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Abstract 

Background  Postpartum dairy cows experiencing excessive lipolysis are prone to severe immunosuppression. 
Despite the extensive understanding of the gut microbial regulation of host immunity and metabolism, its role during 
excessive lipolysis in cows is largely unknown. Herein, we investigated the potential links between the gut microbi‑
ome and postpartum immunosuppression in periparturient dairy cows with excessive lipolysis using single immune 
cell transcriptome, 16S amplicon sequencing, metagenomics, and targeted metabolomics.

Results  The use of single-cell RNA sequencing identified 26 clusters that were annotated to 10 different immune cell 
types. Enrichment of functions of these clusters revealed a downregulation of functions in immune cells isolated from 
a cow with excessive lipolysis compared to a cow with low/normal lipolysis. The results of metagenomic sequencing 
and targeted metabolome analysis together revealed that secondary bile acid (SBA) biosynthesis was significantly 
activated in the cows with excessive lipolysis. Moreover, the relative abundance of gut Bacteroides sp. OF04 − 15BH, 
Paraprevotella clara, Paraprevotella xylaniphila, and Treponema sp. JC4 was mainly associated with SBA synthesis. The 
use of an integrated analysis showed that the reduction of plasma glycolithocholic acid and taurolithocholic acid 
could contribute to the immunosuppression of monocytes (CD14+MON) during excessive lipolysis by decreasing the 
expression of GPBAR1.

Conclusions  Our results suggest that alterations in the gut microbiota and their functions related to SBA synthesis 
suppressed the functions of monocytes during excessive lipolysis in transition dairy cows. Therefore, we concluded 
that altered microbial SBA synthesis during excessive lipolysis could lead to postpartum immunosuppression in transi‑
tion cows.
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Background
The transition period (3 weeks before and after parturi-
tion) is a critical stage of life for dairy cows because of 
excessive adipose tissue lipolysis that develops with 
reduced feed intake and an increased energy require-
ment to support lactation [1]. Excessive lipolysis gener-
ally develops with immunosuppression, which increases 
susceptibility to infections/diseases such as mastitis, met-
ritis, and metabolic diseases [2]. These health issues are 
regarded as major management and economic challenges 
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for the dairy industry that can also influence the long-
term milk production performance of cows. Excessive 
lipolysis in transition cows is a multifactorial condition, 
in which both host metabolism and immune functions 
are altered [3, 4]. However, there is a lack of understand-
ing of associative and causative relationships between 
host metabolism and immune regulation in transition 
dairy cows that experience elevated lipolysis. Therefore, 
a holistic approach to incorporate all the components of 
the lipolytic state is necessary to uncover mechanisms 
behind the altered metabolism and immune regulation of 
the transition cow.

Past studies have revealed that excessive lipolysis sup-
pressed immune functions in transition dairy cows. For 
example, Cheng et  al. [5] reported an inhibition in cell-
to-cell adhesion in peripheral blood mononuclear cells 
(PBMCs) of cows with excessive lipolysis. Moreover, 
migration and chemotaxis of neutrophils (NEU) were 
suppressed in transition cows experiencing excessive 
adipose tissue lipolysis [6, 7]. These studies suggest that 
there is the degree of immunosuppression is directly 
related to the magnitude of body fat mobilization in tran-
sition dairy cows. However, we do not understand how 
the functionality of key immune cells, that are involved 
in immunosuppression, are impacted during excessive 
lipolysis. Single-cell RNA-sequencing (scRNA-seq) is a 
powerful tool that can be used to generate a comprehen-
sive and precise landscape of immune cells [8, 9]. Profil-
ing of immune cell transcriptomes using scRNA-seq will 
provide in-depth knowledge of the functionality of vari-
ous cell populations and their roles in the immunosup-
pression during excessive lipolysis.

Studies on host-microbial interactions in humans and 
mice have revealed that metabolic disorders (e. g., obesity, 
diabetes) are microbiome-linked pathologies [10–12], 
which alter both microbial composition and functions. In 
addition to playing a crucial role in host metabolism, the 
gut microbiome also regulates immune responses [13]. 
For instance, gut microbiota plays a vital role in prim-
ing immune responses and microbial perturbation leads 
to immune dysregulation and uncontrolled inflamma-
tion [14]. Moreover, microbial metabolites such as bile 
acids (BAs) have been shown to modulate the functions 
of immune cells. Leonhardt et al. [15] reported that BAs 
induce monocyte dysfunction by affecting membrane-
bound Takeda G-protein-coupled bile acid receptor 1 
(GPBAR1/TGR5) expression. Wang et  al. [16] reported 
that BAs skew macrophage polarization and contribute 
to colonic inflammation. Although excessive lipolysis 
leads to altered metabolism and immune regulation, the 
role of the gut microbiome and microbial metabolites 
including bile acids during excessive lipolysis is not well 
studied in dairy cattle.

We hypothesized that excessive adipose tissue lipolysis 
develops with an altered gut microbiome (composition 
and function) in relation to changes in immune regula-
tion and altered host metabolism. Therefore, this study 
aimed to profile the gut microbiome, metabolome, and 
immune cell transcriptome using multi-omics tools 
(16S amplicon sequencing, metagenomics sequencing, 
targeted metabolomics, and scRNA-seq) to discover 
mechanisms behind excessive lipolysis-associated immu-
nosuppression. Integration of data generated from multi-
omics tools expands our knowledge behind complex 
processes that occur during excessive lipolysis in transi-
tion cows.

