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Abstract

Background: Microbiome-wide gene expression profiling through high-throughput RNA sequencing
(‘metatranscriptomics’) offers a powerful means to functionally interrogate complex microbial communities. Key
to successful exploitation of these datasets is the ability to confidently match relatively short sequence reads to
known bacterial transcripts. In the absence of reference genomes, such annotation efforts may be enhanced by
assembling reads into longer contiguous sequences (‘contigs’), prior to database search strategies. Since reads
from homologous transcripts may derive from several species, represented at different abundance levels, it is
not clear how well current assembly pipelines perform for metatranscriptomic datasets. Here we evaluate the
performance of four currently employed assemblers including de novo transcriptome assemblers - Trinity and Oases;
the metagenomic assembler - Metavelvet; and the recently developed metatranscriptomic assembler IDBA-MT.

Results: We evaluated the performance of the assemblers on a previously published dataset of single-end RNA sequence
reads derived from the large intestine of an inbred non-obese diabetic mouse model of type 1 diabetes. We found that
Trinity performed best as judged by contigs assembled, reads assigned to contigs, and number of reads that could be
annotated to a known bacterial transcript. Only 15.5% of RNA sequence reads could be annotated to a known transcript
in contrast to 50.3% with Trinity assembly. Paired-end reads generated from the same mouse samples resulted in modest
performance gains. A database search estimated that the assemblies are unlikely to erroneously merge multiple unrelated
genes sharing a region of similarity (<2% of contigs). A simulated dataset based on ten species confirmed these findings.
A more complex simulated dataset based on 72 species found that greater assembly errors were introduced than is
expected by sequencing quality. Through the detailed evaluation of assembly performance, the insights provided by this
study will help drive the design of future metatranscriptomic analyses.

Conclusion: Assembly of metatranscriptome datasets greatly improved read annotation. Of the four assemblers
evaluated, Trinity provided the best performance. For more complex datasets, reads generated from transcripts sharing
considerable sequence similarity can be a source of significant assembly error, suggesting a need to collate reads on the
basis of common taxonomic origin prior to assembly.
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Background
Innovations in culture-independent microbiology, coupled
with rapid advances in high-throughput sequencing (HTS),
are beginning to profoundly transform our understanding
of the relationships between microbial communities
and their environments. For example, it is becoming
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increasingly clear that the composition of the human
gut microbiome plays a major role in the development
of many human diseases including obesity, type 1 dia-
betes, inflammatory bowel disease, and autism [1-7].
To date, studies on the human microbiome have
largely focused on the use of 16S rRNA surveys which
examine shifts in the composition of microbial com-
munities [8-10]. However, such studies lend only lim-
ited insight into microbiome function. Recently, we
and others have pioneered the use of microbiome-
wide gene expression profiling via RNA sequencing
(RNA-Seq) or ‘metatranscriptomics’ as a route to
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functionally interrogate a microbiome [11-14]. Key to
exploiting the full potential of these datasets is the
ability to accurately assign and annotate sequence
reads to known transcripts [12], a challenge that is
complicated by the inherent complexity associated
with microbial communities as well as the lack of a
comprehensive set of reference genomes.
In typical RNA-Seq applications, sequence reads are

mapped onto a reference genome to yield expression
profiles for each gene. In the absence of reference
genomes, sequence annotation is typically performed
through sequence similarity searches against databases
of previously annotated genes or proteins [15,16]. How-
ever, for sequencing technologies capable of generating
the hundreds of millions of reads required for metatran-
scriptomic analyses, resultant read lengths tend to be
short (e.g., 75–150 bp), reducing our ability to identify
meaningful sequence matches with confidence. Since
many reads may derive from the same transcript, assem-
bling reads into longer contiguous sequences (‘contigs’)
offers a useful avenue for improving read annotation.
However, unlike reads generated from a single organism,
RNA-Seq analysis of complex microbial communities
poses the additional complication that the multiple spe-
cies may be represented at significantly different levels
of abundance. To date, several tools, based on the use of
de Bruijn graphs, have been developed to assemble
sequence data de novo: Metavelvet [17] was originally
developed to assemble metagenomic datasets, while
Oases [18] and Trinity [19] were developed to specific-
ally assemble RNA sequence data. More recently, a
dedicated metatranscriptomics assembler has also been
described that relies on the use of paired-end reads [20].
Due to the absence of suitable datasets, it is not clear
how assemblers, previously developed for assembling
other types of sequence data, compare with a dedicated
tool for assembling metatranscriptomic datasets and,
furthermore, what types of error each may introduce.
One potential source of error in transcript assembly is

