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Abstract

Background Peripheral neuropathy (PN) is a common complication in obesity, prediabetes, and type 2 diabetes,
though its pathogenesis remains incompletely understood. In a murine high-fat diet (HFD) obesity model of PN,
dietary reversal (HFD-R) to a low-fat standard diet (SD) restores nerve function and the nerve lipidome to normal.

As the gut microbiome represents a potential link between dietary fat intake and nerve health, the current study
assessed shifts in microbiome community structure by 16S rRNA profiling during the paradigm of dietary reversal
(HFD-R) in various gut niches. Dietary fat content (HFD versus SD) was also correlated to gut flora and metabolic and
PN phenotypes. Finally, PN-associated microbial taxa that correlated with the plasma and sciatic nerve lipidome and
nerve transcriptome were used to identify lipid species and genes intimately related to PN phenotypes.

Results Microbiome structure was altered in HFD relative to SD but rapidly reversed with HFD-R. Specific taxa vari-
ants correlating positively with metabolic health associated inversely with PN, while specific taxa negatively linked to
metabolic health positively associated with PN. In HFD, PN-associated taxa variants, including Lactobacillus, Lachno-
clostridium, and Anaerotruncus, also positively correlated with several lipid species, especially elevated plasma sphin-
gomyelins and sciatic nerve triglycerides. Negative correlations were additionally present with other taxa variants.
Moreover, relationships that emerged between specific PN-associated taxa variants and the sciatic nerve transcrip-
tome were related to inflammation, lipid metabolism, and antioxidant defense pathways, which are all established in
PN pathogenesis.

Conclusions The current results indicate that microbiome structure is altered with HFD, and that certain taxa variants
correlate with metabolic health and PN. Apparent links between PN-associated taxa and certain lipid species and
nerve transcriptome-related pathways additionally provide insight into new targets for microbiota and the associated
underlying mechanisms of action in PN. Thus, these findings strengthen the possibility of a gut-microbiome-periph-
eral nervous system signature in PN and support continuing studies focused on defining the connection between the
gut microbiome and nerve health to inform mechanistic insight and therapeutic opportunities.
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Background

Obesity, prediabetes, and type 2 diabetes are global epi-
demics affecting hundreds of millions of people world-
wide [1, 2]. Driven by overconsumption of a “Western
diet” rich in saturated fats that promote metabolic dys-
function (i.e., glucose intolerance and dyslipidemia),
these metabolic conditions are associated with several
health complications, including peripheral neuropathy
(PN) [3, 4]. PN is defined as distal-to-proximal peripheral
nerve damage that results in poor gait, increased risk of
foot ulceration and amputation, and lower quality of life
[5]. Despite intense research, PN pathogenesis remains
incompletely understood, and management remains
suboptimal.

The gut microbiome has emerged as a plausible link
between dietary intake and metabolic and nerve health.
Indeed, a Western diet and high-fat diet (HFD) influence
gut microbiota and induce dysbiosis [6—8]. Additionally,
obesity and T2D are associated with a perturbed micro-
bial profile [9-11]. In turn, the gut microbiome influ-
ences host metabolism by impacting energy utilization,
intestinal absorption of macronutrients including lipids,
and promoting insulin resistance, hyperglycemia, and
dyslipidemia [12-19]. Thus, metabolic symbiosis occurs
between the microbiome and host, a relationship modu-
lated by dietary intake.

The microbiome likewise influences nerve health
through a microbiome-gut-nervous system axis involving
metabolite signaling and the immune system in the con-
text of metabolic dysfunction [20, 21]. Fecal transplant
from lean donor mice to recipient animals with HFD-
induced obesity reverses small fiber PN and hypersensi-
tivity, accompanied by an improved immune cell profile
and an increase in circulating short-chain fatty acids,
mainly butyrate [22]. HFD also induces enteric neuropa-
thy by decreasing the density of nitrergic myenteric neu-
rons, changes associated with gut flora restructuring [23].
In humans, T2D patients exhibit a distinct microbiota
signature linked to PN status and metabolic status (insu-
lin resistance) [24]. The microbiome may also impact
pain in PN through various communication pathways,
e.g., immune cells and short-chain fatty acids [22, 25, 26].

Despite several known involved pathways, the precise
molecular steps precipitating PN remain elusive. How-
ever, the studies indicating potential connections between
dietary intake and microbiome structure versus host
metabolism and nerve health unlock interesting research
avenues. We hypothesize that a microbiome-gut-periph-
eral nerve axis exists, whereby HFD restructures the gut

microbiome which triggers systemic and local metabolic
changes that negatively impact peripheral nerve function.
This HFD-induced microbiome reorganization and PN
relationship suggests that these effects could be reversed
through dietary changes. Indeed, we previously dem-
onstrated that dietary reversal (HFD-R) from HFD to a
low-fat standard diet (SD) in a HFD obesity mouse model
rescues PN phenotypes [27, 28]; however, the impact on
the microbiome has not been investigated. Herein, our
objective was to leverage SD, HFD, and HFD-R mice to
closely examine the microbiome and test the correlations
between dietary fat content, gut flora community struc-
ture, the plasma and sciatic nerve lipidome, the nerve
transcriptome, and PN phenotype in order to gain initial
insight into a possible gut-microbiome-peripheral nerv-
ous system signature of PN.

