tw

or
ks

: W
: w

in
te

r, 
Sp

: 
sp

rin
g,

 S
: s

um
m

er
, a

nd
 F

: 
fa

ll

[6
7]

68
 s

ta
tio

ns
 fr

om
 th

e 
Ta

ra
 

O
ce

an
s 

ex
pe

di
tio

n 
ac

ro
ss

 
ei

gh
t o

ce
an

ic
 p

ro
vi

nc
es

; 
su

rf
ac

e 
an

d 
de

ep
 c

hl
or

o-
ph

yl
l m

ax
im

um

0.
00

5,
 0

.0
03

, 0
.0

08
0.

2,
 0

.0
, 0

.4
3

3.
05

, 3
.0

2,
 2

.5
6

Sp
at

ia
l

O
rg

an
is

m
s 

fro
m

 s
ev

en
 s

iz
e 

fra
ct

io
ns

M
et

ric
s 

fro
m

 s
ur

fa
ce

 
ne

tw
or

ks
 in

cl
ud

-
in

g 
eu

ka
ry

ot
es

 o
nl

y,
 

eu
ka

ry
ot

es
 a

nd
 p

ro
ka

ry
-

ot
es

 (0
.5

–5
 µ

m
), 

an
d 

pr
ok

ar
yo

te
s 

on
ly

 (0
.2

–
1.

6 
µm

) r
es

pe
ct

iv
el

y

[6
6]

11
5 

st
at

io
ns

 fr
om

 th
e 

Ta
ra

 O
ce

an
s 

ex
pe

di
tio

n 
co

ve
rin

g 
al

l m
aj

or
 o

ce
an

ic
 

pr
ov

in
ce

s 
fro

m
 p

ol
e 

to
 

po
le

; s
ur

fa
ce

 a
nd

 d
ee

p 
ch

lo
ro

ph
yl

l m
ax

im
um

0.
00

2
0.

03
6

Sp
at

ia
l

Ba
ct

er
ia

, a
rc

ha
ea

, 
an

d 
eu

ka
ry

ot
es

 fr
om

 s
ix

 
si

ze
 fr

ac
tio

ns

M
et

ric
s 

re
pr

es
en

t 
th

e 
m

ea
ns

 o
f s

am
pl

e-
sp

ec
ifi

c 
su

bn
et

w
or

ks

[6
8]



Page 13 of 16Deutschmann et al. Microbiome           (2023) 11:83 	

and featured mainly positive associations. Furthermore, 
Cyanobacteria displayed primarily positive associations 
with other microorganisms in a global ocean network 
[66]. This suggests that other sampling or computational 
approaches are needed to detect negative associations 
involving marine cyanobacteria.

Identifying different potential association partners for 
closely related Cyanobacteria may indicate adaptations 
to different niches. A recent study found distinct seasonal 
patterns for closely related bacterial taxa indicating niche 
partitioning at the BBMO, including Synechococcus ASVs 
[64]. Our approach can complement and further charac-
terize “sub-niches” by providing association partners for 
different ASVs. Moreover, in contrast to a single static net-
work, temporal networks allow identifying associated part-
ners in time (Supplementary Figure 7). An increase in the 
abundance of a microorganism may promote the growth of 
associated partners and a decrease may hinder the growth 
of partners or cause predators to prey on other microor-
ganisms. Moreover, given the majority of association part-
ners being other bacteria, the growth of Cyanobacteria may 
affect other bacteria and their growth, which is why it is 
necessary to identify potential interaction partners [67].

Our approach allowed us to disentangle in time the asso-
ciations captured by a single static network using monthly 
samples for ten years. Future studies should determine 
whether higher sampling frequency (e.g., daily samples dur-
ing a month) can capture other associations not present in 
our networks. Thus, our results should be considered tak-
ing into account the used (monthly) sampling frequency. In 
addition, certain network metrics may depend on the tool 
used to infer the single static network, e.g., edge density, 
and, therefore, should be interpreted with care. An addi-
tional consideration is that we disregarded local network 
patterns by using global network metrics. Future work 
could use the local-topological metric based on graphlets 
[75]. Counting the number of graphlets a node is part of 
quantifies their local connection patterns, which allows 
inferring seasonal microorganisms through recurring con-
nection patterns in a temporal network.

Conclusion
Incorporating the temporal dimension in microbial 
association analysis unveiled multiple patterns that 
often remain hidden when using single static networks. 
Investigating a coastal marine microbial ecosystem over 
10  years revealed a 1-year-periodicity in the network 
topology. The temporal network architecture was not 
stochastic, but displayed a modest amount of recur-
rence over time, especially in winter. Future efforts to 
understand the ocean microbiome should consider the 
dynamics of microbial interactions as these are likely fun-
damental for ecosystem functioning.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​023-​01523-z.

Additional file 1: Supplementary Figure 1. Correlation analysis. Using 
the temporal network, we correlated six global network metrics with 
environmental factors including the nutrients PO4

3−, NH4
+, NO2

−, NO3
−, 

and SiO2. The global network metrics were: Edge density, Average positive 
association (Avg. pos. ass.) score, Transitivity, Average path length (Avg. 
path length), Assortativity (degree), and Assortativity (bacteria vs. eukary-
ote). Each dot is a sample-specific subnetwork and its color indicates the 
month it represents. Also, the linear regression line with a 0.95 confidence 
interval is shown in grey.