Results
Excessive lipolysis affected the postpartum physiological 
status of transition cows
The physiological status of transition cows was evalu-
ated by profiling plasma metabolic parameters, bio-
markers of inflammatory, and oxidative stress as well 
as by measuring milk production and body condition 
scores (BCS) (Table 1). There were no significant differ-
ences in any of these parameters between low/normal 
lipolysis (LNF) and high/excessive lipolysis (HNF) cows 
a week prior to calving (Table S1). However, significant 
changes were observed postpartum (Table  1). The con-
centrations of non-esterified fatty acid (NEFA, P < 0.01) 
and β-hydroxybutyrate (BHBA, P < 0.01), and the con-
centration of aspartate aminotransferase (AST; P = 0.01) 
were significantly higher in HNF cows than those in LNF 
cows (Table  1). The concentrations of glucose were sig-
nificantly lower (P < 0.01) in HNF cows than in LNF cows, 
whereas circulating cholesterol concentrations tended to 
be lower (P = 0.06) in HNF cows than that in LNF cows. 
Among cows’ reproductive performances, BCS was 
tended to be lower (P = 0.06) in HNF cows when com-
pared to LNF cows. In addition, no significant differences 
were observed in inflammatory and oxidative stress bio-
markers between LNF and HNF cows (Table 1).

Excessive lipolysis suppressed immune cell functions
In total, 26 clusters (C0-C25) were identified from 20,822 
single cells based on marker genes (Table S2; Fig. S1). 
These clusters were then annotated into ten different 
major immune cell types based on the expression of well-
known marker genes according to the published scRNA-
seq studies of peripheral immune cells (Fig. 1A, B, Table 
S3). Five clusters (C0, C1, C6, C8, C12) were annotated 
as B cells due to the higher expression of marker genes 
CD19, MS4A1, and CD79A, while one cluster (C15) was 
annotated as plasma cell (PCs) due to the higher express-
ing JCHAIN (Fig.  1B). C23 was annotated as cycling B 
cells due to the higher expression of marker genes CD19, 
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MS4A1, TOP2A, and MKI67 (Fig.  1B). Nine clusters 
(C4, C7, C9, C10, C14, C16, C18, C22, and C25) were 
identified as T cells based on the higher expression of 
marker genes CD3D and CD3E (Fig.  1B). Among these 
T cell clusters, C4, C7, and C16 had a higher expres-
sion of CD4+T cell marker gene (CD4), C9, C14, C22, 
and C25 had a higher expression of CD8+T cell marker 

genes (CD8A and CD8B), while C10 and C18 had a 
higher expression of γδ+T cell marker genes (ENS-
BTAG00000055197: TRDC and ENSBTAG00000000144: 
TRGC​). C20 was annotated as NK cells due to the higher 
expression of marker genes KLRB1, GNLY, and NKG7. 
C2, C3, and C11 were annotated as NEU due to the 
higher expression of marker genes TGM3 and CSF3R 
(Fig.  1B). Among the clusters that were annotated to 
monocytes (MON), we identified two different subsets 
of monocytes (C5, C19). The higher expression of marker 
genes LYZ and CD14 in the C5 cluster suggested it con-
tained CD14+MON cells, whereas the higher expression 
of marker genes FCGR3A and LYZ in the C19 cluster 
indicated it contained FCGR3A+MON cells (Fig. 1B). The 
higher expression of marker genes LYZ, FCER1G, and 
FCER1A showed the presences of dendritic cells (DCs; 
Fig. 1B) in C14. However, C17, C21, and C24 contained a 
mixture of marker genes from various immune cells and 
were removed from the downstream analysis.

Next, we detected the differential expressed genes 
(DEGs) of each cell type between LNF and HNF cows 
and conducted the GO enrichment analysis to iden-
tify the immune functional alteration during excessive 
lipolysis. Compared with LNF cows, the downregulated 
DEGs were mainly enriched in the biological pathways 
of immune cellular functions. Specifically, in NEU, the 
downregulated DEGs were related to neutrophil chemo-
taxis, neutrophil migration (P < 0.001), and phagocytosis 
(P < 0.001). Similarly, the downregulated DEGs in MON 
were related to cell migration (P < 0.001), proliferation 
(P = 0.006), and phagocytosis (P = 0.046) (Fig. 1C). Func-
tional enrichment of downregulated genes in T cells 
revealed that they involved in T cell migration (P < 0.001) 
and type1 interferon production (P < 0.001). The down-
regulated DEGs in B cells, PCs, and DCs were mainly 
related to translation and peptide biosynthetic process 
(P < 0.001). In NK cells, functions of the downregulated 
DEGs were related to reactive nitrogen species (RNS; 
P = 0.020) and reactive oxygen species (ROS) metabo-
lism (P = 0.039) (Fig. 1C). For the upregulated DEGs, no 
direct enriched biological pathways were observed in 
Dc, NK, and Pc cells (Fig. S2). Additionally, most of the 

Table 1  Postpartum circulating plasma parameters, systemic 
inflammatory responses, oxidative stress status, and phenotypic 
characteristics of transition cows with and without excessive 
lipolysis (N = 18)

Lipolysis status SEM P value

LNF
(n = 9)

HNF
(n = 9)

