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Abstract 

In microbiome fields of study, meta-analyses have proven to be a valuable tool for identifying the technical drivers of 
variation among studies and results of investigations in several diseases, such as those of the gut and sinuses. Meta-
analyses also represent a powerful and efficient approach to leverage existing scientific data to both reaffirm existing 
findings and generate new hypotheses within the field. However, there are currently limited data in other fields, such 
as the paediatric respiratory tract, where extension of original data becomes even more critical due to samples often 
being difficult to obtain and process for a range of both technical and ethical reasons. Performing such analyses in 
an evolving field comes with challenges related to data accessibility and heterogeneity. This is particularly the case in 
paediatric respiratory microbiomics — a field in which best microbiome-related practices are not yet firmly estab-
lished, clinical heterogeneity abounds and ethical challenges can complicate sharing of patient data. Having recently 
conducted a large-scale, individual participant data meta-analysis of the paediatric respiratory microbiota (n = 2624 
children from 20 studies), we discuss here some of the unique barriers facing these studies and open and invite a 
dialogue towards future opportunities.

Introduction
Meta-analyses represent a powerful approach to max-
imise the use of existing data to improve an area of sci-
entific understanding [1]. Such studies often extend the 
usefulness of data beyond the original research ques-
tion for which they were generated, allowing the data to 

continue to provide novel and valuable insights. By com-
bining data from multiple studies, one can dramatically 
increase statistical power and seek to identify overarch-
ing patterns that may not be evident from a single study. 
This is particularly so for sample types that are difficult to 
obtain, and therefore, sample numbers are constrained. 
One such environment is the paediatric lower airways 
where large-scale microbiota data are limited compared 
to other fields (e.g. the gut). Individual participant data 
(IPD) meta-analyses, which utilise more granular data, 
are even more powerful than meta-analysis of stud-
ies where only overall results are considered. As a form 
of secondary analysis, meta-analyses also allow for the 
reproduction of original results, a concern highlighted in 
recently published literature [2, 3]. Additionally, combin-
ing data in meta-analyses allows for broader overarching 
questions — such as determining if there are non-specific 
disease signatures in the respiratory microbiota — to be 
investigated in a manner that is largely unfeasible within 
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a single study. Meta-analyses have been proven valuable 
in furthering understanding of the human microbiota, 
shining a light on microbiota evolution [4], technical 
drivers of variation in microbiota studies [5] and provid-
ing valuable insights into human disease in both the gut 
[6] and sinuses [7].

Although often regarded as the highest level of evi-
dence in clinical research [8], the utility of meta-analyses 
becomes limited where the underlying data are compli-
cated by clinical, technical and/or analytic heterogene-
ity among the primary studies [9, 10]. Meta-analysis 
guidelines have been established to address such limita-
tions [11]; however, existing frameworks can be ill-suited 
to microbiomic datasets that have higher complexity. 
Standardised frameworks specifying minimum reporting 
criteria for microbiome studies have emerged (e.g. MIxS 
[12], STORMS [13] and STROBE metagenomics [14]); 
however, such frameworks are not yet widely or consist-
ently applied [15], and their suitability for meta-analyses 
remains to be determined. Context-specific refinement of 
current frameworks is also needed for respiratory micro-
biome studies to address heterogeneity related to diag-
nostic inconsistencies and to account for the different 
methods used to sample the airways, each of which car-
ries its own biases [16]. Given the complexity and ever-
expanding nature of datasets emerging from omics-based 
studies, the emergence of new airway sampling methods 
(e.g. breath) [17] and the growing recognition of clinically 
relevant disease endotypes [18], there is a pressing need 
to define standardised reporting criteria for respiratory 
microbiome and multi-omic studies.

Having recently conducted a large-scale, 16S rRNA 
gene-based IPD meta-analysis focused on the paediatric 
respiratory microbiota that involved 2624 children from 
20 studies [19], we identified several challenges around 
both data sharing and methodological heterogeneity 
within this research niche. Here, we examine limitations 
of respiratory microbiota datasets that emerged from our 
study [12] and propose strategies to achieve the higher 
inter-study standardisation needed to support future 
large-scale respiratory microbiome meta-analyses.