Methods

Study design, phenotyping, and biospecimen collection
Mice in the current study (Fig. 1A) represent a subset
from a previous larger study [27] that also underwent
microbiome assessments and plasma lipidomics. Briefly,
a 4-week-old male C57BL/6 ] mice (cat. no. 000664, The
Jackson Laboratory, Bar Harbor, ME, USA) were split
into 3 groups (two groups of n=16/group; one group
of n=8/group) and fed SD, deriving 10% kcal from fat
(cat. no. D12450B, research diets: 10% kcal fat, 20% Kcal
protein, 70% kcal carbohydrate, 3.82% energy density),
ad libitum for 1 week to allow habituation. At 5 weeks
of age, one group (n=16) was maintained on SD, while
the other two groups were switched to HFD, deriv-
ing 60% kcal from fat (cat. no. D12492, research diets:
60% kcal fat, 20% kcal protein, 20% kcal carbohydrate,
5.21% energy density). At 16 weeks of age, one HFD
group (n=8) underwent dietary reversal (HFD-R) and
was switched back to SD for the remainder of the study
until 24 weeks of age. These timelines are consistent with
established protocols for generation of mouse models
with HFD-induced obesity, prediabetes, and PN [29-31].
Mice were maintained and housed at the University of
Michigan in a pathogen-free suite following the Commit-
tee on Use and Care of Animals guidelines.

All mice underwent metabolic and neuropathy phe-
notyping at 16 and 24 weeks of age in accordance with
guidelines by the Diabetic Complications Consortium
(www.diacomp.org), per our standard protocol [27].
Metabolic parameters included body weights (BW) and
fasting blood glucose (FBG) levels, while neuropathy
phenotyping data consisted of sciatic-tibial motor and
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Fig. 1 Dietary reversal normalizes metabolic and PN phenotypes in mice. A Experimental design depicts standard diet (SD), high-fat diet (HFD),
and HFD with dietary reversal (HFD-R) interventions up to 24 weeks (wks) of age in a subset of mice from our larger previously reported study [27].
Asterisks denote datasets from the previous study. B and E Dietary reversal corrects metabolic and neuropathic phenotypes in HFD mice, including
B body weight (n=8-16), C fasting blood glucose (FBG; n=7-8), D motor nerve conduction velocity (NCV; n=7-8), and E sensory NCV (n=7-8) at
24 weeks of age. One-way ANOVA followed by Tukey's post hoc test for multiple group comparisons; a, adjusted P-value < 0.05 between HFD versus
SD; b, adjusted p-value < 0.05 between HFD-R versus SD; ¢, adjusted P-value < 0.05 between HFD-R versus HFD

sural sensory nerve conduction velocities (NCVs) and
analysis of intraepidermal nerve fiber density (IENFD).
Additional metabolic and neuropathy phenotype data,
including glucose tolerance tests (GTT), oxidized low-
density lipoprotein (oxLDL), plasma insulin, choles-
terol, and triglyceride lipoprotein profiles, and thermal
latency, are previously reported [27]. Fecal pellets were

additionally collected directly from animals into sterile
Eppendorf tubes at 8, 10, 12, 16, 18, 20, 22, and 24 weeks
of age, and data from the 8-, 16-, 18-, and 24-week
time points are reported. Mice were sacrificed by lethal
pentobarbital (Vortech Pharmaceutical, Dearborn, MI,
USA) injection at 16 weeks of age (n=8 SD; n=6 HFD)
or 24 weeks of age (n=8 SD, HFD, HFD-R) to collect



Guo et al. Microbiome (2023) 11:52

plasma and content from~3 mm of ileum, cecum, or
colon under sterile conditions (Fig. 1A, Table S1).

Microbiome profiling and analysis

Collected fecal samples and intestinal content were
seeded in a PowerMag Glass Bead Plate (MO BIO Labo-
ratories, Carlsbad, CA, USA) to isolate bacterial DNA
using a MagAttract PowerMicrobiome DNA/RNA
Kit (Qiagen) and epMotion 5075 liquid handling sys-
tem. Amplification of the V4 region of the bacterial 16S
rRNA gene was performed on an Illumina MiSeq at the
University of Michigan Microbiome Core, as previously
reported [32].

Raw sequencing reads were filtered with the dada2
R package [33] and then de-replicated and de-noised
using derepFastq function with default parameters. After
building an amplicon sequence variant (ASV) table and
removing chimeras, taxonomy was assigned against the
SILVA database (v132) [34] natively implemented in
dada2. Uncharacterized ASVs that were not assigned to
any known species at the phylum level were classified as
not assigned (NA). ASVs with NA or appearing in less
than three samples were removed using a prevalence
threshold <number of samples x 0.05. Alpha diversity
within the samples was measured using different met-
rics implemented in the phyloseq package [35]. Principal
coordinate analysis (PCoA) based on Bray—Curtis dis-
similarity metrics was performed with the proportional
normalized data to reveal differences between various
groups or time points. A permutational analysis of vari-
ance (PERMANOVA) using the Adonis function as part
of the vegan package (https://CRAN.R-project.org/packa
ge=vegan) was performed to test the effect of treatment
as a continuous variable on group differences.

Differential abundance analysis was performed with
the DESeq2 package [36], and significant ASVs were
identified with a p-value <0.05. Functional profiling was
calculated using the Tax4Fun2 package [37]. Multiple
testing of Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway abundance according to sample groups
was performed with the most updated KEGG database.
Butyrate-producing bacteria were identified by compil-
ing a taxonomy file that contained the major commensal
butyrate-producing bacterial species from the literature
[38—41]. The discovered ASVs from 16S rRNA sequenc-
ing were classified against this curated taxonomy file to
identify the butyrate-producing bacteria in our dataset.

Untargeted and targeted plasma lipidomics

Plasma (n=10/group) collected for this study was ana-
lyzed by both untargeted and targeted lipidomics at
the University of Michigan Regional Comprehensive
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Metabolomics Resource Center. Lipids were identified
from LC/MS/MS untargeted lipidomics data using the
LIPIDBLAST program package (http://fiehnlab.ucdav
is.edu/projects/LipidBlast) and quantified using Mul-
tiQuant software (AB-SCIEX). Missing values were
imputed using a K-nearest neighbor (KNN) algorithm,
and data were normalized using internal standards.
Lipids were measured in both positive and negative ion
modes and then merged by their mean values. Differential
lipids were identified by unpaired ¢-test between groups
with an adjusted Benjamini-Hochberg p-value<0.05 as
the significance cutoff.