Phenotypic characteristics
  Milk yield, kg/d 35.1 39.0 3.13 0.42

  Parity 2.50 2.11 0.37 0.49

  Body condition score 2.86 2.63 0.11 0.06

Blood parameters
  Alanine aminotransferase, U/L 19.2 17.6 1.22 0.40

  Aspartate aminotransferase, U/L 87.6 135 9.67 0.01

  Total protein, g/L 74.1 68.9 2.08 0.10

  Albumin, g/L 33.1 31.7 0.95 0.31

  Glucose, mmol/L 3.85 3.27 0.09  < 0.01

  Blood urea nitrogen, mmol/L 4.08 4.21 0.37 0.80

  Creatinine, μmol/L 85.4 98.9 5.50 0.12

  Cholesterol, mmol/L 2.72 2.14 0.15 0.06

  Triglyceride, mmol/L 0.11 0.13 0.01 0.43

  β-hydroxybutyrate, μmol/L 566 1158 70.2  < 0.01

  Nonesterified fatty acid, μmol/L 424 1157 111  < 0.01

Inflammatory biomarkers
  Haptoglobin, U/L 387 340 28.3 0.26

  Serum amyloid A, μg/mL 41.6 36.0 2.31 0.12

Oxidative stress biomarkers
  Superoxide dismutase, U/mL 184 172 7.87 0.30

  Total antioxidant capacity, mmol/L 0.54 0.52 0.01 0.32

  Catalase, U/mL 1.09 1.12 0.04 0.67

  Glutathione peroxidase, U/mL 30.7 38.6 3.10 0.10

  Malondialdehyde, nmol/mL 3.76 3.13 0.71 0.55

(See figure on next page.)
Fig. 1  Construction of the single-cell landscape of the peripheral immune cells isolated from transition dairy cows with low (LNF) and excessive 
(HNF) lipolysis. A T-distributed stochastic neighbor embedding (T-SNE) map of major cell type clusters identified from the immune cells isolated 
from a LNF and a HNF transition cow. Annotation of cell types was conducted based on the highly expressed marker genes in transcript clusters. B 
Expression of marker genes in different immune cell populations. Colors represent the average expression of marker genes in each cell type and the 
size of dots represents % of the cells that express the genes. C Ten representative immune biological pathways from top 30 pathways that enriched 
from the downregulated differentially expressed genes of immune cells isolated from HNF cow. The pathways are presented as log10 p value, 
and the color scheme is used to indicate the immune cell population. DC dendritic cell, MON monocyte, NEU neutrophil, NK natural killer cells, PC 
plasma cell
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Fig. 1  (See legend on previous page.)
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upregulated DEGs in other cell types were enriched in 
the biological pathways such as translation, peptide bio-
synthetic process, and amide biosynthetic process that 
are not involved in the functions of immune cells directly 
(Fig. S2). Thus, we will focus on the downregulated DEGs 
and enriched biological pathways in HNF for the subse-
quent sections unless specified otherwise.

Altered fecal bacterial community in transition cows 
during excessive lipolysis
The use of DADA2 generated a total of 437 ASVs in all 
the samples (Table S4). Alpha diversity analysis revealed 
no significant differences in Chao1 and Shannon index 
between the two lipolysis groups (P > 0.05); however, the 
Simpson index (a measure of common or dominant spe-
cies) tended to be lower (P = 0.09) in HNF when com-
pared to LNF (Fig. 2A). Beta diversity analysis revealed a 
clustering of fecal bacterial communities based on lipoly-
sis grouping (Fig. 2B).

The use of wilcox.test identified differentially abundant 
bacterial taxa between HNF and LNF (Fig. 2C; Table S5). 
At the phylum level, the relative abundance of Firmicutes 
(P < 0.001) was higher in HNF than in LNF. In contrast, 
the relative abundance of Bacteroidetes (P < 0.001) and 
Proteobacteria (P = 0.02) was lower in HNF than in LNF. 
Seven significantly different family taxa were observed 
between LNF and HNF cows. In specific, six taxa includ-
ing Bacteroidales_unclassified (P < 0.001), Porphy-
romonadaceae (P = 0.005), Paludibacteraceae (P = 0.007), 
Actinobacteria_unclassified (P = 0.024), Sphingomona-
daceae (P = 0.029), and Tannerellaceae (P = 0.047) with 
higher abundance in the LNF cows, and only Rumino-
coccaceae (P = 0.009) showed higher abundance in the 
HNF cows. At the genus level, the relative abundance of 
an unclassified Ruminococcaceae was higher (P = 0.011) 
in HNF than in LNF. The relative abundance of Para-
prevotella (P = 0.032), Parabacteroides (P = 0.046), 
Sphingopyxis (P = 0.007), Paludibacter (P = 0.007), 
Anaeroorhabdus (P = 0.019), an unclassified Bacteroi-
dales (P = 0.024), Actinobacteria (P = 0.024), and Porphy-
romonadaceae (P = 0.005) was significantly lower in HNF 
than LNF, among which, the Paraprevotella showed the 
biggest fold change (Log2FC = -3.57).

Lipolysis status altered fecal metagenome of the transition 
cows
Taxonomic analysis of assembled metagenomics 
sequences revealed that bacteria (89.9% ± 0.43) domi-
nated the fecal microbiome, followed by archaea 
(0.74% ± 0.07) and viruses (0.41% ± 0.05) (Fig. 3A). At the 
domain level, the relative abundance of archaea was sig-
nificantly lower (P = 0.01) in HNF than in LNF. A compar-
ison of the relative abundance of microbial taxa revealed 

21 differentially abundant bacterial species between 
LNF and HNF (Fig. 3C). Among the differentially abun-
dant 21 bacterial species, the relative abundance of 
Alistipes sp.58 9 plus (LNF- 0.12%; HNF-0.16%), Anaer-
otruncus sp.CAG:390 (LNF-0.07%; HNF-0.14%), Fir-
micutes bacterium CAG:137 (LNF-0.14%; HNF-0.18%), 
and Treponema sp. JC4 (LNF-0.03%; HNF- 0.05%) was 
higher in HNF, while the rest (17 bacterial species) was 
lower in HNF when compared to LNF (Fig.  3C). There 
were 20 differentially abundant archaeal species between 
LNF and HNF. Only Thermoplasmata archaeon (LNF-
0.03%; HNF-0.07%) was highly abundant in HNF when 
compared to LNF (Fig. 3D). Netshift analysis revealed a 
total of 14 driver species that contributed to the lipolysis-
linked microbiome (Fig. 3E). Among these driver species, 
Paraprevotella xylaniphila (NESH = 0.188), Lachno-
spiraceae bacterium (NESH = 0.188), Methanomassiliico-
ccales archaeon Mx-02 (NESH = 0.094), and Clostridiales 
bacterium Marseille-P2846 (NESH = 0.094) had higher 
NESH scores and stronger betweenness (Fig.  3E and 
Table S6), indicating that they were the main drivers of 
microbiome changes linked to lipolysis status.