the incorporation of reads from several similar tran-
scripts such as members of the same gene family or the
merging of orthologs from different species. While such
errors may impact taxonomic assignments, they may
have minimal impact on functional assignments. A more
serious source of error is that unrelated transcripts shar-
ing a region of high sequence similarity but distinct
abundance and/or function may be merged into a single
erroneous contig. In such cases, the expression value of
the rarer transcript can be masked by the more abun-
dant transcript and/or, depending on the annotation
pipeline, only a single function may be ascribed. Our
aim was to undertake a systematic evaluation of current
assembly tools across multiple metatranscriptomic data-
sets to assess their performance and determine if the
incidence of contig reconstruction errors is likely to im-
pact downstream analyses.
We focused on a metatranscriptomic data from previ-

ous 76-bp single-end RNA sequence reads, as well as a
new data set of 76-bp paired-end reads, from a microbial
consortium isolated from the large intestine (cecum) of
inbred non-obese diabetic (NOD) mice, a model of spon-
taneous type 1 diabetes [12]. Here we show how different
approaches to sequence assembly impacts transcript anno-
tation and how complex datasets may be more prone to
annotation error.

Results and discussion
Assembly significantly improves the number of annotated
reads
Assembly of next-generation sequencing reads promises
to improve automated annotation through sequence
similarity searches by improving sequence length and re-
ducing read errors [21]. We were interested in examining
whether these approaches were useful for metatranscrip-
tome datasets. To examine how assembly impacts annota-
tion of putative transcripts through sequence similarity
searches, we first applied the Trinity assembly algorithm
to a previously published dataset of 516,881 76-bp
single-end reads of putative bacterial mRNA origin
obtained from a NOD mouse cecal sample [12] (desig-
nated NOD503CecMN; see ‘Methods’ and Additional
file 1). Using default parameters with a 51-bp mini-
mum contig size (here we include reads with at least
50 high-quality base calls), 78.9% of the reads could be
assembled into 48,469 contigs varying in length from
51 to 1,317 bp. For the unassembled reads, only 15.5%
of the unassembled reads had significant sequence
similarity (bit score >50) to a known bacterial protein
as determined through BLAST [22] (Figure 1). We
obtained similar results for 11 additional datasets gen-
erated from related NOD mouse intestinal samples
(see ‘Methods’ and Additional file 2). Considering the
assembled reads, the proportion of contigs with a sig-
nificant sequence similarity match to a known gene
(‘annotatable contigs’) increased with contig length
(Figure 1). The relationship appears asymptotic with
80%–90% of contigs with lengths in excess of 200 hav-
ing significant sequence similarity matches to known
proteins. This finding is consistent with previous re-
ports that ~10% of genes from newly sequenced
bacterial genomes appear novel (i.e., lack significant
sequence similarity to an existing gene) [23]. On the
other hand, for reads which could not be aligned to a
contig created by Trinity, only 9.8% had significant se-
quence similarity (bit score >50) to a known bacterial
protein. With read lengths from the Illumina HiSeq
sequencing platform beginning to approach 250 bp,
we expect that attention for assembly algorithms will
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Figure 1 Trinity-based assembly of short-read metatranscriptomic data improves annotation. The de novo transcriptome assembler,
Trinity [19], was applied to a metatranscriptomic dataset generated from a non-obese diabetic (NOD) mouse cecal sample (NOD503CecMN).
The probability of obtaining a significant sequence alignment (bit score >50) to a known protein increases with contig length. Contigs greater
than 79 bp demonstrate greater annotation potential compared to unassembled reads.
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focus more on the quality of annotation, rather than
simply obtaining an annotation. In the next section,
we explore the performance of several algorithms to
assemble metatranscriptomic read data.