Data accessibility challenges
After determining a research question, the first challenge 
in performing any meta-analysis is obtaining access to 
usable data [20]. Access to published data varies greatly 
among studies. For our meta-analysis [19], just over half 
of the 20 included studies had publicly available sequence 
data, and, at the time of the initial literature search, only 
two contained sufficient metadata to enable meaning-
ful linking with the sequence data. There was also vari-
ability in terms of the types of samples that had been 
uploaded to public repositories: some publicly uploaded 

datasets included samples which were not explained or 
mentioned in the original article, potentially represent-
ing mock communities, sequencing controls, negative 
extraction controls, samples excluded from the original 
publication or samples from different studies that were 
uploaded under the same accession number. Key clini-
cal metadata characteristics were frequently excluded, 
including the anatomical site from which the sample was 
taken, respiratory diagnosis of the individual providing 
the sample, and demographic variables such as age and 
sex, all of which are specified as minimum reporting cri-
teria in multiple reporting frameworks [21, 22]. While 
contact with corresponding authors yielded access to the 
required metadata for all the 20 included studies, there 
is no guarantee that this would be the case for future 
investigations, with at least one potential study excluded 
due to a lack of author response. Similar challenges have 
been encountered in other contexts, including meta-
analyses of the gut microbiome [20]. Heterogeneity in 
the uploading of sequence data to public repositories is 
also recognised as a systemic challenge in microbiomics 
that likely stems from the limited training of users who 
have variable levels of computational experience [15]. 
There remains a need for best-practice solutions and 
training to support uploading of sequence data and the 
associated metadata in consistent and useable formats, as 
highlighted by earlier standardisation efforts (e.g. MIGS) 
and exemplified by initiatives like the American National 
Microbiome Data Collaborative (https://​micro​biome​
data.​org/) [15, 21]. As there are currently no applicable 
metadata reporting criteria for respiratory contexts, we 
outline the key issues arising from our study, potential 
solutions and our recommendations in Table 1.

Overcoming barriers to accessing primary datasets
The recognised need for improved data-sharing pro-
cesses has prompted development of frameworks that 
define current best practices. One recent example is the 
American National Institutes of Health’s (NIH) Data 
Management and Sharing Policy that requires data han-
dling according to FAIR (Findable, Accessible, Interoper-
able and Reusable) principles [23]. While such initiatives 
will undoubtedly improve data-sharing practices, current 
frameworks are not specifically designed to address the 
data access and heterogeneity issues affecting microbi-
omic meta-analyses. Additionally, time frames for data 
sharing are not specified beyond being made available 
“as soon as possible”. Delays in accessing primary data-
sets, particularly those generated from human cohorts, 
are a widely acknowledged barrier to secondary analyses 
[20]. For our meta-analysis, it took ~18 months to access 
data from the 21 studies that were ultimately included 
(one of which was excluded following quality filtering of 
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sequence data), while despite best efforts we were unable 
to access data for a further 10 studies that had met our 
inclusion criteria. There is broad consensus in the envi-
ronmental microbiomic field that (sequence and meta)-
data should be made publicly available as a condition of 
manuscript publication [24], thereby removing access 
barriers entirely; however, such an approach ignores 
the complex ethical considerations involved in sharing 
human datasets, particularly those derived from vulnera-
ble or underserved populations [25, 26]. Two such groups 
are commonly included in paediatric respiratory micro-
biota studies: firstly, children are an inherently vulnerable 
population, whose original consent is typically obtained 
through the proxy of parents, and secondly, marginalised 
populations who may be overrepresented in respiratory 
microbiota studies that focus on high disease burdens 
among vulnerable populations [27–29]. An important 
example of this is First Nations populations, as empha-
sised in recent research examining Indigenous data gov-
ernance frameworks [30]. Informed consent and data 
privacy are key concerns with respect to data access, as 
children may wish to remove their data when they reach 
maturity, a right to be forgotten which has already been 
acknowledged in other contexts [31, 32]. Reliance on eth-
ics committees alone to determine whether secondary 
data use is reasonable risks ignoring important consid-
erations related to the rights of First Nations and other 
vulnerable populations [30]; however, studies of vulnera-
ble populations are essential to improving overall popula-
tion health, particularly where early interventions may be 
needed to prevent paediatric conditions progressing into 
disease in adulthood [33, 34]. Indeed, the importance 
of diversity within medical research is now increasingly 
recognised and even demanded [30, 35]. Thus, solving 
these ethical challenges is imperative to furthering scien-
tific understanding as these issues will only become more 
complex as datasets become increasingly comprehen-
sive, potentially containing multiple types of microbial 
sequences (bacterial, fungal or archaeal) as well as human 
genome data, even if only present through a “bystander” 
effect in whole-genome shotgun sequencing.