Assignment of microbial functions using KEGG 
revealed a total of 169 KEGG pathways in the fecal 
metagenomes of transition cows (Table S7). Among these 
KEGG pathways, the abundance of 12 pathways was 
significantly different (P < 0.05) between LNF and HNF 
(Fig.  4A). The relative abundance of pathways related 
to “lipid metabolism” including “fatty acid elongation” 
(P = 0.015) and “steroid degradation” (P = 0.019) was 
lower in HNF than LNF. Besides, the abundance of gut 
microbial secondary bile acid (SBA) biosynthesis path-
ways was significantly higher in HNF cows than in LNF 
cows (P = 0.047). However, no significant differences 
were observed in the major genes cbh (P = 0.13) and baiA 
(P = 0.25) that were involved in the SBA synthesis pro-
cess (Fig. 4B). Similarly, the abundance of major enzymes 
that are involved in SBA syntheses such as acyl-CoA syn-
thetase (K00142) and 3alpha-hydroxycholanate dehydro-
genase (K22605) was not significantly different between 
HNF and LNF. In contrast, 7-alpha-hydroxysteroid dehy-
drogenase (K00076) tended to be higher (P = 0.06) in 
HNF cows when compared to LNF (Fig. 4B).

Altered bile acid profiles in transition cows with excessive 
lipolysis
Targeted metabolomics analysis of fecal bile acids (BAs) 
revealed that total secondary BAs tended to be higher 
(P = 0.10) in HNF than in LNF. Moreover, the concen-
tration of lithocholic acid (LCA, P = 0.04), isolitho-
cholic acid (IsoLCA, P = 0.04), and 3-dehydrocholic 
acid (3-DHCA, P = 0.04) was significantly higher in 
HNF when comparing to LNF. The concentrations of 
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Fig. 2  Fecal bacterial communities of transition cows (post-partum) profiled using 16S amplicon sequencing. A Alpha diversity of LNF and HNF 
cows measured using Chao1, Shannon, and Simpson indices. B Comparison of bacterial communities generated from LNF and HNF cows. Principle 
coordinate analysis was performed using Bray–Curtis distance matrices. C Significantly different bacterial taxa tested by wilcox.test

(See figure on next page.)
Fig. 3  Fecal microbiomes of transition cows with varying lipolysis status profiled using metagenomic sequencing. A Comparison of microbial 
domains between LNF and HNF cows. Significantly different domains were tested by Wilcoxon rank-sum. Data is presented as mean ± SEM. 
B Bacterial community profiles of LNF and HNF fecal samples at species level visualized using principal-coordinate analysis and Bray–Curtis 
distance matrix. C Abundance of significantly different bacterial species between LNF and HNF. Bar plots represent mean ± SEM. D Abundance of 
significantly different archaea species between LNF and HNF. Bar plots represent mean ± SEM. E Changes between the two co-occurrence networks 
corresponding to LNF and HNF captured using NetShift which reflected.by the neighbor shift (NESH) cores. Node size shows the predicated “driver” 
scores; the big, red nodes are particularly important drivers. Edge connections in green are presented only in LNF cows, red is only in HNF cows
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Fig. 3  (See legend on previous page.)
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12-ketolithocholic acid (12-KLCA, P = 0.09) and apo-
cholic acid (ApoCA, P = 0.06) tended to be higher in 
the HNF than in the LNF (Fig.  4C). The proportions of 
12-KLCA (P = 0.06) and ApoCA (P = 0.07) also tended to 
be higher in HNF than LNF (Fig. S3A).

Among plasma BAs, the concentrations of glyco-
lithocholic acid (GLCA, P = 0.02) and taurolithocholic 
acid (TLCA, P = 0.03) were lower in HNF than in LNF. 
Moreover, the concentrations of glycochenodeoxy-
cholic acid (GCDCA) tended to be lower (P = 0.06) in 
HNF than in LNF. In contrast, the concentrations of 
3-DHCA (P = 0.08) and 12-KLCA (P = 0.10) tended to be 
higher in HNF than in LNF (Fig. 4D). The proportion of 
GCDCA was lower (P = 0.04) in HNF than in LNF, while 
the proportion of the 7-ketodeoxycholic acid (7-KDCA, 
P = 0.09) and 12-KLCA (P = 0.07) tended to be higher in 
HNF than LNF (Fig. S3B). The proportion of 3-DHCA 
(P = 0.04) was higher in HNF than in LNF.

The use of a correlation analysis revealed that the 
relative abundance of Treponema sp. JC4 and Methano-
massiliicoccales archaeon Mx02 in feces was positively 
correlated with the concentrations of fecal BAs includ-
ing 12-KLCA, 3-DHCA, ApoCA, IsoLCA, and LCA 
(P < 0.05). The relative abundances of Bacteroides sp. 
OF04−15BH, Paraprevotella clara, and Paraprevotella 
xylaniphila were positively correlated with the concen-
trations of GLCA and TLCA in plasma (Fig.  4E, Table 
S8).

Suppression of monocyte functions in HNF cow was linked 
to bile acid metabolism
Bile acid receptors are one of the interfaces between 
the gut microbiota and host immune regulation. There-
fore, we evaluated the link between the expression of 
bile acid receptor genes (BARs) and immune cell func-
tions. We identified seven BARs (GPBAR1, KDR, VDR, 
SIPR2, CHRM3, NR1H4, and NR1H3) in the single-cell 
transcriptome data generated from the immune cells iso-
lated from cows with varying lipolysis status. The results 
showed that MON exhibited a uniquely higher BAR 
expressing score compared with other cell types (Fig. 5A). 
In specific, the higher expression of GPBAR1 and NR1H3 

was observed in MON (Fig.  5B). For both two BARs, 
the expression of GPBAR1 was lower (P = 0.007) only in 
CD14+MON, while the expression of NR1H3 was lower 
in both CD14+MON (P = 0.002) and FCGR3A+MON 
(P = 0.007) isolated from the HNF cow than those in 
LNF cow (Fig.  5C). Monocytes were selected to further 
understand the links between the gut microbiome and 
immune regulation during excessive lipolysis. Enrich-
ment of GO function of the DEGs (Table S9) expressed in 
CD14+MON and FCGR3A+MON revealed that immune 
pathways related to “immune response,” “response to 
cytokine,” “response to type 1 interferon,” and “defense 
response to virus” were significantly downregulated in 
CD14+MON isolated from HNF cow (Fig.  5D). Moreo-
ver, “cell migration” and “phagocytosis” were decreased 
in FCGR3A+MON isolated from HNF (Fig. S4A). Inte-
grated analysis revealed that downregulated DEGs 
related to BA regulation (Table S10) and four enriched 
immune functions (response to cytokine, response to 
virus, defense response, and type1 interferon) of mono-
cytes were only positively correlated in CD14+MON but 
not in FCGR3A+MON (Fig. 5E and Fig. S4B).