Comparison of assembly algorithms on single-end
sequence data
Given that increasing length improves our ability to an-
notate, we were interested in identifying the assembler
that both maximizes contig length as well as the number
of reads incorporated into contigs. We applied three
established algorithms, Metavelvet [17], Oases [18], and
Trinity [19] to our dataset of 516,881 single-end reads of
putative bacterial mRNA origin. For Metavelvet and
Oases, we tested a range of k-mer values to examine
the impact of low (k = 27), medium (k = 39), and large
(k = 51) word size on assembly. As Oases combines mul-
tiple k values into a single assembly, we increased the
upper limit of the k-mer parameter until less than 5%
additional contigs were generated, consistent with au-
thor guidelines [18]. For all three assemblers, we ob-
tained similar relationships between contig length and
probability of obtaining a significant sequence similarity
match to a known gene. Contigs of length 180–200 bp
had probabilities of obtaining a significant sequence
similarity match ranging from 79% to 83% depending
upon the method of assembly (Figure 2). However, the
number of reads that could be assembled, as well as the
number of contigs, varied between the three algorithms.
Trinity provided the best performance in terms of reads
assembled into an annotatable contig (as defined through
possessing a BLASTX bit score >50 to a known transcript,
Figure 3) and total number of annotatable contigs (21,454
vs. 13,706 for the next best-performing algorithm,
Metavelvet with k = 27). Of these, only 5,561 contigs
were >180 bp in length compared to 3,856 for Metavelvet
(k = 27). Furthermore, Trinity assembled contigs had a
lower N50 value than those generated with Metavelvet
(k = 27) (130 vs. 156 bp, respectively). While this might
suggest that contigs assembled with Trinity may im-
pact annotation performance, we found that 50.3% of
the 516,881 reads aligned to a Trinity assembled
contig that could be annotated (compared to 32.8%
Metavelvet with k = 27) despite a similar minimum
contig size (51 bp for Trinity, 54 bp for Metavelvet).
Notably, increasing the minimum contig size to 150 bp
for Trinity still resulted in 35.3% of reads mapping to an
annotatable contig. For both Metavelvet and Oases,
word size (k) had a significant impact on performance,
with higher values resulting in a low number of reads
assembling into annotatable contigs. This latter finding
appears to contradict the recommendation to use a k-
mer length greater than 51 for reads longer than 65 bp
for Metavelvet assemblies (http://metavelvet.dna.bio.
keio.ac.jp/) and may reflect a greater emphasis on
reconstruction accuracy, rather than annotation per-
formance. Alternatively, these differences may arise
from inherent sequence differences between metage-
nomic and metatranscriptomic datasets. For example,
compared to metagenomic samples, transcript abun-
dances in metatranscriptome samples are influenced
not only by taxonomic representation but also their
relative expression, and subject to more error-prone
RNA sample preparation processes [24].
Given the superior performance of Trinity over the

other methods, we next explored the overlap between

http://metavelvet.dna.bio.keio.ac.jp/
http://metavelvet.dna.bio.keio.ac.jp/
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with a significant sequence similarity

match (BLAST bit score > 50) 

Metavelvet,k=27 32.77%

Metavelvet,k=39 19.73%

Metavelvet,k=51 3.45%

Oases,k=27-35 24.96%

Oases,k=39-45 14.19%

Oases,k=51-53 2.58%

Trinity 50.33%

Total number of contigs

Metavelvet,k=27 21412

Metavelvet,k=39 8218

Metavelvet,k=51 ### ### ### 679
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Oases,k=39-45 5881
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Figure 2 Performance of three short-read assemblers on a single-end metatranscriptomic dataset. Three different single-end assemblers
(with varying k-mer parameters where appropriate) were applied to the NOD503CecMN single-end dataset and evaluated on the basis of: 1)
the probability of contigs of different lengths having significant sequence similarity (bit score >50) to a known protein, as well as the percentage
of reads which could be annotated (top panel), and 2) contig length distributions (bottom panel). While the assemblers varied greatly in the
contig length distribution, number of contigs assembled, and number of reads which could be matched to an annotated contig, all contigs over
180 bp, irrespective of the assembler used to generate them, had a consistently high probability of having significant sequence similarity to a
known protein.
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assemblies to determine the agreement between the
different assembly solutions. We defined the overlap be-
tween two datasets, d1 and d2 (where d1 has fewer reads
assembled into contigs than d2), as the percentage of
reads in d1 assembled into contigs that were also assem-
bled into contigs in d2 (see ‘Methods’). For all assembled
contigs, as well as annotatable contigs, we observed a
high degree of overlap in assembled reads, suggesting
that each algorithm does not assemble a unique fraction
of reads (Table 1, Additional file 3). Perhaps not surpris-
ingly, the Trinity-based assembly had the largest overlap
with the other assemblies, placing 89%–97% of assem-
bled reads into annotatable contigs (Table 1). Due to the
high overlap between assemblies, we did not explore
combining results from different algorithms. Moreover,
merging of multiple assembly results has been reported
to result in additional errors, at least when applied to
Roche 454 sequencing data [25].

Comparison of assembly algorithms on paired-end
sequence data
In the previous sections, we examined the performance of
assemblers applied to single-end reads. To examine how
paired-end sequencing for metatranscriptomic studies
could augment assembly and annotation, we generated a
set of 29.8 million 76-bp paired-end reads (average insert
size 273 bp) from the same rRNA-depleted samples used
to generate the single-end reads [12] (Additional file 1).
We observed a high degree of consistency between single-
and paired-end reads in terms of: 1) the relative propor-
tion of sample represented in the entire dataset, 2) reads
assigned to ribosomal transcripts for each sample, and 3)
reads assigned to mouse host transcripts for each sample
(Additional file 4). In contrast, the proportion of reads
assigned to putative bacterial mRNA transcripts was lower
for the paired-end reads and was associated with a rise in
frequency of reads filtered on the basis of vector contam-
ination. This is likely related to the processing step that
discarded both reads in a pair even if only one member
contained significant vector contamination. Interestingly,
we note discrepancies between single and paired read data
in the phylogenetic distribution of reads (Additional
file 4). However, overall there is reasonable correlation be-
tween samples (r2 values from 0.75 to 0.99). For both ends
of a read, this correlation was even higher (r2 from 0.95
to 1), suggesting that differences arise from biases intro-
duced in sample preparation prior to sequencing, rather
than bioinformatics processing.