Guarded archives offer a solution for balancing the 
ethical need to maintain participants’ agency in deter-
mining how their data are used against the scientific need 
for timely access to datasets that are commonly gener-
ated using public funds. Guarded archives (databases 
where sequence and metadata are uploaded but can 
only be accessed if a request is approved by a recognised 
data-oversight regulatory body) enable external verifica-
tion that data presented in original research papers (a) 
exist and (b) are genuinely accessible to valid research 
requests (something not necessarily true when data are 
only made available “upon request” [36]). When paired 

with data communication plans that are implemented at 
the time of sample collection, guarded archives provide 
an opportunity for meta-consent processes to be applied 
in which individuals can refuse participation in a second-
ary analysis or withdraw their data from the database at 
any time. Furthermore, guarded archives allow the valid-
ity of new research requests to be reviewed both in the 
context of the original consent and ongoing patient and 
community interest group consultation. The Atlas of Liv-
ing Australia, The Indigenous Background Library and 
Aotearoa Variome (Genomics Aotearoa, 2019) repre-
sent some examples of smaller archives where appropri-
ate Indigenous consultation has been undertaken during 
development to achieve a more bespoke and ethically 
sound repository than larger public repositories such as 
the Sequence Read Archive (SRA) that can be accessed 
without regulatory oversight. The use of smaller bespoke 
archives may also mean they are better equipped to deal 
with the unique challenges facing each individual study 
in comparison with the monolithic archives currently in 
common use. Funding and control of bespoke archives, 
however, bring new challenges as they should aim to be 
Nagoya Protocol compliant [37], particularly where the 
microbiota data are later used to develop novel treat-
ments [38]. A limitation of this approach is that smaller 
organisations managing bespoke repositories may be less 
able to resist pressure from forensic and law enforcement 
agencies to release data, a problem already noted with 
human genome information [39]. It is worth noting that 
the NIH Data Management and Sharing Policy encour-
ages consideration of controlled access repositories for 
“sensitive data” [23].

Heterogeneity in clinical metadata
Another substantial hurdle to IPD meta-analyses, or even 
“merely” comparing literature on the paediatric respira-
tory microbiota, is the considerable degree of heteroge-
neity in study methodology. The sources of this variability 
stretch from the bedside (where diagnoses, symptoms 
and treatments may be reported differently) through 
to sample collection and analytical processing with an 
overabundance of different laboratory protocols (Fig. 1). 
Benchmarking protocols for microbiome studies are 
emerging [40], but, as with reporting guidelines, these 
remain to be widely adopted. Resolving the variability in 
the published literature creates a dilemma for meta-anal-
yses, whereby technical differences, which may contrib-
ute to inter-study differences, must either be ignored or 
standardised by data filtration. In our study, this resulted 
in substantial sample size reduction and therefore con-
strained our ability to generate findings (Fig. 1).

Assigning a paediatric respiratory diagnosis is a com-
plex process which is influenced by many factors that 
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include country-specific nuances, age of the child, local 
guidelines and level of expertise such as individual physi-
cians considering factors differently when making clini-
cal guidelines or diagnostic decisions [41, 42]. Even if all 

diagnostic decisions were consistent, there are limita-
tions as to how much traditional diagnoses may reflect 
underlying pathobiological processes, for example many 
diagnoses could contain multiple pathologies with shared 