Targeted lipidomics was conducted on plasma and
sciatic nerve samples collected from the subset of
mice (n=10) from a previous larger study [27]. All 10
plasma samples were pooled for a total of 350 pl, and
lipids were extracted using organic solvents, as previ-
ously reported [42]. Triglycerides were then separated
on a thin-layer chromatography plate (Merck, Darm-
stadt, Germany) using hexane:diethyl ether:acetic acid
(80:20:1, v/v), as before [27]. Phospholipids, including
sphingomyelin, were separated using a solvent mixture of
chloroform:methanol:acetic acid:H,O (100:40:12:4, v/v)
[43]. Sciatic nerve tissues were pooled, homogenized,
and analyzed as described previously [27].

Previous datasets

Longitudinal metabolic measures, as well as PN pheno-
typing and sciatic nerve transcriptomic and lipidomic
datasets at 16 and 24 weeks of age, were collected from
SD, HFD, and HFD-R mice in our previous study [27].
Subsets of these data corresponding to mice also followed
for the current study were used for correlation analyses
with the newly collected microbiome and plasma lipid-
omic data.

Correlation analysis

Spearman’s correlations were calculated between differ-
ential abundance of PN-associated ASVs, which over-
lapped between HFD versus SD and HFD-R versus HFD
from the four gut microbiome niches (ileum, cecum,
colon, pellets), to metabolic state and PN, sciatic nerve
transcriptomics, and plasma and sciatic nerve lipidomics.
Pathway analysis using KEGG and Gene Ontology (GO)
annotations were performed on correlated genes in the
correlation analysis of sciatic nerve transcriptomics to
PN-associated ASVs.

Statistical analysis
All statistical analyses were performed using R software
environment (v4.0.1).
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Results

Dietary reversal normalizes metabolic and PN phenotypes

in mice

Here, we employed a HFD mouse model that develops
obesity (Fig. 1B; HFD, green) and prediabetes (Fig. 1C;
defined by a FBG between 150 and 180 mg/dL) versus
SD mice (red). HED mice also robustly and consistently
develop PN, evidenced by slowed motor (Fig. 1D) and
sensory (Fig. 1E) NVCs relative to control SD mice. Plac-
ing HFD mice at 16 weeks back on SD diet, i.e., HFD-R
mice (blue), reverses metabolic and neuropathic deficits.
At the 24-week time point, there were no significant dif-
ferences in FBG (Fig. 1C) or motor and sensory NVCs
(Fig. 1 D-E) between HFD-R and SD mice, indicating
rescue of metabolic and nerve dysfunction. These data
from the current subset of mice parallel those reported
for the full larger study cohort [27].

Dietary reversal shifts microbial structure in obese PN mice
In our first assessment of microbial community structure,
we evaluated intragroup alpha diversity. We observed
that alpha diversity was significantly higher in the HFD
versus HFD-R and SD versus HFD-R groups, as assessed
by the Shannon index in all samples (ileum, cecum,
colon, pellets) (Fig. 2A). Examining samples by microbial
niche, i.e., ileum, cecum, colon, and pellets, independent
of time point, revealed consistent alpha diversity differ-
ences, especially marked by the lowest alpha diversity
in the small intestine in all diet groups (Figure S1A).
When samples were combined by time point and diet,
independent of niche, diversity decreased within the SD
group at the last time point and within the HDF-R group
after dietary reversal at 18 and 24 weeks (Figure S1B); on
the other hand, there were no differences in alpha diver-
sity under the HFD intervention.

Next, we examined gut inter-group diversity between
samples, assessed by beta diversity of filtered ASVs.
Gut microbiome clustered SD from HFD samples, but
HFD-R samples following dietary reversal clustered with
SD reflecting similar microbial composition (Fig. 2B,
Table S2). Longitudinal analysis of fecal pellets indi-
cated microbial communities rapidly adjust to dietary
changes (Fig. 2C). Only 3 weeks after mice were initi-
ated on HFD (i.e., 8 weeks of age), there was a distinct
shift in microbial community structure versus SD mice
(P=0.001). Similarly, dietary reversal for 2 weeks (ie.,
18 weeks of age) already restored altered HFD microbial
community structure closer to the SD group (P=0.001).
Significant clustering differences between SD and HFD-R
versus HFD remained at 24 weeks of age (P=0.001).
Notably, although close, SD and HFD-R remained indi-
vidually clustered at 24 weeks of age. Ileum, cecum, and

Page 5 of 17

colon microbiota showed similar shifts in beta diversity
between 16 and 24 weeks (Table S2).

Dietary fat content also altered the relative abundance
of the most abundant bacterial phyla, which included
Actinobacteria, Bacteroidetes, Firmicutes, Proteobacte-
ria, Tenericutes, and Verrucomicrobia, in all gut micro-
biota niches investigated. Specifically, we observed a
decrease in Actinobacteria, Bacteroidetes, and Teneri-
cutes under HFD and a concomitant increase in Firmi-
cutes at all time points, which was reversed by dietary
reversal (Fig. 2D). At 24 weeks of age, Proteobacteria
was drastically lower in the cecum, colon, and fecal pel-
lets of HFD mice, but was not reversed to SD levels in
HFD-R samples. Interestingly, we observed increased
butyrate-producing bacteria under HFD compared to
SD or HFD-R at 24 weeks of age in the small and large
intestines (Fig. 2E). However, analysis of HFD-associated
butyrate-producing bacterial composition shows that
most are pathogenic species.