Table 1 Overlap in assemblies

Metavelvet, k = 39 Metavelvet, k = 51 Oases, k = 27–35 Oases, k = 39–45 Oases, k = 51–53 Trinity default

All single-end contigs

Metavelvet, k = 27 85.50% 69.60% 76.80% 76.20% 59.70% 98.00%

Metavelvet, k = 39 84.70% 64.50% 65.00% 71.20% 96.80%

Metavelvet, k = 51 64.30% 68.00% 48.10% 96.60%

Oases, k = 27–35 85.60% 68.10% 95.40%

Oases, k = 39–45 91.00% 97.30%

Oases, k = 51–53 97.60%

BLAST score >50

Metavelvet, k = 27 87.20% 79.60% 72.80% 78.40% 74.50% 97.00%

Metavelvet, k = 39 89.80% 65.50% 64.70% 82.30% 96.50%

Metavelvet, k = 51 72.90% 69.50% 48.20% 97.10%

Oases, k = 27–35 92.60% 85.70% 88.00%

Oases, k = 39–45 92.00% 92.70%

Oases, k = 51–53 92.60%

Single-end assemblies constructed from 516,881 single-end reads of putative bacterial mRNA origin obtained from a non-obese diabetic (NOD) mouse cecal sample were
evaluated on the uniqueness of the reads incorporated into contigs. Figures indicate the percentage of reads of the smaller dataset that are incorporated into contigs in
both datasets.

Figure 3 Performance of four short-read assemblers on both single- and paired-end metatranscriptomic datasets. Assembly performance
was assessed using both single-end and paired-end datasets generated from the NOD503CecMN sample. Comparisons between the two datasets are
presented for each assembler/parameter combination except IDBA-MT which requires paired-end data. Assemblers were evaluated on the basis of: 1)
number of contigs assembled, 2) percentage of reads that map to assembled contigs, and 3) whether contigs have sequence similarity to a known
protein at two levels of stringency.
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Next, we evaluated potential performance gains through
the use of paired-end reads. The paired-end reads allowed
an evaluation of a dedicated metatranscriptomic assembly
algorithm, IDBA-MT [20], as it is compatible only with
paired-end reads. Compared to the single-end read data,
we were able to assemble more contigs (Figure 3), poten-
tially reflecting the greater number of the paired-end reads
(553,115 pairs of reads vs. 516,881 single reads). For ex-
ample, after dividing the paired ends into two separate
datasets of 553,115 reads, Trinity generated 51,244 and
52,549 contigs, respectively. These data contrasted with
48,469 contigs for an assembly based on the 516,881
single-end reads and 58,361 contigs for an assembly based
on combining both ends of the 553,115 pairs. However,
compared to the single-end assembly, we were able to as-
semble a higher proportion of reads into contigs, resulting
in a concomitant gain in the proportion of reads assem-
bled into annotatable contigs (from 50.3% to 64.4% for the
Trinity-based assembly; Figure 3). Greater performance
gains were observed for the Metavelvet and Oases algo-
rithms. Again, imposing a 150-bp contig size cutoff on the
Trinity assembly resulted in a proportion of mapped reads
comparable to Oases and Metavelvet despite a smaller
number of overall contigs (Figure 3). In contrast, IDBA-
MT did not perform as well as the other methods in either
contigs produced or reads mapped to annotatable contigs.
These findings are contrary to a previous report that
Trinity generated only ~5% more contigs than IDBA-MT
[20]. This discrepancy might arise because this latter study
combined reads from all 12 paired-end mouse samples
resulting in potential coverage saturation that may have
produced a convergence in the number of contigs. How-
ever, assemblies based on the entire set of sequences from
all 12 samples also resulted in a greater number of contigs
using Trinity (127,511 contigs) compared to IDBA-MT
(16,582 contigs). Instead, this discrepancy likely arises
from the use of a default parameter in the Trinity software,
which reports contigs only in excess of 200 bp (resulting
in 10,823 contigs). To avoid differential biases between the
assemblers, we reduced this stipulation to 51 bp (the mini-
mum allowed read length after filtering) in our analyses.
The overlap profile of the paired-end read assemblies was
similar to the single-end data, again suggesting little
benefit in combining results from different assemblers
(Additional file 5).