Fig. 1  Impacts of data heterogeneity in meta-analyses. A key strength of meta-analyses is the ability to take data from multiple studies to increase 
sample size. A Methodological heterogeneity risks introducing confounding batch effects in pooled datasets. In this figure, data from three studies 
have been pooled and analysed using a uniform pipeline that revealed two distinct clusters (group A and group B). However, after accounting for 
methodological heterogeneity, it becomes evident that all of the data in group A were generated using a single method that was distinct from 
those that generated the data in group B. This type of batch effect risks incorrect clinical interpretation of the analysis outputs. B Selecting studies for 
inclusion in meta-analyses based on standardised methodologies can reduce batch effects outlined in A but risks loss of sample size. In respiratory studies, 
heterogeneity emerges from a multitude of clinic and laboratory factors, from initial differences in diagnostic criteria through to variation in the 
pipeline used to analyse sequence data. Within a single study (example at top), a given method is applied consistently to all samples and therefore 
has no impact on sample size. By contrast, within IPD meta-analyses (example at bottom), correction for differences in the methods used at each 
successive stage progressively erodes the sample size. If the field contains a low level of methodological standardisation, then this reduction could 
potentially make the statistical power of a meta-analysis no more useful than that of a single study
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symptoms, while common pathologies could present dif-
ferently in clinic [43]. A recent article highlighted this 
complexity, calling for the combination and elimina-
tion of several diagnoses to clarify this process, aiming 
to achieve better diagnostic accuracy [43]. Such clar-
ity would also benefit meta-analyses, as diagnostic het-
erogeneity complicates which patient cohorts should be 
compared or combined; for instance, microbiota stud-
ies of infants have used both respiratory syncytial virus 
(RSV) infection [44] and bronchiolitis [45] as group-
ing factors. Despite bronchiolitis being most commonly 
caused by RSV infection [46], and the high probability 
that these studies may be discussing identical condi-
tions, the cohorts cannot necessarily be conflated in 
meta-analyses without additional diagnostic informa-
tion. Furthermore, while RSV infection in children aged 
under 2 years is usually clinically diagnosed as bronchi-
olitis, the same wheezing illness in an older child could 
be classified as viral-induced wheeze, a non-specific 
lower respiratory infection. Indeed, the PERCH study 
identified RSV as the most common cause of pneumonia 
[47]. Overcoming such challenges requires clearer symp-
tom reporting in microbiomic studies, either at an indi-
vidual level or by specifying clearly defined case criteria. 
To address these gaps, we recommend that the criteria 
in Table  1 be considered as minimum criteria for diag-
nostic reporting. An alternative approach to a specific 
clinical diagnosis which is gaining popularity is the con-
current use of endotypes (“distinct molecularly defined 
functional or pathobiological pathways that may be 
associated with distinct treatment responses” [48]) and/
or phenotypes (clinical parameters of a patient’s condi-
tion) or a nuanced approach combining these. Endotypes 
have proven useful in asthma studies where inflamma-
tory endotypes have been used to successfully identify 
specific anti-inflammatory therapies [49]. The benefit of 
using an endotype approach is also reflected in the bron-
chiectasis field where factors such as sputum produc-
tion can have high prognostic predictive value [18]. The 
adoption of respiratory phenotypes and endotypes that 
are clearly defined and consistent across studies (both in 
the clinic and in research), rather than a clinical diagnosis 
per se, will likely be useful in future microbiome-based 
meta-analyses.

Accounting for antibiotic usage in respiratory 
microbiota studies
Respiratory microbiota studies often focus on popula-
tions with high antibiotic usage. With antibiotics likely to 
influence an individual’s microbiota profile [50], consid-
eration of this factor when comparing studies is essential. 
The STORMS framework requires that authors report 
data “known about antibiotic usage before or during 

sample collection” [13]; however, this definition may be 
too broad in the context of respiratory microbiota studies 
where different classes of drugs may be used for variable 
periods of time.

Our meta-analysis [19] identified two broad approaches 
to reporting antibiotic usage that are common among 
respiratory microbiota studies: either the time between 
a patient’s last antibiotic use and sampling is reported 
or, alternatively, no samples are taken from individuals 
with antibiotic exposure more recent than a specified 
cut-off date. The former can be challenging to accom-
modate in meta-analyses, as a standardised definition 
of “recent antibiotic use” is lacking. While it is generally 
believed that the gastrointestinal microbiota will recover 
in approximately 4 weeks after antibiotic treatment [51], 
it is unclear whether a comparable window exists for 
the respiratory microbiota and, if so, how long micro-
bial community recovery might take. Current report-
ing approaches do provide a way to either standardise 
or examine the effects of antibiotics within an original 
study, though comparing across studies with different 
cut-off dates may mean that antibiotics rather than other 
biological differences are driving the microbiota differ-
ences between study populations. Reporting of patients’ 
health status at the time of sampling is also important, 
as the response of the respiratory microbiota to main-
tenance antibiotics during a period of relative stability 
and wellness may well be different to that observed dur-
ing a severe exacerbation where the antibiotic treatment 
is more intense (e.g. with intravenous antibiotics) [52]. 
Finally, there remains a need for the effects of different 
antibiotics to be accounted for in respiratory microbi-
ome analyses. Ideally, more granular data pertaining to 
the type(s) of antibiotics used, as well as their method of 
delivery (e.g. oral, inhaled or intravenous), coverage and 
duration, will be reported. Such data will be essential to 
achieving a more nuanced understanding of the effects of 
specific antibiotics than is currently possible when differ-
ent antibiotic types and classes are analysed collectively 
under the umbrella of “recent antibiotics”.