Dietary reversal shifts microbial taxa signature in obese PN
mice

To identify the microbial mediators driving dietary fat-
induced changes in gut microbial differences in mice,
we identified the most highly differential ASVs in ileum,
cecum, colon, and fecal pellets at 16 weeks for HFD ver-
sus SD and at 24 weeks for HFD versus SD and HFD-R
versus HFD (P<0.05) (Fig. 3A, Figure S2). We then iden-
tified taxa signatures that were restored upon changes in
dietary fat composition, i.e., dietary reversal, at 24 weeks
of age (overlap between HFD versus SD and HFD-R
versus HFD). There were 6 ASVs in the ileum, 35 in the
cecum, 25 in the colon (Figure S2), and 21 in the fecal
pellets (Fig. 3B). These taxa were defined as diet-sensi-
tive ASVs and were used for subsequent analyses in the
study. Although each microbiota niche had a unique sig-
nature at 24 weeks of age, we identified two ASVs at the
genus level, Enterorhabdus (ASV94) and Bifidobacterium
(ASV5) of the phylum Actinobacteria, and one ASV at
the family level, Muribaculaceae (ASV3) of the phylum
Bacteroidetes, as shared gut bacteria sensitive to dietary
fat (Fig. 3D).

Changes in functional gut microbiota composition
between dietary interventions in 24-week-old mice were
determined by KEGG enrichment analysis. We first iden-
tified statistically significant enriched pathways (false
discovery rate [FDR] <0.05) between HED versus SD and
HFD-R versus HFD. We identified 6 overlapping KEGG
pathways in the ileum, 46 in the cecum, 19 in the colon
(Figure S2), and 25 in the fecal pellets (Fig. 3C). The
altered functional categories across microbial niches
were mainly related to amino acid biosynthesis and
metabolism, insulin resistance/secretion, adipocytokine
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Fig. 2 Dietary reversal shifts microbial structure in obese PN mice. A Intragroup microbial diversity is significantly higher in HFD (green; n=135)
versus SD (red; n=140) and HFD-R groups (blue; n =84) as assessed by alpha diversity using Shannon index. One-way ANOVA; *P<0.05, **P <0.01.
B-C Inter-group microbial diversity assessed by beta diversity by ASV clustering by principal coordinate analysis. B Differences between gut
microbiota community structure in SD (red), HFD (green), and HFD-R (blue) in the ileum, cecum, colon, and fecal pellets. Samples from HFD-R mice
prior to dietary reversal from 8 to 16 weeks (wks) of age clustered with HFD samples. All time points are shown (16 and 24 weeks for ileum, cecum,
and colon; biweekly samples from 8 to 12 and 16 to 24 weeks for fecal pellets). C The microbial community structure in fecal pellets at different
time points (8, 16, 18, and 24 weeks of age) rapidly responds to HFD, which is reversed by dietary reversal within a short timeframe (SD, n=7-16,
red; HFD, n=7-16, green; and HFD-R, n=6-8, blue). D Stacked bar plot of the relative abundance of the most abundant taxa at the phylum level
in fecal pellets at 8, 16, 18, and 24 weeks of age (SD, n=7-16; HFD, n=7-16; HFD-R, n =6-8). E Stacked bar plot of the relative abundance of
butyrate-producing bacteria at 24 weeks of age
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signaling, bile secretion, and neurotransmitters. The
microbiota consistently altered throughout the gut and
shared by all niches were the KEGG biological pathways
of tyrosine metabolism, arginine and proline metabolism,
carbapenem biosynthesis, tropane, piperidine, and pyri-
dine alkaloid biosynthesis, and legionellosis (Fig. 3E).

Diet-sensitive gut bacteria correlate with metabolic state
and PN

To correlate the relative abundance of microbiota associ-
ated with dietary fat to PN features, we performed cor-
relation analysis (FDR < 0.05) of the diet-sensitive ASVs to
metabolic (BW, FBG) and PN (motor and sensory NCVs)
phenotyping at 24 weeks of age (Fig. 4). Unique and com-
mon correlation patterns were observed between ASVs

and phenotyping among the ileum, cecum, colon, and
fecal pellets. Overall, taxa correlated with metabolic
and neuropathic phenotypes in opposite directions, i.e.,
increased metabolic parameters with decreased nerve
function and decreased metabolic parameters with
increased nerve function. When screening for ASVs cor-
relating with all parameters in at least one gut niche, we
found nine ASVs had a positive correlation to metabolic
measurements (BW, FBG) and negative correlation with
nerve function (motor and sensory NCVs), and they
increased with HFD and decreased with SD (Fig. 4). The
ASVs correspond to the genera Family XII AD3011_
group (ASV111), Lachnospiraceae_UCG-006 (ASV57),
Lachnoclostridium (ASV89), Anaerotruncus (ASV106,
ASV196), Enterorhabdus (ASV94), Lactobacillus
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Fig. 4 Diet-sensitive gut bacteria correlate with metabolic state and PN at 24 weeks of age. A Spearman’s correlation heatmap between gut
microbial relative abundance at the genus level with metabolic phenotypes [body weight (BW; n=22-24), fasting blood glucose (FBG; n=14)]
and nerve function [motor nerve conduction velocity (MNCV; n=21-23), sensory NVC (SNCV; n =21-23)]. Only ASVs correlating with all
parameters in at least one gut niche are shown. ASVs are listed with corresponding genus or family (*) level. Blue ASVs are lower with HFD and
correlate negatively with metabolic parameters but positively with PN. Black ASVs are higher with HFD and correlate positively with metabolic
phenotypes but negatively with PN. B Summary for (A);+Met/ — PN, correlates positively with metabolic parameters and negatively with PN
parameters; — Met/ + PN, correlates negatively with metabolic parameters and positively with PN parameters. Red ASVs are unique for the specified
tissues; black ASVs are shared in different tissues. ASV, amplicon sequence variant; C, colon; Ce, cecum; |, ileum; P, pellet

(ASV120), and Candidatus_Stoquefichus (ASV98) and
the family Ruminococcaceae (ASV64). On the other
hand, three ASVs, including Lachnoclostridium
(ASV142), Lachnospiraceae_ NK4A136_group (ASV41),
and Bifidobacterium (ASV5), decreased in HFD and
increased in SD mice and correlated positively with
healthy metabolic and nerve phenotypes.