Discussion
Perturbed metabolism and immunosuppression are sig-
nature outcomes that develop in parallel with excessive 
lipolysis in transition cows [17]. Mobilization of body fat 
is a vital biological response to compensate for energy 
deficiency due to the negative energy balance during the 
transition period in dairy cows [1]. Therefore, a low to 
mild lipolysis is expected in transition cows [18]. Despite 
the extensive literature on altered metabolism and immu-
nosuppression during excessive lipolysis of transition 
cows, there is a lack of understanding on the mechanisms 
behind these outcomes. In addition, metabolic disorders 
have been linked to microbiome perturbation in humans 
and mice [10–12]. Here, we report that lipolysis status 
(HNF vs. LNF) is related to fecal microbial composition, 
microbial functions linked to SBA synthesis, host BA 
profiles, and monocyte functions in transition cows using 
multi-omics approaches. This is the first study to reveal 
relationships between lipolysis status-dependent changes 

Fig. 4  Differentially abundant KEGG pathways of fecal microbiomes of transition cows with varying lipolysis status. A Significantly different 
KEGG pathways of gut microbiome between LNF and HNF cows. B Simplified flow chart of the process of secondary bile acid synthesis (left) and 
the comparison of the abundance of major genes and entry pathways involved in the process. The P value was calculated using the Wilcoxon 
rank-sum test. PBA primary bile acid, SBA secondary bile acid. C Comparison of the concentration of fecal bile acids between LNF and HNF 
cows. D Concentration of plasma bile acids in LNF and HNF cows. E Spearman correlations between significantly different microbial species and 
significantly different fecal and bile acids between LNF and HNF cows. *P < 0.05, #0.05 < P < 0.1. TDCA taurodeoxycholic acid, TCA taurocholic acid, 
CDCA chenodeoxycholic acid, CA cholic acid, TCDCA taurochenodeoxycholic acid, GCA glycocholic acid, GCDCA glycochenodeoxycholic acid, 
HDCA hyodeoxycholic acid, THDCA taurohyodeoxycholic acid, AlloCA allocholic acid, UDCA ursodeoxycholic acid, DCA deoxycholic acid, LCA 
lithocholic acid, ApoCA apocholic acid, GDCA glycodeoxycholic acid, 7-KDCA, 7-ketodeoxycholic acid, 7-KLCA 7-ketolithocholic acid, 12-KLCA 
12-ketolithocholic acid, 3-DHCA 3-dehydrocholic acid, TLCA taurolithocholic acid, GLCA glycolithocholic acid, total α-MCA α-Muricholic acid, γ-MCA 
γ-muricholic acid, isoLCA isolithocholic acid, TMCA tauro-muricholic acid, TUDCA tauroursodeoxycholic acid, TPBA total primary bile acid, TSBA total 
secondary bile acids

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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and fecal microbiota community and functions of transi-
tion cows, which suggests that excessive lipolysis could be 
a microbiome-linked pathology. Profiling of the microbi-
ome (using both 16S amplicon sequencing and metagen-
omics sequencing) of transition cows revealed microbial 

perturbations (compositional and functional), and BA 
profile (using targeted metabolomics) in plasma and feces 
showed BA metabolism disorder contribute to the immu-
nosuppression of peripheral MON (using scRNA-seq) in 
the transition cows with excessive lipolysis.

Fig. 5  Association between bile acids and immune cell functions. A T-distributed stochastic neighbor embedding (T-SNE) plot of expressing 
scores of bile acid receptors (BARs) in immune cells. Red spots represent cells that express BARs. B Expression of bile acid receptor genes in each 
cell cluster. The color represents the expression level of BARs, and the size of the dots represents the percentage of the cells that express the genes. 
C The comparison of GPBAR1 and NR1H3 expression in CD14+MON and FCGR3A+MON cells isolated from a LNF cow and a HNF cow. The analysis 
included a total of 1568 CD14+MON and FCGR3A+MON from both cows. D Top 20 enriched biological processes from downregulated DEGs of 
CD14+MON cells isolated from HNF cow compared to LFN cow. E Association between the expression of genes related to bile acid metabolism and 
down-regulated functions of CD14+MON
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As a signaling molecule, increasing studies reported 
that BAs play important roles in the metabolism and 
immunity of human beings [19] or animals [20]; however, 
limited information was observed in dairy cows. Here, we 
found significant changes in BA profile in transition cows 
with excessive lipolysis. Although there are few studies 
that focus on BA metabolism in perinatal dairy cows, 
some clues about BA disorders from the experiments in 
dairy cows during the transition period can be dug out. 
For example, McCabe et al. [21] reported that BA biosyn-
thesis and secretion were decreased based on the liver 
transcriptomic analysis in the transition cows with severe 
NEB (higher NEFA state). In the results of the liver tran-
scriptome that reported by Gao et al. [22], it is found that 
BA biosynthesis and secretion were downregulated from 
dairy cattle from prepartum to postpartum. These clues 
imply that the BA metabolism may be perturbed in the 
transition dairy cows especially in those cows with higher 
lipolysis. However, the abovementioned results can only 
support part of BA metabolism changes, specifically the 
primary BA synthesis in the liver. Our results suggest that 
SBA which is formed by gut microbiota metabolizing pri-
mary BAs [23] is also significantly altered, for example, 
the decreased plasma LCA and DCA concentrations in 
the transition cows with excessive lipolysis. Therefore, it 
is natural to speculate that this may be attributed to the 
alterations in the composition and functions of the gut 
microbiome. The consistent results of 16S amplicon and 
metagenomics sequencing confirmed the assumption. 
As we know, most of the microbial studies are predomi-
nantly biased toward the rumen microbiome [24–26]; 
recently, it suggested that gut microbiome plays vital 
roles in host metabolism and animal health through 
building a comprehensive gastrointestinal microbial gene 
catalog in dairy cows [27]; our results supported this 
viewpoint and extended the understanding of gut micro-
biome in dairy cows. Additionally, previous studies were 
mainly focused on the effects of metabolic disorders such 
as fatty acids [5, 6], glucose [28], and hormones [29] in 
the perinatal dairy cows. Here, we provide a new impor-
tant clue for the exploration of the behind mechanisms 
of disorders occurred in transition cows with excessive 
lipolysis, namely, we should pay more attention to the 
alteration of gut microbial and BA metabolism as well 
as its effects on the transition dairy cows with excessive 
lipolysis.