Database evaluation of transcript reconstruction accuracy
across assemblers
A major challenge for the assembly of metatranscrip-
tomic datasets is the generation of contigs derived from
two or more distinct genes either between unrelated
transcripts sharing a region of high sequence similarity,
gene fusions or as a result of polycistronic microbial
transcripts. Sequence assembly improves the ability to
annotate reads, but the generation of these misas-
sembled or multifunctional transcripts may confound
interpretation of resultant expression profiles. In the ab-
sence of a comprehensive set of reference genomes, we
developed a heuristic algorithm to identify such contigs
based on BLAST sequence similarity matches [22]. We
then split these transcripts into fragments corresponding
to a single putative gene (Figure 4). In brief, we ran a
BLASTX search for a contig against the non-redundant
protein database. We then identified the sequence match
with the highest alignment score (bit score ≥50) by iter-
ating over the entire contig sequence. A base that was
already covered by a previous alignment was ignored.
Subsequently, the contigs were split into discrete frag-
ments if we identified two or more non-contiguous se-
quence alignments. We then noted all contigs composed
of multiple fragments. This approach has two limita-
tions. First, it relies on correctly annotated entries in the
non-redundant protein database that are not the result
of misassembly. Second, we assume that a misassembly
does not generate a contig with similarity to a known
gene that was not present in the metatranscriptomic
sample.
Applying this procedure to our assemblies, we found

that those based on single-end reads contained a low in-
cidence of contigs composed of multiple genes (from
0.56% to 0.24% of contigs for Oases with k = 27–35 and
Metavelvet with k = 39, respectively; Figure 4). Perhaps
surprisingly, assemblies based on paired-end reads con-
tained a higher incidence of misassembled contigs (from
2.08% to 0.5% of contigs for Oases with k = 27–35 and
Metavelvet with k = 51, respectively). Both Trinity- and
IDBA-MT-based assemblies gave comparable outcomes
(1.31% and 1.03% of contigs, respectively). This increase
in misassembled contigs associated with the paired-end
reads is likely related to the increased read coverage
provided by the dataset, resulting in longer contigs.
Whether these misassembled contigs arise from the re-
construction of polycistronic mRNAs or assembly errors
remains to be resolved. In any event, it is clear that while
the higher coverage of the paired-end reads improves
both the number of contigs and number of reads
assigned to an annotatable contig, it has not improved
accuracy of contig assembly.
Given the low incidence of misassembled contigs inde-

pendent of assembler as determined by the above heur-
istic, we next looked for further evidence of potential
misassembly through the identification of contigs with
only partial matches to known proteins. For contigs (and
fragments) possessing significant sequence similarity to a
single known protein (as defined by a BLASTX match
with a bit score cutoff of 50), we identified those for
which the alignment with the protein covered less than
90% of the length of the contig or fragment. Such



Single End Paired End Single End Paired End

Oases,k=27-35 0.56% 2.08% 14% 21%

Oases,k=39-45 0.46% 0.85% 12% 19%

Oases,k=51-53 0.27% 0.83% 16% 14%

Metavelvet,k=27 0.36% 1.30% 14% 27%

Metavelvet,k=39 0.24% 0.83% 13% 18%

Metavelvet,k=51 0.37% 0.50% 16% 14%

Trinity 0.39% 1.31% 15% 22%

IDBA-MT 1.03% 16%

Contigs Split into Multiple Fragments

Assembler

Post-Processed Contigs (Fragments)

possessing a BLASTX match that

covers <90% of their length

Contig

2. Identify set of highest scoring

non-overlapping alignments

to known proteins 

1. Perform database search to

identify alignments to known

proteins

3. Fragment contig on the basis

of non-overlapping alignments

(A)

(B)

Figure 4 Identification and evaluation of misassembled contigs. (A) Strategy used to identify misassembled contigs with the potential to
align to multiple bacterial proteins. First, we perform a database search to identify proteins aligning to the contig (1). Next, iterating from the start
of the contig, we identify the set of highest scoring non-overlapping alignments (2). Based on these, the contig is subsequently fragmented (3).
(B) Incidence of misassembles, as defined from the heuristic presented in (A), generated from both the single-end and paired-end read datasets
generated from the NOD503CecMN sample (left panel). Also shown is the proportion of intact contigs and fragments which align <90% of their
length to a known protein (right panel).
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contigs or fragments may indicate either a gene fusion
event which could not be resolved into discrete regions
through the initial heuristic, a misassembly involving
reads from two or more potentially related transcripts
(e.g., members of the same gene family) that result in
the generation of a hybrid transcript, or simply a novel
gene that has yet to be captured by the non-redundant
protein database. This latter type of sequence may be
considered as a false-positive misassembly. Due to high
rates of sequence divergence in microbiome samples, we
expect such events to be a significant source of false-
positive misassemblies. For example, a previous study
suggests that ~8%–10% of genes associated with a newly
sequenced genome are novel (i.e., lack sequence similar-
ity to any known gene) [23]. Accordingly, this second
heuristic yielded a higher estimate of potential misas-
semblies for both single- and paired-end datasets (13%–
16% vs. 14%–27%, respectively; Figure 4). Interestingly,
we note that increasing the k parameter in both Metavel-
vet and Oases increased reconstruction accuracy through
both metrics.
While the incidence of contigs possessing non-
overlapping alignments with two or more proteins was
relatively low, we nonetheless propose the implemen-
tation of a post-assembly processing step such as that
outlined above to convert contigs into discrete frag-
ments associated with distinct sequence alignments.
Note also that such a processing step also has the ad-
vantage of separating individual ORFs from assemblies
of polycistronic mRNA moieties.