Microbial communities associate with plasma and nerve
lipidomics and transcriptomics

Next, we were interested in the correlation between
long-term systemic and nerve hyperlipidemia to PN and
diet-sensitive microbiota. To address this, we performed
untargeted lipidomics on plasma that had been banked
from a larger cohort of animals whose sciatic nerves were
previously analyzed by lipidomics [27]. In plasma, we
identified 578 lipids (25 major lipid class) from 76 sam-
ples. Lipid-class-based clustering visualized by heatmaps
shows a clear increase in sphingomyelins in HFD versus
SD mice in plasma at 16 and 24 weeks of age (Fig. 5A).
This pattern was reversed in the HFD-R 24-week-old
mice which had undergone dietary reversal. On the

contrary, plasma triglycerides decreased in the HFD
groups but increased after the mice underwent dietary
reversal to SD. These observations were confirmed by
lipid class aggregates (Fig. 5B) and targeted lipidomics
analysis in a separate cohort of animals under the same
dietary paradigm (Fig. 5C). The findings in plasma are
opposite to what we previously observed in fat surround-
ing sciatic nerve; in nerve, triglycerides were elevated in
HFD but dropped in response to dietary reversal [27],
while sphingomyelins were lower in HFD and increased
upon reversal to SD (Fig. 5C).

Individual circulating differentially altered lipids
(DALs) were identified by comparing HFD to SD and
HFD-R to HED in 24-week-old mice (Fig. 5 D—E). The
levels of 62 DALSs changed direction upon dietary rever-
sal; 47 increased and 15 decreased in HFD versus SD,
which was reversed in HFD-R versus HFD groups. Lipid
species belonging to diglycerides, lysophosphatidylethan-
olamines, phosphatidylinositols, plasmenyl-phosphatidy-
lethanolamines, and sphingomyelins all increased under
HFD and decreased when the animals were switched
from HED to SD.
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Next, to determine whether PN-associated bacteria
sensitive to dietary fat correlate with altered host lipid
profiles, we performed a series of correlation analyses
(FDR <0.05). We first determined the correlation between
the relative abundance of ASVs identified in Fig. 4 to
plasma lipids that changed upon dietary reversal (Fig. 6A;
full correlation Figure S3A). Gut bacteria increasing in
HFD, such as Lactobacillus (ASV120), Lachnoclostridium
(ASV89), and Anaerotruncus (ASV196), directly cor-
related with many plasma DALs that increased in HFD,
especially sphingomyelins. These ASVs showed inverse
correlations with lipids that decreased in response to
HEFD. A similar pattern was observed with Enterorhab-
dus (ASV94), Ruminococcaceae (ASV64), Family XIII_
AD3011_group (ASV111), Anaerotruncus (ASV106), and
Candidatus stoquefichus (ASV98), although correlations
were limited to fewer lipid species. On the other hand,
ASVs that increased with SD, such as Bifidobacterium
(ASV5) and Lachnospiraceae_ NK4A136_group (ASV41),
correlated positively with decreasing plasma lipids (tri-
glycerides, free fatty acids, phosphatidylcholines) and
negatively with increasing lipids (mostly sphingomyelins)
in the cecum, colon, and pellets samples (Fig. 6A). Lach-
noclostridium (ASV142) also negatively correlated with
increased lipids (mostly triglycerides) but had no correla-
tion with decreasing lipids.

To determine whether diet-dependent microbial
changes also correlate with lipid species surround-
ing the sciatic nerve at 24 weeks, we performed cor-
relation analysis between the relative abundance of
the PN-associated bacteria and sciatic nerve DALs at
24 weeks of age (Fig. 6B; full correlation Figure S3B)
[27]. In contrast to plasma lipidomics, triglycerides
and diglycerides around the sciatic nerve were higher
in HFD and decreased in response to dietary rever-
sal [27]. We observed positive correlations of bacteria
species, such as Lactobacillus, Lachnoclostridium, and
Anaerotruncus, to elevated triglycerides and diglyc-
erides in HFD sciatic nerve. Sphingomyelin 41:2 and

(See figure on next page.)
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lysophosphatidylcholine 16:1 were the only lipid spe-
cies that changed with dietary intervention and over-
lapped between plasma and sciatic nerve at 24 weeks;
however, only lysophosphatidylcholine 16:1 changed
in the same direction in both tissues (downregulated
in HFD animals and upregulated in SD animals) and
negatively correlated with Candidatus stoquefichus
(ASV98), Lactobacillus (ASV120), and Anaerotruncus
(ASV196) in both plasma and sciatic nerve.

Finally, we performed correlation analysis between
the relative abundance of PN-associated bacteria to
sciatic nerve transcriptomics profile at 24 weeks of
age (Fig. 6C; full correlation Figure S4) [27]. Lac-

tobacillus (ASV120), Lachnoclostridium (ASV89),
Family XIII AD3011_group (ASV111), Candidatus
stoquefichus (ASV98), Ruminococcaceae (ASV64),

and Enterorhabdus (ASV94) correlated positively with
upregulated genes and negatively with downregulated
genes in HFD sciatic nerve. Bifidobacterium (ASV5),
Lachnospiraceae_ NK4A136_group (ASV41), and Lach-
noclostridium (ASV142) correlated negatively with
upregulated genes and positively with downregulated
genes in HFD sciatic nerve.