Sample collection in respiratory microbiota studies
The method(s) used to collect respiratory samples is 
another point of variability among studies that has poten-
tial to confound inter-study comparisons and meta-
analyses [16]. Despite the respiratory microbiota often 
being described as a single entity, there are distinct physi-
ochemical niches present in, for instance, the proximal 
and distal lower airways (e.g. epithelial differences across 
the bronchi and lung parenchyma) and within the upper 
airways (oropharynx and nasopharynx) [50]. It remains 
unclear how similar or different microbial communi-
ties may be across the lower and upper airways, with 
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reports indicating both similar [45] and different [53] 
bacterial communities. It may well be that the connect-
edness of the communities, and therefore their overall 
similarity, is differentially altered by illness [54]. A pau-
city of detailed research on this topic makes it challeng-
ing to compare the findings of, say, a study investigating 
the sputum microbiota with those of a study investigat-
ing the nasopharyngeal microbiota, even if the study 
population has the same condition [55]. Furthermore, 
within a single anatomical site, there may be differences 
in the method used to collect the sample. For instance, 
the microbiota of nasopharyngeal aspirates differs some-
what from nasopharyngeal swabs within the same indi-
vidual [56]. Similarly, the bronchial microbiota recovered 
from protected-specimen brushing may be different to 
that sampled by bronchoalveolar lavage (BAL) or sputum 
[54]. A nuanced approach to this issue is needed in res-
piratory microbiome studies, as determining from which 
anatomical sites samples should be collected, and how 
this should be performed, differs depending on clinical 
accessibility, patient tolerance and ethical considerations. 
While sampling needs to be tailored to the question at 
hand and the patient population being studied, standard-
ised reporting frameworks would greatly facilitate inter-
study comparisons.

Sample processing heterogeneity
In addition to the aforementioned lack of consistency in 
clinical diagnoses and sample collection, there is a pano-
ply of ways in which respiratory microbiota studies can 
progress from a clinically collected sample to ultimately 
generating a microbiota profile. This includes differences 
in DNA extraction protocol and selection of sequencing 
technique (e.g. amplicon sequencing vs shotgun metagen-
omics). Most respiratory studies to date (and indeed all 
that were included in our meta-analysis) have employed 
amplicon sequencing of the 16S rRNA gene. Sources of 
heterogeneity among the 20 studies we analysed included 
the 16S rRNA gene region sequenced, PCR amplification 
and purification parameters, the sequencing platform 
used and bioinformatic analytical pipelines. While meta-
analyses represent a powerful tool to address the variabil-
ity in bioinformatic pipelines (by analysing all included 
data via a uniform pipeline), they cannot easily redress 
the methodological differences which generated the orig-
inal sequence data. Realising a framework to address this 
issue in respiratory studies is critically needed as exist-
ing sources of heterogeneity will be compounded by the 
increasing use of new technologies generating additional 
omics-data types [7, 57] and the emergence of multi-
omic applications. Lack of standardisation in laboratory 
methods used for microbiota studies is a long-standing 
problem well known in other areas of microbial ecology 

research [58, 59], including the human gastrointestinal 
microbiome [60]. While the best protocol for any given 
study will always be determined by independent research 
groups, and there exists an argument that true biological 
signals should transcend differences in methodological 
approach, large-scale methodological reviews prompted 
by this heterogeneity in other areas have provided stand-
ardised frameworks on which future work to support 
meta-analyses could be based [60]. For the respiratory 
microbiota, there is a relative paucity of such studies, and 
while approaches used to investigate the gastrointestinal 
microbiota are often taken wholesale and transferred to 
the respiratory system, there is a lack of evidence that 
this is the best approach [61].

DNA extraction methods in respiratory microbiota 
studies
The DNA extraction method is possibly the factor that 
most influences observed microbiota profiles [40, 62]. 
Consideration of this methodology is important, particu-
larly in respiratory studies given the variable bacterial 
density across the airways that is markedly lower than 
that observed for gut samples [63]. Failure to account for 
low bacterial density risks confounding due to reagent 
contamination or the “kitome”, as highlighted by placen-
tal microbiome studies [64]. DNA extraction methods 
can also result in substantial batch effects which may 
mask or imitate biological signals [65, 66]. For exam-
ple, in a longitudinal study of nose microbiomes among 
infants, Salter and colleagues demonstrated that an 
apparent association between the composition of the 
nose microbiomes and the age of the infants was actually 
due to a DNA extraction batch effect [65]. The applica-
tion of batch correlation tools, particularly in the limited 
examples for the respiratory microbiota where both case 
and control data are available [67], is also worthy of fur-
ther consideration.