Assembly of simulated metatranscriptomic datasets
reveals transcript accuracy
In the absence of reference genomes, it is only possible
to estimate the accuracy of assembled transcripts from
the mouse metatranscriptomic samples. To further in-
form on assembly accuracy, we therefore generated two
simulated metatranscriptomic datasets of increasing
complexity using a modified version of the RNA-Seq
simulator, FluxSimulator [24] (Figure 5). FluxSimulator
was originally developed to generate simulated reads from
a model transcriptome, taking into account inherent



List of 

predicted 

transcripts

(FASTA)

Take consensus of 

alignments to generate 

library of simulated 

transcripts

Experimental 

parameters 

(sequence errors / 

sample biases)

Gold standard 

assembly

Genomes ORFs

Assign random 

expression level for 

each gene based on 

Zipf's law distribution

Relative species 

abundance

Species A

Species B

Species C

Species D

Simulated 

metatranscriptomic

reads

Align reads to

original transcripts

Figure 5 Overview of metatranscriptome simulation pipeline based on FluxSimulator. For each species considered, the genome sequence
and ORF annotation file is used to create a list of predicted transcripts for each species. FluxSimulator then assigns each gene a random
expression value based on Zipf’s law to create a library of the mRNA molecules that are present in the sample. Given a list of experimental
parameter input (sequence errors, sample bias, and relative species abundance), a set of simulated metatranscriptomic reads are generated based
on the set of transcripts provided. A gold standard assembly is then generated by aligning reads to the original transcripts and obtaining
consensus sequences from the resulting alignments.
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biases that arise from both sample preparation steps such
as reverse transcription, fragmentation, adapter ligation,
and PCR amplification, as well as read error profiles that
approximate those obtained from the Illumina sequencing
platform. Two simulated datasets were generated based
on a metagenome analysis of a human stool sample
(National Center for Biotechnology Information (NCBI)
Biosample identifier: SRS011061 [26]). The first was com-
posed of sequences generated from the 73 most abundant
species within the same sample for which a reference gen-
ome is available. The second was composed of sequences
generated from the ten most abundant species associated
with the ten most abundant genera for which a reference
genome was available. Maintaining the proportion of reads
from each species as the initial sample, we generated 1.75
million 76-bp single-end reads as well as 1.75 million 76-
bp paired-end reads for each dataset using a modified ver-
sion of FluxSimulator [24]. Paired-end fragment length
distributions were taken from experimental values derived
for the mouse paired-end dataset.
The availability of a reference metatranscriptome also

allows the evaluation of assembly performance through
the DETONATE software package, a transcriptome as-
sembly evaluator [27]. In brief, we used the combined
transcriptome of the ten species dataset to train a
probabilistic model which is subsequently used to evalu-
ate the assemblies from the NOD mouse datasets. Our
results suggest that Trinity gave the worst performance
according to this measure (Additional file 6), consistent
with the previously reported N50 values. However, while
this might suggest that the Trinity assembly least
captures the properties of a real metatranscriptome,
depending on the annotation pipeline, favoring inclu-
siveness of assembly may be preferred if it does not
introduce errors which confound the interpretation of
the final assembly results.
To examine the propensity of the four short-read as-

semblers to introduce misassemblies in more detail, we
applied the assemblers to each simulated dataset and
subsequently aligned resultant assemblies to the original
reference genomes using BLAT [28]. As we are interested
in investigating the incidence of large-scale assembly er-
rors that may adversely impact functional annotation, mis-
assembled contigs were defined as those in which greater
than one read length (76 nucleotides) was unmatched in
the highest scoring alignment to the reference genomes.
To understand how sequencing error and depth could im-
pact the number of false positives found by our metric, we
also generated a ‘gold standard’ assembly by aligning simu-
lated reads to the reference genomes and collating the
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resulting consensus sequences. For the ten species simu-
lated dataset, we identified far fewer (<0.3%) misassembled
contigs, compared with the NODmouse datasets (Figure 6).
Counterintuitively, we also identified fewer misassembled
contigs than the gold standard assembly. However, this re-
duction in assembly errors for the de novo assemblers is
likely related to the more limited number of contigs con-
structed (contigs assembled from reads with sequence er-
rors in low coverage regions are likely to be rejected). This
is reflected in the total number of contigs, reads assigned to
contigs, and percentage of the metatranscriptome covered
by each assembly (Additional file 6). Focusing on the 72
species simulated dataset, however, we identified many
more misassembled transcripts (up to 15% for the
simulated paired-end data assembled with Oases with
k = 27–35; Figure 6). Given the high stringency used
in matching contigs to the reference genomes, we next
investigated the impact of match stringency on the
prediction of large-scale misassembly events. Decreas-
ing the percent identity match required for misassem-
bly detection from 100% reduced the incidence to <5%
and <1% for 99% identity and 98% identity, respect-
ively. This suggests that most assembly errors in our
simulation arise from sequence errors accumulated in
the contigs rather than large-scale fusions of unrelated
genes sharing a single region of similarity. Further-
more, given their poorer performance on the 72 spe-
cies dataset relative to the gold standard assembly,
these results demonstrate that datasets of increased
complexity can result in assembly errors that are not
simply the result of errors introduced during the se-
quencing process.