GO and KEGG pathway analysis of DEGs that corre-
lated with PN-associated microbiota was enriched in
inflammatory response driven by disintegrin and metal-
loproteinase domain-containing protein 8 (Adams8), hap-
toglobin (Hp), interleukin-1 receptor antagonist (//1rn),
serum amyloid A 3 (Saa3), and serpin family A member
3 (Serpina3n) (Fig. 6D). Also, lipid and bile metabolism
and antioxidant defense pathways were represented by
cytochrome P450, family 2, subfamily ¢, polypeptide 70
(Cyp2c70), gamma-glutamyl transferase 6 (Ggt6), phos-
pholipase A2 group IIE (Pla2g2e), lysophosphatidylglyc-
erol acyltransferase 1 (Lpgatl), and monoacylglycerol
O-acyltransferase 2 (Mogat2). These genes mostly cor-
related positively with ASVs upregulated in HFD, indi-
cating inflammatory, lipid and bile metabolism, and
antioxidant defense pathways are linked with PN.

Fig. 5 Plasma lipidomics in an obesity PN mouse model and upon dietary reversal. A Clustering of lipid classes identified by untargeted lipidomics
of plasma from 16- (left, n=20) to 24 (right, n= 28)-week-old SD, HFD, or HFD-R mice represented in heatmaps. Purple rectangles outline areas with
the most striking differences. B Levels of each lipid species from (A) were Z-score transformed to generate lipid class aggregates from plasma at 16
(top) and 24 (bottom) weeks of age, represented in bar plots of log,(value). C The sum of plasma and sciatic nerve (SCN) [27]-targeted lipidomics
(TLC-GQ) shows higher sphingomyelins and lower triglycerides versus sciatic nerve [27] from HFD compared to SD and HFD-R animals at 24 weeks
of age (n=10 plasma samples; n=10 sciatic nerves). D Analysis to identify differentially altered lipids (DALs) between HFD versus SD at 16 weeks of
age or between HFD versus SD, HFD-R versus HFD, and SD versus HFD-R at 24 weeks of age (adjusted P < 0.05). E Overlapping DALs from (D) show
direction of change for HFD versus SD (orange) and HFD-R versus HFD (purple), represented in a bar plot of log, fold change (log,FC). Shared lipid
species between plasma and sciatic nerve are listed in red text. CE, cholesteryl esters; CL, cardiolipins; CerP, N-hexadecanolsphingosine 1-phosphate;
DG, diglycerides; FFA, free fatty acids; MG, 1-acyl-sn-glycerol; MGDG, monogalactosyldiacylglycerol; C24:1 SM, N-15Z-tetracosenoyl-sphing-4-enine;
PI-Cer(d18:1/22:0), N-docosanoyl-sphing-4-enine; Cer(d18:1/20:0), N-eicosanoyl-sphing-4-enine; Cer(d18:1/16:0), N-hexadecanoyl-sphing-4-enine;
Cer(d18:1/18:0), N-octadecanoyl — sphing-4-enine; Cer(d18:1/24:0), N-tetracosanoyl-sphing-4-enine; PA, phosphatidic acids; PC,
phosphatidylcholines; PE, phosphatidylethanolamines; PG, phosphatidylglycerols; P, phosphatidylinositols; PS, phosphatidylserines; SM,
sphingomyelins; TG, triglycerides; LPC, lysophosphatidylcholines; LPE, lysophosphatidylethanolamines; pPC, plasmenyl-phosphatidylcholines; pPE,
plasmenyl-phosphatidylethanolamines
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Discussion

In the current study, we leveraged our HFD obesity PN
model with a paradigm of dietary reversal to investigate
a putative association between the microbiome-gut-
peripheral nerve axis and dietary fat intake. We report
that even a short duration of high-fat feeding altered
microbiome structure in mice, which rapidly reversed
when animals were placed back on SD. These changes
occurred through microbial ASVs linked to various met-
abolic and biosynthetic pathways in all four gut niches,
i.e., ileum, cecum, colon, and fecal pellets. Correlation
analysis further identified specific microbiome signa-
tures linked with metabolic health and nerve function.
Correlations between PN-associated ASVs from HFD
animals, lipidomics, and transcriptomics data revealed
that Lactobacillus, Lachnoclostridium, and Anaerotrun-
cus taxa variants positively correlated with several lipid
species, particularly elevated plasma sphingomyelins
and sciatic nerve triglycerides. Relationships were also
identified between specific PN-associated taxa variants
to expression of genes in neuropathic nerves related to
pathways involved in PN pathogenesis, including inflam-
mation, lipid metabolism, and antioxidant defense path-
ways. These data link HFD-mediated PN to the gut
microbiome.

Using our HFD mouse model of obesity, prediabetes,
and PN and established time points for dietary altera-
tion and phenotyping [29-31], we observed a dynamic
gut microbial community structure throughout the intes-
tine that was rapidly reshaped within weeks by dietary
fat content. Similar findings are reported in humans and
rodents within the same timeframe [44, 45], including in
response to a 60% kcal HFD [46]. As previously published
[47], alpha diversity was lowest in the ileum across gut
niches for all diets, i.e., SD, HFD, and HFD-R, compared
to large intestine. Across diets, we found alpha diversity
was highest in HFD metabolically unhealthy obese mice
versus SD and HFD-R. This likely represents community
structure shifts in the HFD microbiome, which increase
the diversity of deleterious bacteria [48], as observed in
HED mouse gut or fecal pellets by Shannon index [46,

(See figure on next page.)
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49]. Indeed, closer examination of the individual bacterial
composition of the HFD microbiota revealed increased
abundance of bacteria belonging to Lachnospiraceae,
Oscillospiraceae, and Clostridiaceae, families which con-
tain pathogenic bacteria [50—54].