Many studies have shown that BAs contribute to the 
functions of immune cells through binding to specific 
BA receptors (BARs) [30, 31]. Interestingly, we found 
that the MONs showed uniquely higher BARs scores 
that responded to BA, indicating the BA could regu-
late the functions of MON rather than other cell types. 

Moreover, the expression of BARs on MON is affected by 
the lipolysis status. Furthermore, the significantly higher 
expression of GPBAR1, the strong relationship between 
BA metabolism, and reduced functions of MON together 
suggested that CD14+MON is more sensitive to BA 
than FCGR3A+MON. GPBAR1 (also known as TGR5) 
is a member of G-protein-coupled receptor superfamily 
for BA, and it is evidenced that GPBAR1 is expressed by 
peripheral blood-derived monocyte/macrophages and 
appears to mediate the immunomodulatory actions [32]. 
Previous studies revealed that the activation of GPBAR1 
works in the activation, migration, and anti-inflamma-
tory cytokine production of MON in mice and humans 
[33–35]. Therefore, the functions of CD14+MON sup-
pression in HNF cows may be attributed to the decreased 
expressing GPBAR1. Additionally, it is thought that the 
GLCA and TLCA are the most preferred binding ligands 
of GPBAR1 [36]. Thus, the GPBAR1 decreased expres-
sion in HNF cows might be caused by the reduction of 
plasma GLCA and TLCA. In sum, these results indicate 
that the disturbed BA homeostasis (lower peripheral 
GLCA and TLCA) contributed to the immunosuppres-
sion of CD14+MON via diminishing the expression of 
GPBAR1 in transition cows with excessive lipolysis. How-
ever, future studies to explore the causation effects of 
SBAs on immunosuppression are necessary to validate 
the proposed mechanism in the present study.

Conclusions
Lipolysis is a complex biological process that leads to 
immunosuppression in transition cows, which affects the 
health and production of the dairy industry [37]. Here, 
we report that the integration of multi-omics data pro-
vides a holistic approach for the researchers to undrstand 
complex process. To the best of our knowledge, this is 
the first study to combine gut microbiome, metabolome, 
and host single-cell immune transcriptome in dairy cat-
tle to investigate excessive lipolysis in transition cows. 
We report that microbial biosynthesis of SBAs and fecal 
SBAs were both increased in cows with excessive lipol-
ysis. In contrast, the functions of monocytes related 
to cell migration, phagocytosis, response to cytokine, 
and defense responses to the virus were decreased dur-
ing excessive lipolysis. Therefore, we propose that the 
reduced concentration of conjugated BAs in plasma 
(GLCA, TLCA) that activates GPBAR1 on immune cells 
(especially on CD14+MON) leads to an immunosuppres-
sion in transition cows during excessive lipolysis. Our 
analysis also suggested that Bacteroides sp. OF04 − 15BH, 
Paraprevotella clara, Paraprevotella xylaniphila, and 
Treponema sp. JC4 might be playing an important role in 
the biosynthesis of SBAs, implying excessive lipolysis is 
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microbiome-linked pathology in dairy cows. In conclu-
sion, our study revealed potential links between the gut 
microbiome, BA metabolism, and immunosuppression in 
transition cows with excessive lipolysis.

Methods
Experimental design and sample collection
Holstein dairy cows (n = 63) without veterinary interven-
tion were selected from a large cohort (Hangjiang Dairy 
Farm, Hangzhou, China) of 2000 dairy cows seven days 
prior to the expected calving date. All cows were raised 
and managed under the same conditions including diet, 
water, and environment. Blood samples were collected 
from the coccygeal vein of cows 7 days prior to expected 
calving date and 7  days after calving using EDTA vacu-
tainers. Moreover, fecal samples were collected at seven 
days postpartum from the rectum of cows by using steri-
lized gloves before morning feeding, transferred into 
50-mL sterile tubes, and snap-frozen in liquid nitrogen.

Cows with excessive lipolysis were identified based 
on the plasma concentration of NEFA on 7  days post-
partum [5]. Briefly, cows with plasma NEFA concentra-
tions > 750 μmol/L on day seven postpartum were defined 
as high/excessive lipolysis (HNF), whereas those with 
plasma NEFA concentrations < 600 μmol/L were defined 
as low/normal lipolysis (LNF). We selected 18 dairy cows 
(LNF, n = 9; HNF, n = 9) out of 63 cows based on plasma 
NEFA concentrations (power = 0.9) after controlling 
for parity, milk yield, and body condition score (BCS). 
Body condition scores were measured by two people 
using a 5-point scale (1 = thin, 5 = fat) method described 
by Edmonson et  al. [38] at 3-time points (06:00, 14:00, 
20:00).

Plasma parameters measurement and statistical analysis
Blood samples collected from 63 cows 7  days before 
and after calving were used to measure plasma metabo-
lites. First, blood samples were centrifuged at 3000 × g 
for 15 min at 4 °C to collect plasma to measure the con-
centrations of glucose, total protein, blood urea nitro-
gen, NEFA, BHBA, cholesterol, triglycerides, albumin, 
superoxide dismutase, creatinine, alanine aminotrans-
ferase, and AST using an AutoAnalyzer 7020 instru-
ment (Hitachi High-Technologies Corporation, Tokyo, 
Japan) and commercial kits (Ningbo Medical System 
Biotechnology Co., Ltd., Ningbo, China). The levels of 
catalase, glutathione, glutathione peroxidase, malon-
dialdehyde, haptoglobin, amyloid, and total antioxidant 
capacity were measured using commercial assay kits 
(Nanjing Jiancheng Bioengineering Institute, Nanjing, 
China) according to the manufacturer’s instructions.