Conclusions
We have shown that assembly of metatranscriptomic
reads considerably improves short-read annotation. While
only 15.5% of single-end reads obtained from the large in-
testine could be confidently assigned function, this per-
centage increases to 50.3 after assembly with Trinity.
Furthermore, the number of contigs resulting from the fu-
sion of two unrelated genes during the assembly process
was rare in simple (8–10 species) experimental and simu-
lated datasets. In a more complex simulated dataset com-
posed of sequences from 72 species, there were many
more assembly errors than expected by the sequence read
quality. However, such errors appeared confined to rela-
tively minor sequence variants rather than the merging of
two unrelated genes that share a region of sequence simi-
larity. While Trinity did not assemble the most accurate
contigs, it significantly outperformed the other three as-
semblers in terms of the number of reads that could be
aligned to a contig with known function. Future work will
focus on improving the accuracy of reconstructed contigs
in complex metatranscriptomic samples by first grouping
reads into taxonomically defined bins, thereby reducing
sample complexity prior to assembly. This algorithmic de-
velopment can be expected to reduce assembly errors that
arise from the merging of homologous transcripts from
different species and subsequently improve taxonomic as-
signment and functional annotation of assembled contigs.
Furthermore, while the focus of this study was on meta-
transcriptome assembly as well as the types of assembly
errors that could impact downstream functional analyses,
future work could focus on a systematic analysis of
types of potential misassemblies and how assembler
parameters may be optimized to differentiate between
gene fusions, transcripts cotranscribed in operons, and
genuine misassemblies.

Methods
Source and processing of sequencing reads
Single-end sequence reads from a previously published
mouse gut metatranscriptome study were obtained from
the Sequence Repository Archive (SRA051354) [29].
This dataset includes 12 samples generated from two
different body sites, four different mice using a variety of
different purification procedures described elsewhere
[12]. Paired-end sequences were generated from the
same barcoded libraries used to generate the single-end
reads following standard Illumina protocols. Sequencing
was performed with the Illumina Genome Analyzer II
(GaII) platform at the Center for Advanced Genomics
(TCAG - Hospital for Sick Children). After deconvolu-
tion of the barcodes used for multiplexing, 29,780,781
pairs of 76-bp reads were generated on a single flow cell.
This paired-end data set, supporting the results of this
article, is available from the Sequence Repository Archive
(SRA051354 - http://www.ncbi.nlm.nih.gov/sra/?term=
SRA051354) [29].
Compared with the previous publication, we applied a

stricter protocol for removal of adaptor contaminants to
optimize assembly performance; reads with adaptor
or partial adaptor sequences at their ends may inter-
fere with extension of transcripts during assembly.
Adaptor sequences were identified using Cross_match
(http://www.phrap.org) to search a database of Illu-
mina adaptor sequences. We subsequently ran a more
stringent screen focusing on the specific adaptors:
AGATCGGAAGAGCACACGTCTGAACTCCAG and
AGATCGGAAGAGCGTCGTGTAGGGAAAGA (min-
match 10, minscore 5). Poor-quality bases were re-
moved by iterating a 5-nt window across the 5′ and 3′
ends of each sequence and removing nucleotides in
windows with a mean quality score less than 20; iter-
ation was stopped when the mean quality score was
greater than 20. After trimming, reads less than 50 bp
in length were discarded; for paired-end reads, if
either read of a pair was less than 50 bp in length,

http://www.ncbi.nlm.nih.gov/sra/?term=SRA051354
http://www.ncbi.nlm.nih.gov/sra/?term=SRA051354
http://www.phrap.org
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then both reads were discarded. Putative rRNA reads
were identified through BLAT [28] sequence similarity
searches (bit score ≥50) against an in-house database
of rRNA sequences [12]. Again, for paired-end reads, if
either read of a pair matched a ribosomal sequence,
both reads were annotated as being of rRNA in origin.
Putative mouse transcript sequences were identified
through BLAT sequence similarity searches (bit score ≥50)
against a database of mouse genome and transcrip-
tome sequences obtained from ENSEMBL release 67
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[30]. Depending on sample, 3%–29% of the reads
could be annotated as being of putative bacterial
mRNA origin (Additional file 1). Phylogenetic annotations
were performed by running BLASTX sequence similarity
searches against the non-redundant protein database [31],
using the highest scoring alignment (bit score >50).
Resulting species were assigned to larger taxonomic
groups with reference to the National Center for Biotech-
nology Information (NCBI) taxonomy tree [32].