Sequence analysis in respiratory microbiota 
studies
Once DNA is obtained from a sample, many respira-
tory microbiota studies use the 16S rRNA gene ampli-
con approach to profile an individual’s microbiota. The 
different regions of this gene which may be selected can 
lead to different PCR biases and may alter the accuracy of 
taxonomic assignment [68]. It is not yet clear which 16S 
rRNA gene region is best to use for respiratory microbi-
ota studies. An analysis of a respiratory-specific database, 
eHOMD, indicated that the hypervariable V1–V3 regions 
may provide the greatest taxonomic resolution [69]; 
however, the length of this region (~490 bp) introduces 
new challenges related to the limited overlap of forward 
and reverse reads that occurs when DNA > 460 bp is 
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sequenced using most current technologies. As a result 
of this limitation, many studies instead target the shorter 
V3–V4 region (~460 bp) where sequencing is performed 
using the Illumina MiSeq platform. Sequencing of much 
longer amplicons, as achievable using PacBio technology, 
could circumvent this issue but may be cost prohibitive. 
Avoiding amplicon-based approaches altogether, such as 
in whole-genome shotgun sequencing [16], offers another 
alternative, although high amounts of contaminating host 
DNA can be problematic in analyses of respiratory speci-
mens [70, 71], and it is unclear how or if such data could 
be fairly compared to the majority of current amplicon-
based literature.

Bacterial quantification, diversity 
and contamination
Bacterial alpha diversity is often used as an indicator of 
overall respiratory health [34]; however, reporting alpha 
diversity without bacterial load information can result in 
errors due to sample contamination and limits our ability 
to fully interpret these data. The influence of contamina-
tion can be exacerbated in respiratory samples compared 
to, for example, gut samples, given the relatively low bac-
terial density in the former [63]. Statistical measures used 
to estimate alpha diversity may also be prone to biases 
increased by the common practice of rarefaction [72]. As 
such, direct quantification of total bacterial density (or, 
most commonly, 16S rRNA gene copies) and/or individ-
ual taxa may be more insightful [73], particularly if used 
in conjunction with alpha diversity metrics, as both over-
all bacterial community size and diversity can be con-
sidered [74]. While several studies use quantitative PCR 
(qPCR) to estimate bacterial density [53, 75], the myriad 
of methodologies and inherent variability present within 
qPCR [76] make inter-study comparisons of such data 
particularly challenging, especially given the potentially 
low bacterial density in paediatric respiratory samples 
[63]. Much like with amplicon-based taxonomic analysis, 
it is important that standardised reporting processes are 
encouraged (e.g. MIQE [77]), potentially incorporating 
new technologies such as droplet digital PCR, which has 
less inherent variability than standard real-time qPCR 
platforms [74, 78].

Concluding remarks
Ongoing research into the microbiota of the paediatric 
respiratory tract has already yielded promising findings, 
such as the role of the respiratory microbiota in respira-
tory tract development [79] and disease susceptibility 
[80]. This demonstrates the potential of this research 
avenue to improve understanding of respiratory disease 
in children. Despite this promise, there remains many 
more questions and avenues to explore in this complex 

topic. By cutting through (some of ) the noise, meta-anal-
yses offer a promising way to provide new insights into 
this area while also addressing the issue of small sample 
sizes that often affects individual respiratory microbi-
ome studies. Such analyses are particularly effective at 
identifying patterns and generating hypotheses for future 
investigation and “ground truthing”. However, variability 
in how studies are conducted and the ways that data are 
managed and reported can limit both the ability of meta-
analyses to reach new conclusions as well as prevent the 
field from moving forward as a whole, rather than as sev-
eral splintered research groups. As the microbiome field 
continues to move toward standardised methodologies 
[13, 14, 62, 81], these approaches may not necessarily 
meet the context-specific needs of respiratory microbi-
ome studies, and as such, this work remains to be done. 
While some potential solutions to these long-standing 
and complex challenges are offered in Table 1, this man-
uscript alone cannot propose a complete solution and 
functions primarily as an invitation for an open dialogue 
where solutions can be built upon by the field as a whole.
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