Statistical analyses were performed using Prism 
(GraphPad Software Inc 8.0, La Jolla, CA, USA). 

Student’s t test between the two groups was used for 
comparisons. Significances were declared at P ≤ 0.05, 
and 0.05 < P ≤ 0.10 were considered as a significant 
trend.

16S amplicon sequencing of the fecal microbial 
community
The total DNA was extracted from fecal samples using 
the E.Z.N.A.®Stool DNA Kit (#D4015, Omega, Inc., 
USA). V3–V4 regions of the bacterial 16S rRNA gene 
were amplified using a universal bacterial primer pair 
(341F: 5′-CCT​ACG​GGNGGC​WGC​AG-3′; 805R: 
5′-GAC​TAC​HVGGG​TAT​CTA​ATC​C-3′) [39]. Then, 
purified PCR products using AMPure XT Beads (Beck-
man Coulter Genomics, Danvers, MA, USA) were 
used to prepare sequencing libraries using TruSeq 
Nano DNA LT Library Preparation Kit (FC-121–4001). 
Sequencing was performed on an Illumina NovaSeq 
6000 with PE250 mode at LC-Bio Technology Co., Ltd. 
(Hangzhou, China).

First, raw sequences were demultiplexed into paired-
end FASTQ files. Quality filtering was performed 
to obtain high-quality clean tags through fqtrim (v 
0.94) [40] by removing the low-quality reads (qual-
ity scores < 20), short reads (< 100  bp), and reads con-
taining more than 5% “N” records. DADA2 [41] with 
default parameters was used for denoising and gen-
erating amplicon sequence variants (ASVs) of quality 
reads that were de-replicated at 100% sequence iden-
tity and clustered at 99% sequence identity. Sequences 
were aligned using BLAST and taxonomic classifica-
tion was done using SILVA (v 138) database. Microbial 
taxa with relative abundance > 0.01% in more than 50% 
of the samples were used in the downstream analysis. 
Bacterial community profiles were compared using 
alpha and beta diversity analyses (with Bray–Curtis 
distance) within QIIME2. Chao1, Shannon, and Simp-
son indices were used to calculate the alpha diversity of 
fecal microbial communities generated from HNF and 
LNF cows, and differences were compared using one-
way ANOVA. Beta diversity analysis was conducted by 
using Bray–Curtis distance matrix and principle coor-
dinate analysis (PCoA) [42]. The wilcx test was used to 
identify the differentially abundant taxa, and signifi-
cances were declared at P < 0.05.

Metagenomics sequencing of fecal microbiome
DNA libraries were constructed using the TruSeq Nano 
DNA Library Preparation Kit-Set (#FC-121–4001, Illu-
mina, USA) following the manufacturer’s instructions. 
Metagenome libraries were then sequenced on an Illu-
mina NovaSeq 6000 platform with PE150 at LC-Bio 
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Technology Co., Ltd. (Hangzhou, China). Sequencing 
adapters were removed from de-multiplexed raw 
sequences using cutadapt (v 1.9). Then, the low-qual-
ity reads (quality scores < 20), short reads (< 100  bp), 
and reads containing more than 5% “N” records were 
trimmed by using the sliding-window algorithm method 
in fqtrim (v 0.94) [34]. Quality filtered reads were first 
aligned to bovine genome (bosTau8 3.7, https://​doi.​org/​
10.​18129/​B9. bioc. BSgenome. Btaurus. UCSC. bosTau8) 
by using bowtie (v 2.2) to filter out host contaminations 
[43]. Then, the remaining reads were subjected to de 
novo assembly for each sample using IDBA-UD (v 1.1.1) 
[44] and used to assign microbial functions and taxon-
omy. MetaGeneMark (v 3.26) [45] was used to predict the 
coding regions (CDS) of the assembled contigs, and CDS 
sequences of all samples were clustered using CD-HIT (v 
4.6.1) to obtain unigenes. DIAMOND (v 0.9.14) was used 
to perform a taxonomic assessment of the gut microbiota 
based on the RefSeq database [46]. Microbial taxa with a 
relative abundance > 0.01% in more than 50% of the sam-
ples were used for downstream analysis. The wilcx test 
was used to identify the differentially abundant species, 
and significances were declared at P < 0.05. An assign-
ment of microbial functions was done using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG). The abun-
dance of KEGG pathways was normalized to transcripts 
per million (TPM) [47], and pathways with > 5 TPM in 
at least 50% of the samples were used for downstream 
analysis.

NetShift [48] was used to identify microbial species 
serving as “drivers” of the altered microbiomes during 
excessive lipolysis. Briefly, microbiomes from LNF and 
HNF cows were defined as the control and case, respec-
tively. Then, the betweenness value, which quantifies the 
importance of each selected species was obtained by a 
Spearman’s rank correlation analysis in LNF and HNF 
cows. Next, the betweenness values of each species were 
input into the NetShift package to calculate neighbor 
shift (NESH) cores. Node sizes are proportional to their 
scaled NESH scores, and the node is colored red if its 
betweenness value increases from control to case.

Profiling of blood and fecal bile acids and the statistical 
analysis
Profiling of bile acids (BA) in feces was done according 
to a method described by Hu et al. [49]. Briefly, 30 mg of 
feces was homogenized in 300 μL of pre-cooled ultrapure 
water. Then, precooled methanol (500 μL) and internal 
standard (10 μL) were added into 100 μL homogenized 
feces and incubated at − 20 °C for 20 min after vortexing. 
Plasma (100 μL) was directly incubated with precooled 
methanol and internal standard. After centrifuging at 

14,000 g for 15 min, the supernatants were collected for 
vacuum drying and then resuspended in 100 μL metha-
nol to water (1:1, v/v). Analyses were performed using an 
UHPLC (Waters Ltd.) coupled online to 5500 QTRAP 
Mass Spectrometry (AB SCIEX, USA). The peak area and 
retention time were generated by Multiquant software. 
The internal standards of BAs were used to correct the 
retention time and to identify metabolites.