Additional file 2: Supplementary Figure 2. Correlation analysis through 
linear regression. Using the temporal network, we correlated six global 
network metrics with environmental factors including the nutrients PO4

3−, 
NH4

+, NO2
−, NO3

−, and SiO2. The global network metrics were: Edge 
density, Average positive association (Avg. pos. ass.) score, Transitivity, 
Average path length (Avg. path length), Assortativity (degree), and Assor-
tativity (bacteria vs. eukaryote). The number, circle’s size, and color in the 
square correspond to the Spearman correlation scores, no circle indicates 
non-significance.

Additional file 3: Supplementary Figure 3. Global (sub)network metrics. 
Number of nodes, number of edges, and six selected global network 
metrics for each sample-specific subnetwork of the temporal network 
determined with FlashWeave.

Additional file 4: Supplementary Figure 4. Number of preserved, 
gained, and lost edges in summer and winter. A) Indicates how we deter-
mined summer, shown with red dots (temperature above 17 ºC and day 
length above 14 hours) and winter, shown with blue dots (temperature 
below 17 ºC and day length below 11 hours); grey dots indicate months 
that are neither summer nor winter. B) Accumulation curve of ASVs per 
year for winter (blue) and summer (red). C) and D) number of preserved, 
gained, and lost edges for winter and summer, respectively. The colors of 
flows indicate the prevalence of an edge with 10 (light blue) being pre-
sent in each year, and 1 (dark blue) appearing in only one year. An edge 
appears in a year if it appears in at least one monthly subnetwork in the 
corresponding season. In winter, most edges appear in all years (light blue 
indicating 100% prevalence with edges present in all ten years), i.e., most 
edges are preserved in the consecutive months (we see a flow from the 
blue preserved box to the next blue box). In summer, compared to winter, 
fewer edges are present in a month (combination of boxes indicating pre-
served, first time gained, and gained), and more edges are (re)gained and 
lost throughout the years (subsequently, prevalence is lower indicated 
through darker blue).

Additional file 5: Supplementary Figure 5. Association prevalence 
increases slightly when microorganisms are taxonomically more related. 
We grouped the associations according to the taxonomic classification 
of association partners (columns) and size fractions (rows). For example 
“Class” groups associations between bacteria and eukaryotes, respectively, 
which were assigned to the same class. The grey column groups associa-
tions between bacteria and eukaryotes. The boxplot shows the associa-
tion prevalence over a decade, i.e., in how many monthly subnetworks an 
association appears (given as a fraction from 0 to 100% = 120 networks).

Additional file 6: Supplementary Figure 6. Association prevalence 
per month. Big bar plots: distribution of associations’ prevalence for each 
month. For example, the bar at 100 for January indicates the number of 
edges that have been present in all Januarys of the ten-year time series. 
Small bar plots: number of nodes forming the associations with a 100% 
prevalence. For example, only bacteria were responsible for the edges 
during May, with an association prevalence of 100%. Bacteria are indicated 
with B or b, eukaryote with E or e. ASVs from the nano size-fraction have a 
capital letter (B, E), and ASVs from the pico size-fraction have a small letter 
(b, e).

Additional file 7: Supplementary Figure 7. Association partners of 
Cyanobacteria. The number of Cyanobacteria associations in the temporal 
network (stacked bars) and the cyanobacterial sequence abundance in 

https://doi.org/10.1186/s40168-023-01523-z
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each month (black dashed line). Within the box, figures are split by ASVs 
(rows) and size fractions: picoplankton (left column) and nanoplankton 
(right column). The unboxed plots on the right are ASVs detected only 
in the nanoplankton. The height of the bar indicates the number of 
edges in each month for each cyanobacterial ASV. The color indicates the 
taxonomy of the association partner. From bottom to top, first appear bac-
teria, and then eukaryotes, both sorted alphabetically. The subtitle shows 
the number of association partners followed by an identifier (first 3 letters) 
for bacteria and eukaryotes.

Additional file 8: Supplementary Figure 8. Microbial association 
partners that have been reported in the literature. Found associations in 
the temporal network (one association per panel and a black dot on the 
bottom shows presence in the monthly subnetwork) and the sequence 
abundance in each month (solid and dashed lines). The color and line 
type indicate the taxonomy of the association partners.

Additional file 9: Supplementary Table 1. Number of nodes, removed 
isolated nodes, and number and fraction of edges in the preliminary 
network (A), and network obtained after removing environmentally-driven 
edges (B) and edges with association partners appearing more often 
alone than with the partner (C), which is the single static network. For 
comparison, we also give the minimum and maximum number of nodes 
and edges for the temporal network (D). We did not determine the union 
and intersection for the temporal network. If an ASV appeared in the 
nano and pico size fraction, it is counted twice. Therefore, for A-C) we also 
determined the number of microorganisms not considering size fraction 
(union) and being present in both size fractions (both, i.e., intersection).

Additional file 10: Supplementary Table 2. Top 100 most prevalent/
recurring associations.

Additional file 11: Supplementary Table 3. Number of environmental 
factors leading to the removal of edges.

Additional file 12: Supplementary Table 4. Number of environmentally-
driven edges for each environmental factor and fraction considering the 
total number of edges (29820) in the network. In addition, we present the 
number of positive and negative edges and the fraction considering the 
number of edges removed through an environmental factor.

Additional file 13: Supplementary Table 5. 100% Matching sequences 
from Cyanorak database for selected cyanobacterial ASVs.

Additional file 14: Supplementary Table 6. Interactions found in 
the BBMO temporal network that have been reported in the literature. 
The table shows the number of associations found in the network. For 
example, the association between the ASVs classified as Dia. Thalassiosira 
and ASVs classified as F. unknown Flavobacteriia has been found 6 times 
in the network.
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