Generation of simulated metatranscriptomic datasets
Simulated metatranscriptomic datasets were generated
based on sequence abundance data previously gener-
ated from the stool of a female participant of the
Human Microbiome Project (HMP) (Biosample identi-
fier: SRS011061 [26]). From an original list of 180
species, 73 were associated with a reference genome
available from the Human Microbiome Reference
Genome database (HMREFG [33]; Additional file 7).
For each of these 72 species, annotation files were
converted from GenBank format to gtf format for use
in FluxSimulator [24] using a custom script. A total of
1.75 million 76-bp single-end and paired-end reads
were generated with the proportion of each of the 72
species obtained with reference to the HMP sample.
To generate a less complex dataset consisting of ten
species, a single species representative was selected
from each of the ten most abundant genera identified
in the HMP sample. Again, 1.75 million single-end
and paired-end reads were generated with the propor-
tion of each of the ten species obtained with reference
to the HMP sample. To generate a gold standard as-
sembly for the simulated datasets that takes into ac-
count read errors introduced by FluxSimulator, we
used a parallelised version of BLAT (https://code.google.
com/p/pblat/) to align simulated reads to the set of refer-
ence genomes originally used to generate the reads. Since
FluxSimulator includes sequence upstream of start codons
in the generation of simulated transcripts, it can occasion-
ally result in the generation of reads representing a fusion
of two neighboring genes. For the purposes of defining
misassemblies, these were ignored.

Sequence assembly and mapping reads back to contigs
For Trinity [19], we used the following parameters: fastq
assembly, 16 CPUs for Inchworm and Butterfly, a max-
imum heap size of 12 GB, and an insert distance of
270 bp for the paired-end assemblies. Only contigs in
excess of 50 bp were reported. For Oases [18], we used
version 2.0.8 and varied the minimum and maximum
k-mer parameters with values listed in the text. Insert
length was defined as 270 bp for the paired-end assem-
blies. For Metavelvet [17], we used version 1.2.01 coupled
with Velvet [34] version 1.2.07. Velveth was initially run
on the fastq files, using the -short parameter for the
single-end reads and the -shortPaired parameter for the
paired-end reads. Values for minimum and maximum
k-mer parameters are listed in the text. Subsequently, vel-
vetg was run using the -exp_cov auto parameter for both
single- and paired-end reads. The ins_length parameter
was set to 270 for the paired-end reads. Finally, meta-
velvetg was run setting the -ins_length parameter to 270
for the paired assemblies. IDBA-MT [20] version 1.0 was
run on contigs initially generated using IDBA-UD [35]
version 1.0.9 on paired-end reads using default parameters
with an insert length of 270. To map reads to contigs, we
applied BWA [36] with default parameters. To calculate
the overlap between reads mapping to different contig
sets, we calculated the intersection of the reads mapping
to the two different assemblies divided by the size of smal-
lest set of mapped reads.
Additional files

Additional file 1: Sequence yields for 12 NOD mouse sample
preparations. Table showing number and breakdown of sequence
reads generated from single and paired-end sequencing runs.

Additional file 2: Number of reads and proportion with BLASTX
matches for 12 samples of single- and paired-end reads derived
from the large intestine of non-obese diabetic mice. Graph shows
the proportion of reads which can be annotated through sequence
similarity searches.

Additional file 3: Overlap in single-end assemblies. Single-end
assemblies constructed from 516,881 single-end reads of putative
bacterial mRNA origin obtained from a non-obese diabetic (NOD)
mouse cecal sample were evaluated on the uniqueness of the reads
incorporated into contigs. The size of circles and overlap areas is
approximately proportional to the reads incorporated into each assembly
and the read profile overlaps for a) Oases, b) Metavelvet, and c) Trinity
compared to Oases and Metavelvet with the lowest k parameters.

Additional file 4: Comparisons of the performance of single- and
paired-end sequence reads generated from the large intestine of
non-obese diabetic mice. Graphs show consistency of single- and
paired-end datasets in terms of rRNA, mouse RNA, and bacterial mRNA
representation, as well as phylogenetic breakdown of annotatable reads.

Additional file 5: Overlap in assemblies of paired-end reads. As for
Table 1, this table shows the overlap of reads incorporated into the
various assemblies.

Additional file 6: Statistics of simulated metatranscriptome
assemblies constructed from ten species. Table showing performance
of various assemblies on the simulated metatranscriptome dataset
constructed from ten species.

Additional file 7: List of species used to generate the simulated
datasets.
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