Statistical analysis was performed using Prism (Graph-
Pad Software Inc 8.0, La Jolla, CA, USA). The Student’s t 
test between the two groups was used for comparisons. 
Significances were declared at P ≤ 0.05 and 0.05 < P ≤ 0.10 
were considered as significant trends. Spearman’s rank 
correlation analysis (R packages Hmisc v 4.6.0) was 
used to determine the associations between differen-
tially abundant microbial species (from metagenomics 
sequencing) and BA metabolites. P values were generated 
using the t or F distributions, and P < 0.05 was regarded 
as significantly correlation.

Single‑cell RNA sequencing (scRNA‑seq) of peripheral 
blood immune cells and data processing
One cow was randomly selected from LNF and HNF to 
isolate peripheral blood mononuclear cells (PBMCs) and 
granulocytes to perform scRNA-seq analysis. Detailed 
methods on isolation of immune cells and performing 
scRNA-seq have been previously published [50]. In brief, 
1 mL of the blood was mixed with 1 mL of PBS and then 
slowly poured onto 2  mL density separation fluid (His-
topaque®-1077, SIGMA, RNBJ0579). Then, all samples 
were centrifuged at 700 × g for 20 min at 20℃. The buffy 
coat containing PBMCs and the bottom layer containing 
granulocytes were transferred into new tubes containing 
3 mL PBS and centrifuged at 700 × g for 20 min at 20℃. 
Cells were collected and resuspended in 400 µL PBS and 
10  mL lysate (Miltenyi Biotec, 130–094-183). Samples 
were centrifuged again at 100 × g for 7 min at 12 °C fol-
lowing incubating on ice for 10 min. After washing with 
PBS, PBMCs and granulocytes were collected with 1 mL 
of PBS and stored on ice until subsequent analysis. PBS 
used in every isolation step contained 0.1% bovine serum 
albumin. Dead cells and cellular debris were removed 
using the MACS Dead Cell Removal Kit (Miltenyi Biotec, 
Bergisch Gladbach, Germany) following the manufac-
turer’s instructions. Then, the total number of cells was 
counted using a Countess II Automated Cell Counter 
(ThermoFisher, USA). The viability of isolated cells was 
checked (over 95%) using trypan blue.

Cell suspensions were diluted to a concentration of 700 
to 1200 cells/μL with 1 × PBS containing 0.04% BSA prior 
to 10X Genomics sequencing. A high-quality single-cell 
suspension was loaded in a 10X Genomics Chromium 
machine to capture cells and construct cDNA libraries 

https://doi.org/10.18129/B9
https://doi.org/10.18129/B9
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according to Single-Cell 3′ Protocol recommended by 
the manufacturer. RNA-seq was performed using the 
NovaSeq 6000 system (PE150) at LC-Bio Technology Co., 
Ltd. (Hangzhou, China).

Raw reads were demultiplexed and converted into 
FASTQ format using Illumina bcl2fastq software (v 2.20). 
Sample demultiplexing, barcode processing, and single-
cell 3′ gene counting were performed using CellRanger 
(version 3.1.0). Following quality filtering, scRNA-seq 
reads were aligned to ARS-UCD1.2 cattle reference 
genome (ftp.​ensem​bl.​org/​pub/​relea​se-​99/​fasta/​bos_​tau-
rus). The output of CellRanger was loaded into Seurat 
(v 4.0.3) for cell filtration, dimensional reduction, clus-
tering, differential gene expression analysis, and marker 
gene screening of scRNA-seq data. Overall, cells with 
500 to 4000 genes, UMI counts less than 50,000, and a 
mitochondrial gene ratio smaller than 15% were retained 
for downstream analysis. The DoubletFinder package 
(v 2.0.3) was used to remove doublets [51]. We further 
reduced the dimensionality of the variable genes in all 
high-quality cells using Seurat (v 4.0.3) and applied the 
t-distributed stochastic neighbor embedding (T-SNE) 
algorithm to project the variables into a two-dimensional 
space. The batch correction was performed using Har-
mony [52] (v 0.1.0) and “FindAllMarkers” function was 
used to identify the marker genes (| ‘avg_logFC’|> 0.25 
and ‘P_val_adj’ < 0.05) of each cluster. The annotate of 
each cell type was based on the published well-known 
marker genes that were reported in the scRNA-seq 
studies of peripheral immune cells [53–55]. Based on 
the gene × cells matrix, differentially expressed genes 
between LNF and HNF cows of each cluster were iden-
tified using a Wilcoxon rank sum test within the “Find-
AllMarkers” function [50]. Genes with FDR adjusted P 
value of less than 0.05, log fold change greater than 0.5 
or less than -0.5, and average expression counts of more 
than 15% were regarded as differentially expressed genes 
(DEGs). The functional enrichment analysis of the DEGs 
was performed sing “enrichGO” in the clusterProfiler R 
package [56] based on the dataset “org.Bt.eg.db.”

Gene set scoring analysis
The “AddModuleScore” function of the Seurat R package 
(v 4.0.3) was used to compute the signature score of the 
gene set including the bile acid receptors gene set in all 
immune cells, as well as the downregulated genes related 
to BA regulation, response to cytokine, response to virus, 
defense response, and type1 interferon related in mono-
cytes. The impact of lipolysis status on signature scores 
of immune cells was analyzed using a Wilcoxon rank sum 
test in R (v 4.1.0). Additionally, the correlation analysis 
between these pathways in monocyte was based on these 
scores [57].
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Glycolithocholic acid; Total α-MCA: α-Muricholic acid; γ-MCA: γ-muricholic 
acid; isoLCA: Isolithocholic acid; TMCA: Tauro-muricholic acid; TUDCA: Tau‑
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lipolysis. * P-value < 0.05; # 0.05 < P-value < 0.10. Figure S4. The functional 
changes and associations with bile acid related gene set. A. The enriched 
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