When we assessed beta diversity, SD samples clustered
separately from HFD samples, indicating distinct micro-
biome structure. HFD-R samples clustered closely with
SD samples, but did not ever fully reverse, in line with
previously observed reports [7, 23, 46]. Our results exam-
ining phyla abundance linked to diet indicate that HFD
promotes Firmicutes and reduces Bacteroidetes, i.e., high
Firmicutes/Bacteroidetes ratio. Similarly, HFD enhances
the proportion of butyrate-producing bacteria. While
elevated Firmicutes/Bacteroidetes ratio and butyrate-
producing bacteria are generally linked to a healthful
status [11], several studies have noted, like our findings,
elevated Firmicutes/Bacteroidetes ratio [7, 23, 46, 55, 56]
and butyrate-producing metagenes [49] in HFD. Dis-
crepancies among studies may arise from differences in
host genetic background [49, 57] or species of Firmicutes
phylum [58]. Additionally, the families of bacteria we
observed in our bacterial composition analysis (Lachno-
spiraceae, Oscillospiraceae, and Clostridiaceae) produce
butyrate [59-61] and thus also likely contribute to the
observed increase in butyrate-producing bacteria in HFD
mice.

We next investigated specific ASVs, which were iden-
tified down to the family or genus level. Several ASVs
across the four gut niches were sensitive to diet, i.e., dif-
ferentially abundant in HFD versus SD and HFD-R versus
HED. Enterorhabdus and Bifidobacterium, of the phy-
lum Actinobacteria, and Muribaculaceae, of the phylum
Bacteroidetes, were shared by all gut niches, whereas
Clostridium_sensu_stricto_1 was prominent in colon and
fecal pellets. In the literature, Bifidobacterium [7, 55, 62]
and Clostridium_sensu_stricto genera [55] are lower and
Enterorhabdus [62] higher in mouse HFD gut, although,
conversely, various Clostridium species, e.g., Clostrid-
ium CAG:58 and Clostridium orbiscindens, instead cor-
relate positively with obesity (BMI, visceral fat) [63] and

Fig. 6 Microbial communities associate with plasma and nerve lipidomics and transcriptomics. A-C Spearman’s correlation analysis heatmaps
(FDR < 0.05) of relative abundance of PN-associated gut microbiota sensitive to dietary fat at 24 weeks of age with A plasma differentially altered
lipids (DALs) (n=11 animals), B sciatic nerve DALs [27] (n=11 animals), and C sciatic nerve differentially expressed genes (DEGs) [27] (=11
animals), which are increased (up) or decreased (down) in HFD versus SD. ASVs at the genus or family (*) level that are higher in HFD are listed

in black, and ASVs higher in SD are listed in blue. Correlation scale (red, positive; green, negative) is the same for (A-C). D Functional enrichment
analysis of 64 increasing and 2 decreasing sciatic nerve DEGs [27] correlating with PN-associated bacteria using gene ontology (GO; left) and Kyoto
Encyclopedia of Genes and Genomes (KEGG; right) (P<0.05). The top ten biological pathways are shown. Bar plots indicate the proportion of
DEGs assigned to each term (rich factor), with number of genes in each category indicated. CE, cholesteryl esters; CL, cardiolipins; DG, diglycerides;
FFA, free fatty acids; lysoPC, lysophosphatidylcholines; lysoPE, lysophosphatidylethanolamines; PI-Cer(d18:1/22:0), N-docosanoyl-sphing-4-enine;
Cer(d18:1/20:0), N-eicosanoyl-sphing-4-enine; Cer(d18:1/18:0), N-octadecanoyl-sphing-4-enine; PC, phosphatidylcholines; PE,
phosphatidylethanolamines; Pl, phosphatidylinositols; pPE, plasmenyl-phosphatidylethanolamines; SM, sphingomyelins; TG, triglycerides. ASV,
amplicon sequence variant; FDR, false discovery rate; C, colon; Ce, cecum; |, ileum; P, pellets
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animal-based diet [44] in human microbiome. Thus,
species-level differences in diet-induced gut microbial
restructuring may be occurring.

We further considered the functional implications of
these differential ASV abundances by performing KEGG
pathway analysis comparing HFD to SD. Recurrent
among the gut niches were tyrosine metabolism, arginine
and proline metabolism, carbapenem biosynthesis, tro-
pane, piperidine and pyridine alkaloid biosynthesis, and
legionellosis. In the large intestine, the most significant
pathway was insulin resistance, whereas in fecal pellets,
neurotransmitter pathways and serotonergic and dopa-
minergic synapse featured prominently. Several studies
have shown correlation of insulin resistance with dis-
tinct gut microbial communities [15, 16, 56, 63]. Related
to insulin resistance, and also represented in the KEGG
analyses on cecum, colon, and fecal pellets, were adi-
pokine signaling (same fold-change direction) and insulin
secretion (opposite direction). The literature also under-
scores the relevance of gut microbiome metabolism
related to neurotransmitter biosynthesis, e.g., tyrosine,
tryptophan, phenylalanine, and glutamate metabolism
and serotonin and dopamine signaling, which are central
to nervous system health [20].

Although the impact of HFD on gut microbiome struc-
ture is well established [7, 23, 44, 46, 49, 55-58, 63], the
effect on peripheral nerve health is less investigated.
Thus, after analyzing dietary fat content-induced gut flora
changes, we assessed the correlation of microbial ASVs
with metabolic parameters and PN phenotypes. Gener-
ally, HED increases BW and FBG and decreases motor
and sensory NCVs [27, 28], leading to an inverse relation-
ship in these metabolic parameters to PN phenotype. In
the current study, nine ASVs correlated positively with
metabolic measurements (BW, FBG) and negatively with
nerve function and were elevated in HFD and reduced
in SD, while three ASVs that associated negatively with
metabolic parameters and positively with nerve function
were decreased in HFD and increased in SD. Thus, nerve
health correlates with distinct microbiome signatures.
Other studies have also noted a microbiome signature of
PN in humans [24] and enteric neuropathy in mice [23,
55]. Although ASVs were not provided for direct com-
parison, similar genera to those identified herein, such as
Lactobacillus, Bifidobacterium, and Lachnoclostridium,
were among those that differentiated enteric neuropathy
[23, 55] and PN [24], among others.

To establish a potential link between diet, PN, and
microbiome to specific lipid species, we conducted lipi-
domics analysis of plasma from 24-week-old SD, HFD,
and HFD-R mice, which we combined with our pub-
lished sciatic nerve lipidomics dataset under the same
diet paradigms [27]. Our observations for triglycerides

Page 13 of 17

and sphingomyelin showing inverse levels between
plasma and sciatic nerve lipids, i.e., in HFD versus SD
and HFD-R, agree with reports of elevated plasma/serum
sphingomyelins in HFD mice [64, 65] and obese humans
[66, 67]. In our correlation analysis of PN-associated
ASVs with plasma and sciatic nerve lipids, the most sali-
ent associations emerged between elevated circulating
sphingomyelins and lower triglycerides in HFD mice,
which were negatively linked to certain microbiota spe-
cies in the cecum, colon, and pellets samples. Bifidobac-
terium, a beneficial bacterial genus used in probiotics
supplements, correlates with improved gut microbiome
structure [68-70]. Additionally, Bifidobacterium pseudo-
longum supplements decrease plasma triglyceride levels
in HFD mice [70], which would improve metabolic pro-
file. We found gut bacteria increasing in HFD, such as
Lactobacillus, Lachnoclostridium, and Anaerotruncus,
correlated negatively with several free fatty acid and com-
plex lipid species, including LysoPC 16:1, in both plasma
and sciatic nerve. In type 2 diabetes patients, Lachnoclo-
stridium correlated positively with total cholesterol and
low-density lipoprotein cholesterol and a poorer meta-
bolic profile [24].

We finally examined microbial correlations to nerve
transcriptome. Most PN-associated gut microbiota posi-
tively correlated with upregulated sciatic DEGs, although
two downregulated DEGs (Acsm3 and Jumn) negatively
correlated with PN-associated microbiota. Acsm3 is an
important enzyme in butyrate metabolism, as it acti-
vates medium-chain fatty acids towards mitochondrial
f-oxidation [71]. Downregulated Acsm3 in HFD sciatic
nerve may potentially be a compensatory mechanism to
slow butyrate metabolism in attempts to maintain nerve
butyrate levels [22]. Similarly, we observed downregu-
lated Jun, encoding c-Jun, a protein highly expressed in
injured Schwann cells [72] and downregulated during
myelination in vivo [73].

All other sciatic nerve DEGs correlated positively
with gut microbiota and PN phenotypes, indicating an
important link between the microbiota and PN. Path-
way analysis of the correlated sciatic DEGs in HFD was
related to inflammation (included genes Adams8, Saa3,
Il1rn, Serpina3n) and lipid, bile, and antioxidant metabo-
lism (Cyp2c70, Ggt6, Pla2g2e, Lpgatl, Mogat2). Notably,
IL1rn is involved in granulocyte adhesion and is associ-
ated with PN in diabetes db/db murine models [74], and
Saa3 is an inflammatory marker of Schwann cell injury in
peripheral nerves [75]. Both ILIrn and Saa3 are mark-
ers of sterile inflammation, are modulated by gut micro-
biota [76, 77], and are associated with PN in both 0b/0ob
and db/db mouse models [27, 78—-80]. Mice with Ser-
pin3 deficiency exhibit neuropathic pain, which can be
reversed by exposure to exogenous Serpin3 [81]. We also
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identified Adam8, which stimulates axonal extension, as a
novel target linking the gut microbiota to sciatic PN [82].
Many of the DEGs related to lipid metabolism (Pla2g2e,
Lpgatl, Mogat2) have been previously identified in the
sciatic nerve of HFD mice and are involved in linoleic
acid, phospholipid, and neutral lipid metabolism [27],
suggesting a link between gut microbiota and sciatic lipid
metabolism.

This study has limitations. First, it was a correlative
study, not a causative one, which would require fecal
transplants or antibiotic treatment. However, fecal trans-
plants from lean donor mice to recipient mice with HFD-
induced obesity reverse PN phenotypes and immune
profiles [22], suggesting possible causality between
microbiome and PN. Second, our study only involved
male mice, which may not identify important findings
due to sex differences in lipids [66, 83, 84] and the micro-
biome [20, 85]. Finally, our HFD model is based on a
homogenous mouse C57BL/6 background in an experi-
mental setting. However, genetics influences microbiome
[49, 57] and metabolic phenotype [28]; thus, in the real-
world setting, intraindividual variation is likely to moder-
ate the relationships identified in this study.

Conclusions

Overall, we report the presence of a PN-associated
microbiome signature in response to dietary fat. In cor-
relation analyses, Lactobacillus, Lachnoclostridium, and
Anaerotruncus ASVs positively correlated with several
lipid species, particularly elevated plasma sphingomye-
lins and sciatic nerve triglycerides in HFD mice with PN.
In sciatic nerve transcriptome, PN-associated ASVs were
linked to gene expression related to inflammation, lipid
metabolism, and antioxidant defense, intimating a poten-
tial gut-microbiome-peripheral nerve system. These
findings underscore the importance of microbiota in PN
pathogenesis. The identified HFD-associated microbial
species could potentially serve as biomarkers to pre-
dict PN susceptibility in obese, prediabetic, and diabetic
individuals, and clinical studies are warranted to test the
correlation between these microbial species and human
PN. Additionally, our assessment of dietary impact on
microbiota composition shows that a HFD is associated
with pathogenic microbiota, while a SD is associated with
more beneficial microbiota. This offers insight into novel
therapeutic strategies for PN that focus on diets with
low-fat content and beneficial microbiota, supplied either
via probiotics or fecal microbial transplant. Importantly,
manipulation of microbiota has been successfully applied
in obese, prediabetic, and diabetic individuals to improve
their health and quality of life [86—90]. Our data support
the contention that shifting away from a Western diet
can delay PN and identify the microbiome as a potential
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target for therapeutic intervention in PN. Continuing
studies focused on defining the connection between the
gut microbiome and nerve health are thus warranted.
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